Analytical Chemistry

Ch. 1 & 2

Chemical Measurements Tools of the Trade

Ch. 1

units of measurement
 chemical concentrations

SI units of measurement

See Table 1-1

Table 1-2 lists some quantities that are defined in terms of the fundamental quantities.

See Table 1-2

Prefixes as Multipliers

Rather than using exponential notation, we often use prefixes from Table 1-3 to express large or small quantities

$$1.7 \times 10^4 \,\mathrm{m} \times \frac{1 \,\mathrm{km}}{10^3 \,\mathrm{m}} = 1.7 \times 10^1 \,\mathrm{km} = 17 \,\mathrm{km}$$

See Table 1-3

Converting Between Units

Although SI is the internationally accepted system of measurement in science, other units are encountered.

Useful conversion factors are found in the next slide

See Table 1-4

9e offers the same table, but less organized

Chemical Concentrations

- A solution is a homogeneous mixture of two or more substances
 : solute (minor) + solvent (major)
- Two types of solutions
 - 1) aqueous solutions: solvent is water
 - 2) non-aqueous solutions: solvent is not water
- Concentration: how much solute is contained in a given volume or mass of solution or solvent
 - : denoted with square brackets
 - \rightarrow "[H⁺]" means "the concentration of H⁺."

Chemical Concentrations

Molarity and Molality

Molarity (M): the number of moles of a substance per liter of solution. **Molality (m)**: moles of substance per kilogram of solvent (not total solution).

Molarity (M) =
$$\frac{\text{moles of solute (mol)}}{\text{volumes of solution (L)}}$$
 (dependent on T)
Molality (m) = $\frac{\text{moles of solute (mol)}}{\text{mass of solvent (kg)}}$ (independent of T)

Molality (m): independent of temperature.

Molarity (M): changes with temperature because the volume of a solution usually increases when it is heated

Percent Composition

• The percentage of a component in a mixture or solution is usually expressed as a weight percent (wt%):

Weight percent = $\frac{\text{mass of solute}}{\text{mass of total solution or mixture}} \times 100$

Example) A common form of ethanol is 95 wt%;

 \rightarrow means 95 g of ethanol per 100 g of total solution.

the remainder is water.

Volume percent (vol%) is defined as

Volume percent =
$$\frac{\text{volume of solute}}{\text{volume of total solution}} \times 100$$

Parts per Million and Parts per Billion

ppm, ppb (parts per million, billion)

Sometimes composition is expressed as parts per million (ppm) or parts per billion (ppb)

 \rightarrow mean grams of substance per million or billion grams of total solution or mixture.

$$ppm = \frac{\text{weight of substance (kg)}}{\text{total weight of sample (kg)}} \times 10^{6} \quad (mg/kg) \approx 1\mu g/mL = 1mg/L$$
$$ppb = \frac{\text{weight of substance (kg)}}{\text{total weight of sample (kg)}} \times 10^{9} \quad (\mu g/kg) \approx 1ng/mL = 1\mu g/L$$

Because the density of a dilute aqueous solution is close to 1.00 g/mL, \rightarrow we frequently equate 1 g of water with 1 mL of water, although this equivalence is only approximate.

For gases,

ppm usually refers to volume rather than mass.

Example) Atmospheric CO₂ has a concentration near 380 ppm,

- \rightarrow means 380 µL CO₂ per liter of air.
- → ex) 미세먼지 in µg / m³

Electrolyte

- An electrolyte is a substance that dissociates into ions in solution.
- In general, electrolytes are more dissociated in water than in other solvents.
- We refer to a compound that is mostly dissociated into ions as a strong electrolyte.

One that is partially dissociated is called a **weak electrolyte**.

2-4. Burets

A precisely manufactured glass tube to measure the volume of liquid delivered through the stopcock at the bottom.

See Fig 2-8

<u>Operating a buret</u>

- wash buret with new solution
- eliminate air bubble before use
- drain liquid slowly
- deliver fraction of a drop near end point
- read bottom of concave meniscus
- estimate reading to 1/10 of a division
- avoid parallax error
- account for graduation thickness in readings

See Fig 2-9

2-5. Volumetric Flasks

TC: To contain a particular volume of solution at 20°C.

- TC = to contain (volumetric flasks)
- TD = to deliver (pipets and burets)

See Fig 2-11

To reduce adsorption of cations on the glass surface

- washing with acid: replacing cations on the glass surface with H⁺
- plastic (polypropylene) flask for trace analysis

2-6. Pipets and Syringes

delivery of known volumes of liquid

- transfer pipet : the last drop should not be blown out
- measuring (Mohr) pipet : to deliver a variable volume (by difference)

See Fig 2-12

Comparison of tolerances of measuring tools

See Table 2-2, 2-3, 2-4

2-6. Pipets and Syringes

How to transfer pipet

- rubber bulb : not your mouth!
- discard one or two pipet volumes of liquid to rinse traces of previous reagents from the pipet
- touch the tip of the pipet to the side of a beaker -> calibration mark
 -> transfer/drain -> holding the tip against the wall of the vessel -> do not blow out the last drop
- rinse with distilled water : not to dry inside of a pipet

2-6. Pipets and Syringes

Micropipets

- delivering volumes of 1 to 1000 μ L : disposable PP tip
- do not contaminate the disposable tip : package/dipenser
- set the volume → depress the plunger → hold pipet See Fig 2-14 vertically, dip it 3-5 mm → slowly release the plunger to suck up liquid → transfer → touch the tip to the wall of the receiver → gently depress the plunger → depress the plunger further to squirt out the last liquid
- The volume of liquid depends on the angle and depth.

Syringe

- discard several volumes of liquid : to wash the glass wall and to remove air bubble from the barrel
- steel needle is attacked by strong acid

2-7. Filtration

See Fig 2-17

2-7. Filtration

See Fig 2-18, 19

Analytical Chemistry

Ch. 3

Experimental Errors

Chapter 3. Experimental Error

- There is **error** associated with every measurement.
- There is no way to measure the "true value" of anything.
- \rightarrow The best we can do in a chemical analysis is to carefully apply a technique whose experience tells us is reliable.
- **Repetition** of one method of measurement several times tells us the **precision** (reproducibility) of the measurement.
- If the results of measuring the same quantity by different methods agree with one another,
- \rightarrow then we become confident that the results are accurate
- \rightarrow means they are near the "true" value.

3-1. Significant Figures

The number of significant figures

 \rightarrow the minimum number of digits needed to write a given value in scientific notation without loss of **accuracy**.

• For examples:

The number 142.7 has four significant figures

- \rightarrow It can be written as 1.427 \times 10².
- If you write 1.427 0 × 10²,
- \rightarrow is not the case for the number 142.7
- \rightarrow The number 1.427 0 \times 10² has five significant figures.
- \rightarrow you imply that you know the value of the digit after 7

- The number 6.302 \times 10⁻⁶ has four significant figures
- \rightarrow You could write the same number as 0.000 006 302
- \rightarrow The zeros to the left of the 6 are merely holding decimal places.
- The number 92 500 is ambiguous.
- \rightarrow It could mean any of the following:

9.25×10^{4}	3 significant figures
9.250×10^{4}	4 significant figures
9.2500×10^{4}	5 significant figures

• Zeros are significant when they occur (1) in the middle of a number or (2) at the end of a number on the right-hand side of a decimal point.

- The last significant digit (farthest to the right) in a measured quantity always has some associated uncertainty.
- The scale of a Spectronic 20 spectrophotometer is drawn in Figure 3-1.
- The needle in the figure appears to be at an absorbance value of 0.234.
 →We say that this number has three significant figures because the numbers 2 and 3 are completely certain and the number 4 is an estimate.
- \rightarrow The value might be read 0.233 or 0.235 by other people.

See Fig 3-1

3-2. Significant Figures in Arithmetic

- We now consider how many digits to retain in the answer after you have performed arithmetic operations with your data.
- → Rounding should only be done on the final answer (not intermediate results), to avoid accumulating round-off errors.

1) Addition & Substraction

- If the numbers to be added or subtracted have equal numbers of digits,
- → the answer goes to the same decimal place as in any of the individual numbers:

 $\begin{array}{r}
 1.362 \times 10^{-4} \\
 + 3.111 \times 10^{-4} \\
 \overline{} \\
 4.473 \times 10^{-4}
\end{array}$

• The number of significant figures in the answer may exceed or be less than that in the original data.

5.345	7.26×10^{14}
+ 6.728	$-$ 6.69 \times 10 ¹⁴
12.073	0.57×10^{14}

- If the numbers being added do not have the same number of significant figures,
- \rightarrow we are limited by the least-certain one.

18.998 403 2	(F)
+ 18.998 403 2	(F)
+ 83.798	(Kr)
121.794 806 4	
Not significant	

- The digits 806 4 lie beyond the last significant decimal place.
- Because this number is more than halfway to the next higher digit,
- \rightarrow we round the 4 up to 5
- \rightarrow that is, we round up to 121.795 instead of down to 121.794
- If the insignificant figures were less than halfway,
- \rightarrow we would round down.
- \rightarrow For example, 121.794 3 is rounded to 121.794.

- In the special case where the number is exactly halfway, round to the nearest even digit.
- For examples

43.55 \rightarrow 43.6 if we can only have three significant figures

 $1.425 \times 10^{-9} \rightarrow 1.42 \times 10^{-9}$ if we can only have three significant figures

• Addition and subtraction:

 \rightarrow Express all numbers with the same exponent and align all numbers with respect to the decimal point.

 \rightarrow Round off the answer according to the number of decimal places in the number with the fewest decimal places.

$\begin{array}{rrr} 1.632 \times 10^5 \\ + \ 4.107 \times 10^3 & \rightarrow \\ + \ 0.984 \times 10^6 \end{array}$		1.632	$ imes 10^5$
		+ 0.04107	$\times 10^5$
	\rightarrow	+ 9.84	$\times 10^{5}$
		11.51	$\times 10^{5}$

Multiplication and Division

• In multiplication and division, we are normally limited to the number of digits contained in the number with the fewest significant figures:

3.26×10^{-5}	4.317 9	$ imes 10^{12}$	34.60
× 1.78	× 3.6	$\times 10^{-19}$	÷ 2.462 87
5.80×10^{-5}	1.6	$\times 10^{-6}$	14.05

Logarithms and Antilogarithms

• The base 10 logarithm of n is the number a, whose value is such that n=10^a:

Logarithm of n: $n = 10^a$ means that $\log n = a$

- In Equation 3-1,
- \rightarrow the number n is said to be the antilogarithm of a.
- \rightarrow That is, the antilogarithm of 2 is 100 because $10^2 = 100$
- \rightarrow the antilogarithm of -3 is 0.001 because $10^{-3} = 0.001$

- A logarithm is composed of a characteristic and a mantissa.
- \rightarrow the characteristic is the integer part
- \rightarrow the mantissa is the decimal part

log 339 = 2.530Characteristic Mantissa = 2 = 0.530

- The number 339 can be written as 3.39×10^2
- The number of digits in the mantissa of log 339 should equal the number of significant figures in 339.
- \rightarrow The logarithm of 339 is properly expressed as 2.530.
- The characteristic, 2, corresponds to the exponent in 3.39×10^2

• In the conversion of a logarithm into its antilogarithm,

 \rightarrow the number of significant figures in the antilogarithm should equal the number of digits in the mantissa.

 \rightarrow Thus,

antilog
$$(-3.42) = 10^{-3.42} = 3.8 \times 10^{-4}$$

2 digits 2 digits 2 digits

• Here are several examples showing the proper use of significant figures:

 $\log 0.001 \ 237 = -2.907 \ 6$ $\operatorname{antilog} 4.37 = 2.3 \times 10^4$ $\log 1 \ 237 = 3.092 \ 4$ $10^{4.37} = 2.3 \times 10^4$ $\log 3.2 = 0.51$ $10^{-2.600} = 2.51 \times 10^{-3}$