Region 4: After the Equivalence Point

- Now we are adding NaOH to a solution of A-.
- The base NaOH is so much stronger than the base Athat it is fair to say that the pH is determined by the excess OH-.
- Let's calculate the pH when $V_b = 10.10$ mL, which is just 0.10 mL past V_e .
- The concentration of excess OH- is

$$[OH^{-}] = (0.100 \text{ O M}) \left(\underbrace{\frac{0.10}{50.00 + 10.10}}_{\text{Initial}} \right) = 1.66 \times 10^{-4} \text{ M}$$

$$\underbrace{\text{Total volume}}_{\text{of solution}}$$

$$\frac{1000 \text{ O M}}{1000 \text{ O M}} \left(\underbrace{\frac{0.10}{50.00 + 10.10}}_{\text{OH}^{-1}} \right) = 10.22$$

The Titration Curve

 Calculations for the titration of MES with NaOH are shown in Table 11-2.

See Table 11-2

The Titration Curve

- The calculated titration curve in Figure 11-2 has two easily identified points.
 - → One is the equivalence point, which is the steepest part of the curve.
 - → The other landmark is the point where and $pH = pK_a$.
- This latter point is also an inflection point, having the minimum slope.

See Figure 11-2

 Figure 11-3 shows how the titration curve depends on the acid dissociation constant of HA and on the concentrations of reactants.

 As the acid becomes weaker or more dilute,

→ the end point becomes less distinct.

 It is not practical to titrate an acid or a base when its strength is too weak or its concentration too dilute. See Figure 11-3

11.3 Titration of Weak Base with Strong Acid

- The titration of a weak base with a strong acid is the reverse of the titration of a weak acid with a strong base.
- The titration reaction is

$\rm B\,+\,H^+ \rightarrow \,BH^+$

• Because the reactants are a weak base and a strong acid,

 \rightarrow the reaction goes essentially to completion after each addition of acid.

There are four distinct regions of the titration curve:

1. Before acid is added,

- \rightarrow the solution contains just the weak base, B, in water.
- \rightarrow The pH is determined by the K_b reaction.

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$

F - x x x

- 2. Between the initial point and the equivalence point,
 - \rightarrow there is a mixture of B and BH⁺
 - \rightarrow The pH is computed by using

$$pH = pK_{a} (for BH^{+}) + log \left(\frac{[B]}{[BH^{+}]}\right)$$

In adding acid (increasing V_a),

 \rightarrow we reach the special point where V_a = $\frac{1}{2}$ V_e and pH = pK_a (for BH⁺).

3. At the equivalence point,

- \rightarrow B has been converted into BH⁺, a weak acid.
- \rightarrow The pH is calculated by considering the acid dissociation reaction of BH+.

$$BH^{+}_{F'-x} \rightleftharpoons B + H^{+}_{x} \qquad K_{a} = \frac{K_{w}}{K_{b}}$$

- The formal concentration of BH+, F', is not the original formal concentration of B because some dilution has occurred.
- The solution contains BH⁺ at the equivalence point, so it is acidic.
- The pH at the equivalence point must be below 7.
- 4. After the equivalence point,
 - \rightarrow the excess strong acid determines the pH.
 - \rightarrow We neglect the contribution of weak acid, BH⁺.

11.4 Titration in Diprotic Systems

 The principles developed for titrations of monoprotic acids and bases are readily extended to titrations of polyprotic acids and bases.

The upper curve in Figure 11-4 is calculated for the titration of 10.0
 mL of 0.100 M base (B) with 0.100
 M HCl.

→ The base is dibasic, with $pK_{b1} =$ 4.00 and $pK_{b2} =$ 9.00.

See Figure 11-4

11.4 Titration in Diprotic Systems

 The titration curve has reasonably sharp breaks at both equivalence points, corresponding to the reactions

 $B + H^{+} \rightarrow BH^{+}$ $BH^{+} + H^{+} \rightarrow BH_{2}^{2+}$

See Figure 11-4

$$B + H^{+} \rightarrow BH^{+}$$
$$BH^{+} + H^{+} \rightarrow BH_{2}^{2+}$$

• The volume at the first equivalence point is 10.00 mL because

$$\underbrace{(V_{e}(mL))(0.100 \text{ M})}_{\text{mmol of HCl}} = \underbrace{(10.00 \text{ mL})(0.100 \text{ 0 M})}_{\text{mmol of B}} \Rightarrow V_{e} = 10.00 \text{ mL}$$

- The volume at the second equivalence point must be 2V_e,
 - → because the second reaction requires the same number of moles of HCl as the first reaction.
- The pH calculations are similar to those for corresponding points in the titration of a monobasic compound.
- \rightarrow Let's examine points A through E in Figure 11-4.

Point A

- Before acid is added,
 - \rightarrow the solution contains just weak base, B,
 - \rightarrow whose pH is governed by the reaction

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$

$$0.100 - x \qquad x \qquad x$$

$$\frac{x^2}{0.100 - x} = 1.00 \times 10^{-4} \Rightarrow x = 3.11 \times 10^{-3}$$

$$[H^+] = \frac{K_w}{x} \Rightarrow pH = 11.49$$

- The fully basic form of a dibasic compound can be treated
 → as if it were monobasic.
 - \rightarrow The K_{b2} reaction can be neglected.

Point B

- At any point between A (the initial point) and C (the first equivalence point),
 → we have a **buffer** containing B and BH⁺.
- Point B is halfway to the equivalence point, so [B] = [BH+].
 - → The pH is calculated from the Henderson-Hasselbalch equation for the weak acid, BH⁺,
 - → whose acid dissociation constant is K_{a2} (for BH_2^{2+}) = K_w/K_{b1} = 10^{-10.00}.

$$K_{a2} = \frac{K_{w}}{K_{b1}} \qquad K_{a1} = \frac{K_{w}}{K_{b2}}$$

pH = p
$$K_{a2}$$
 + log $\frac{[B]}{[BH^+]}$ = 10.00 + log 1 = 10.00

 \rightarrow So the pH at point B is just pK_{a2}.

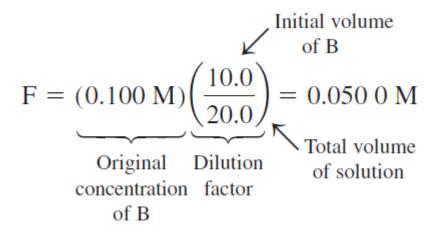
- To calculate the quotient [B]/[BH+] at any point in the buffer region,
 → just find what fraction of the way from point A to point C the titration has progressed.
- For example, if $V_a = 1.5$ mL, then

$$\frac{[B]}{[BH^+]} = \frac{8.5}{1.5}$$

 Because 10.0 mL are required to reach the equivalence point and we have added just 1.5 mL.

 \rightarrow the pH at V_a = 1.5 mL is

$$pH = 10.00 + \log \frac{8.5}{1.5} = 10.75$$


Point C

- At the first equivalence point,
 - \rightarrow B has been converted into BH⁺,
 - \rightarrow the intermediate form of the diprotic acid, BH₂²⁺
- BH⁺ is both an acid and a base.
 - \rightarrow From Equation 10-11, we know that

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_1 K_2 \mathrm{F} + K_1 K_{\mathrm{w}}}{K_1 + \mathrm{F}}}$$

 \rightarrow where K₁ and K₂ are the acid dissociation constants of BH₂²⁺.

 The formal concentration of BH⁺ is calculated by considering dilution of the original solution of B.

Plugging all the numbers into Equation 11-3 gives

$$[H^+] = \sqrt{\frac{(10^{-5})(10^{-10})(0.050\ 0) + (10^{-5})(10^{-14})}{10^{-5} + 0.050\ 0}} = 3.16 \times 10^{-8}$$

pH = 7.50

Point C in Figure 11-4 shows
 where the intermediate form of a
 diprotic acid lies on a titration curve.

 This is the least-buffered point on the whole curve,

→ because the pH changes most rapidly if small amounts of acid or base are added.

 There is a misconception that the intermediate form of a diprotic acid behaves as a buffer when, in fact, it is the worst choice for a buffer. See Figure 11-4

Point D

At any point between C and E,

 \rightarrow there is a **buffer** containing BH⁺ (the base) and BH₂²⁺ (the acid).

• When $V_a = 15.0 \text{ mL}$, $[BH^+] = [BH_2^{2+}]$ and

pH = p
$$K_{a1}$$
 + log $\frac{[BH^+]}{[BH_2^{2+}]}$ = 5.00 + log 1 = 5.00

Point E

- Point E is the second equivalence point,
 - \rightarrow at which the solution is formally the same as one prepared by dissolving BH_2Cl_2 in water.
- The formal concentration of BH₂²⁺ is

$$F = (0.100 \text{ M}) \left(\frac{10.0}{30.0}\right) = 0.033 \text{ 3 M}$$
Total volume of solution

• The pH is determined by the acid dissociation reaction of BH₂²⁺.

$$BH_{2}^{2+} \rightleftharpoons BH^{+} + H^{+}_{x} \qquad K_{a1} = \frac{K_{w}}{K_{b2}}$$
$$\frac{x^{2}}{0.033 \ 3 - x} = 1.0 \times 10^{-5} \Rightarrow x = 5.72 \times 10^{-4} \Rightarrow pH = 3.24$$

- Beyond the second equivalence point (V_a > 20.0 mL),
 - → the pH of the solution can be calculated from the volume of strong acid added to the solution.
- For example, at $V_a = 25.00 \text{ mL}$,
 - \rightarrow there is an excess of 5.00 mL of 0.100 M HCl in a total volume of 10.00

+ 25.00 = 35.00 mL.

 \rightarrow The pH is found by writing

$$[H^+] = (0.100 \text{ M}) \left(\frac{5.00}{35.00}\right) = 1.43 \times 10^{-2} \text{ M} \Rightarrow \text{pH} = 1.85$$

Analytical Chemistry

Chapter 12. EDTA Titrations

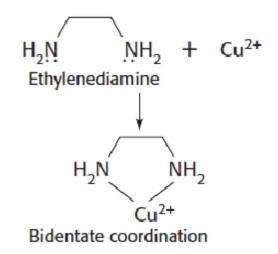
In this chapter,

- → How to find the quantities of metal ions in a solution from an EDTA titration curve
- i) Formation of metal-chelate complexes
- ii) Shapes of EDTA titration curves

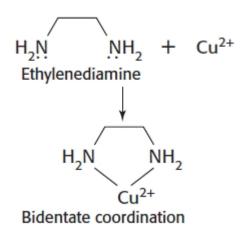
12.1 Metal-Chelate Complexes

Metal ions (Lewis acids)

 \rightarrow accepting electron pairs from electron-donating ligands (Lewis bases)

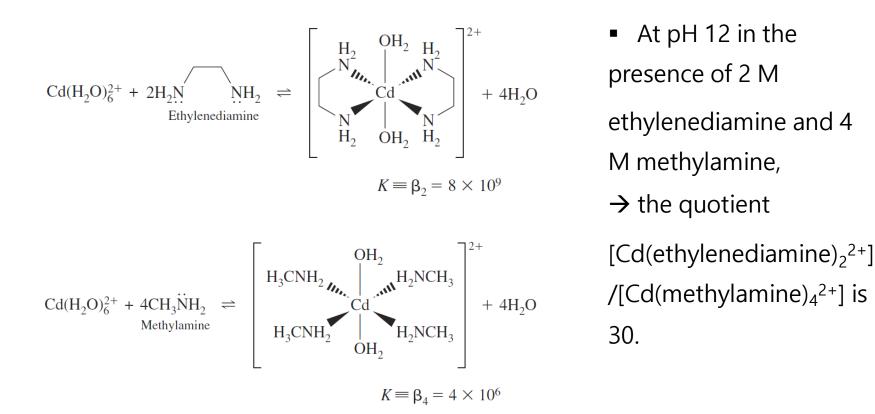

- Most transition metal ions bind six ligand atoms.
- A ligand binds to a metal ion through only one atom

→ called a **monodentate ligand**


 \rightarrow the carbon atom in cyanide (CN)

- A ligand that attaches to a metal ion through more than one ligand atom
 - \rightarrow said to be **multidentate** or a **chelating ligand**

$$\begin{array}{rcl} Ag^+ & + & 2:\overline{C} \equiv N: & \rightleftharpoons \\ \mbox{Lewis acid} & \mbox{Lewis base} \\ (electron pair & (electron pair acceptor) & \mbox{donor}) \\ & (:N \equiv C - Ag - C \equiv N:)^- \\ & \mbox{Complex ion} \end{array}$$


- A simple chelating ligand
 - \rightarrow 1,2-diaminoethane, also called ethylenediamine
- Ethylenediamine is bidentate
 - \rightarrow because it binds to the metal through two ligand atoms.

The chelate effect

→ the ability of multidentate ligands to form more stable metal complexes than those formed by similar monodentate ligands.

 For example, the reaction of Cd(H₂O)₆²⁺ with two molecules of ethylenediamine is more favorable than its reaction with four molecules of methylamine:

• A titration based on complex formation

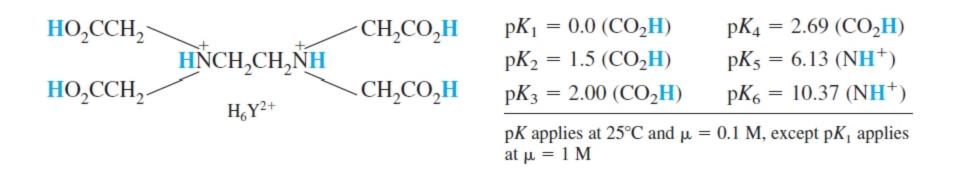
→ called a **complexometric titration** .

- Ligands other than NTA in Figure 12-4 form strong 1:1 complexes with all metal ions except univalent ions such as Li, Na, and K.
- The stoichiometry is 1:1 regardless of the charge on the ion.

See Figure 12-4

- Aminocarboxylic acids in Figure 12-4 are synthetic chelating agents.
- Amine N atoms and carboxylate O atoms are potential ligand atoms in these molecules (Figures 12-5 and 12-6).
- When these molecules bind to a metal ion, the ligand atoms lose their protons.

See Figure 12-5, 12-6


12.2 EDTA

- Ethylenediaminetetraacetic acid (EDTA)
- EDTA is, by far, the most widely used chelator in analytical chemistry.
- One mole of EDTA reacts with one mole of metal ion.
- EDTA engulfs the metal ion, forming the **six coordinate** species in Figure 12-1.
- Every element of the periodic table can be measured with EDTA.

See Figure 12-1

Acid-Base Properties

- EDTA is a hexaprotic system, designated H₆Y²⁺.
- The highlighted, acidic hydrogen atoms are the ones that are lost upon metal-complex formation.

- The first four pK values apply to carboxyl protons
- The last two are for the ammonium protons.
- The neutral acid is tetraprotic, with the formula H₄Y.

- The fraction (α) of EDTA in each of its protonated forms at a certain pH
- As in Section 10-5, we can define α for each species as the fraction of EDTA in that form.
- For example, α_{Y4-} is defined as

$$\alpha_{Y^{4-}} = \frac{[Y^{4-}]}{[H_6Y^{2+}] + [H_5Y^+] + [H_4Y] + [H_3Y^-] + [H_2Y^{2-}] + [HY^{3-}] + [Y^{4-}]}$$

$$\alpha_{Y^{4-}} = \frac{[Y^{4-}]}{[EDTA]}$$
(12-3)

- → where [EDTA] is the total concentration of all free EDTA species in the solution.
- By "free," we mean EDTA not complexed to metal ions.

Following the derivation in Section 10-5, we can show that is given by

$$\alpha_{Y^{4-}} = \frac{K_1 K_2 K_3 K_4 K_5 K_6}{D}$$

 $D = [\mathrm{H}^{+}]^{6} + [\mathrm{H}^{+}]^{5}K_{1} + [\mathrm{H}^{+}]^{4}K_{1}K_{2} + [\mathrm{H}^{+}]^{3}K_{1}K_{2}K_{3} + [\mathrm{H}^{+}]^{2}K_{1}K_{2}K_{3}K_{4}K_{4} + [\mathrm{H}^{+}]K_{1}K_{2}K_{3}K_{4}K_{5} + K_{1}K_{2}K_{3}K_{4}K_{5}K_{6}$

• Table 12-1 gives values for α_{Y4-} as a function of pH.

See Table 12-1

 The fraction of EDTA in each of its protonated forms is plotted in Figure 12-7.

See Figure 12-7

EDTA Complexes

Formation

• The equilibrium constant for the reaction of a metal with a ligand \rightarrow called the **formation constant**, K_{f} , or the **stability constant** :

constant:
$$M^{n+} + Y^{4-} \rightleftharpoons MY^{n-4}$$
 $K_f = \frac{[MY^{n-4}]}{[M^{n+}][Y^{4-}]}$

- Note that K_f for EDTA is defined in terms of the species Y⁴⁻ reacting with the metal ion.
- The equilibrium constant could have been defined for any of the other six forms of EDTA in the solution.
- The equation above should not be interpreted to mean that only Y⁴⁻ reacts with metal ions.

- Table 12-2 shows that formation constants for most EDTA complexes are large
 - \rightarrow tend to be larger for more positively charged cations.

See Table 12-2