Now let Reaction 16-1 come to equilibrium:

 $Ce^{4+} + Fe^{2+} \rightarrow Ce^{3+} + Fe^{3+}$

Ceric Ferrous Cerous Ferric titrant analyte

 $Fe^{3+} + Ce^{3+} \rightleftharpoons Fe^{2+} + Ce^{4+}$ (reverse of Reaction 16-1)

At any time, Reactions 16-2 and 16-3 are both in equilibrium at the Pt electrode.

Indicator half-reaction: $Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$ $E^\circ = 0.767 \text{ V}$ (16-2) Indicator half-reaction: $Ce^{4+} + e^- \rightleftharpoons Ce^{3+}$ $E^\circ = 1.70 \text{ V}$ (16-3) At the equivalence point,

$$E_{+} = 0.767 - 0.059 \ 16 \log\left(\frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]}\right)$$
$$E_{+} = 1.70 - 0.059 \ 16 \log\left(\frac{[\text{Ce}^{3+}]}{[\text{Ce}^{4+}]}\right)$$

$$2E_{+} = 0.767 + 1.70 - 0.059 \ 16 \log\left(\frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]}\right) - 0.059 \ 16 \log\left(\frac{[\text{Ce}^{3+}]}{[\text{Ce}^{4+}]}\right)$$
$$2E_{+} = 2.46_{7} - 0.059 \ 16 \log\left(\frac{[\text{Fe}^{2+}][\text{Ce}^{3+}]}{[\text{Fe}^{3+}][\text{Ce}^{4+}]}\right)$$

But, because $[Ce^{3+}] = [Fe^{3+}]$ and $[Ce^{4+}] = [Fe^{2+}]$ at the equivalence point, \rightarrow the ratio of concentrations in the log term is *unity*.

 \rightarrow Therefore, the logarithm is 0

16.1 The shape of a redox titration curve

$$2E_{+} = 2.46_{7} - 0.059 \ 16 \log\left(\frac{[\text{Fe}^{2+}][\text{Ce}^{3+}]}{[\text{Fe}^{3+}][\text{Ce}^{4+}]}\right)$$

$$2E_+ = 2.46_7 \text{ V} \Rightarrow E_+ = 1.23 \text{ V}$$

The cell voltage is

$$E = E_{+} - E(\text{calomel}) = 1.23 - 0.241 = 0.99 \text{ V}$$

In this particular titration,

→ the equivalence-point voltage is independent of the concentrations and volumes of the reactants.

Region 3: After the Equivalence Point

Now virtually all iron atoms are Fe³⁺. The moles of Ce³⁺ equal the moles of Fe³⁺ There is a known excess of unreacted Ce⁴⁺.

At the Pt electrode:

$$E = E_{+} - E(\text{calomel}) = \left[1.70 - 0.059 \ 16 \log\left(\frac{[\text{Ce}^{3+}]}{[\text{Ce}^{4+}]}\right)\right] - 0.241$$

The calculations above allow us to plot the titration curve in Figure 16-2, which shows potential as a function of the volume of added titrant.

The equivalence point is marked by a steep rise in voltage.

See Figure 16-2

EXAMPLE Potentiometric Redox Titration

Suppose that we titrate 100.0 mL of 0.050 0 M Fe²⁺ with 0.100 M Ce⁴⁺, using the cell in Figure 16-1. The equivalence point occurs when $V_{Ce^{4+}} = 50.0$ mL. Calculate the cell voltage at 36.0, 50.0, and 63.0 mL.

Solution At 36.0 mL: This is 36.0/50.0 of the way to the equivalence point. Therefore, 36.0/50.0 of the iron is in the form Fe³⁺ and 14.0/50.0 is in the form Fe²⁺. Putting [Fe²⁺]/ [Fe³⁺] = 14.0/36.0 into Equation 16-6 gives E = 0.550 V.

At 50.0 mL: Equation 16-11 tells us that the cell voltage at the equivalence point is 0.99 V, regardless of the concentrations of reagents for this particular titration.

At 63.0 mL: The first 50.0 mL of cerium were converted into Ce^{3+} . There is an excess of 13.0 mL of Ce^{4+} , so $[Ce^{3+}]/[Ce^{4+}] = 50.0/13.0$ in Equation 16-12, and E = 1.424 V.

TEST YOURSELF Find *E* at $V_{Ce^{4+}} = 20.0$ and 51.0 mL (*Answer:* 0.516, 1.358 V)

Analytical Chemistry

Chapter 23. Introduction to Analytical Separations

- In the vast majority of real analytical problems,
 - → we must separate, identify, and measure one or more components from a complex mixture.
- This chapter discusses
 - \rightarrow fundamentals of analytical separations.
- The next chapters describe

 \rightarrow various chromatography methods based on analytical separations.

23.1 Solvent Extraction

Extraction

 \rightarrow the transfer of a solute from one phase to another.

- Common reasons to carry out an extraction in analytical chemistry
 → to isolate or concentrate the desired analyte
 → or to separate it from species that would interfere in the analysis.
- The most common case

→ the extraction of **an aqueous solution with an organic solvent**.

- When aqueous and organic solvents are mixed in any ratio.
 - \rightarrow Two liquids are miscible if they form a single phase
 - \rightarrow Immiscible liquids remain in separate phases.

See Figure 23-1

Organic solvents with low polarity

 \rightarrow generally immiscible with water, which is highly polar.

- Diethyl ether, toluene, and hexane
 - \rightarrow common solvents that are immiscible with and less dense than water.
 - \rightarrow They form a separate phase that floats on top of the aqueous phase.
- Chloroform, dichloromethane, and carbon tetrachloride
 - \rightarrow common solvents that are denser than water.

- A more realistic treatment
- → considers that most liquids are partially soluble in each other

For simplicity,

→ we assume that the two phases are not soluble in each other.

- Suppose that solute S is partitioned between phases 1 and 2, as depicted in Figure 23-1.
- The partition coefficient, K: the equilibrium constant for the reaction.

S (in phase 1) \rightleftharpoons S (in phase 2)

Partition coefficient:

$$K = \frac{\mathcal{A}_{S_2}}{\mathcal{A}_{S_1}} \approx \frac{[S]_2}{[S]_1}$$

See Figure 23-1

S (in phase 1) \rightleftharpoons S (in phase 2)

Partition coefficient:

$$K = \frac{\mathcal{A}_{S_2}}{\mathcal{A}_{S_1}} \approx \frac{[S]_2}{[S]_1}$$

- A_{S1}: the activity of solute in phase 1.
- Lacking knowledge of the activity coefficients,
 - \rightarrow we will write the partition coefficient in terms of concentrations.
- The larger the partition coefficient,

 \rightarrow the less solute remains in phase 1.

- Suppose that solute S in V₁ mL of solvent 1 (water) is extracted with V₂ mL of solvent 2 (toluene).
 - \rightarrow m: the moles of S in the system
 - \rightarrow q: the fraction of S remaining in phase 1 at equilibrium.
 - \rightarrow The molarity in phase 1 = qm/V₁.

- The fraction of total solute transferred to phase 2 = (1 q),
 - \rightarrow the molarity in phase 2 = (1 q)m/V₂.

 \rightarrow Therefore,

$$K = \frac{[S]_2}{[S]_1} = \frac{(1-q)m/V_2}{qm/V_1}$$

• From which we can solve for q:

Fraction remaining in phase 1 after 1 extraction $= q = \frac{V_1}{V_1 + KV_2}$

- The equation above says that
 - → the fraction of solute remaining in the water (phase 1) depends on the partition coefficient and the volumes.

- If the phases are separated and fresh toluene (solvent 2) is added,
 - \rightarrow the fraction of solute remaining in the water at equilibrium will be

Fraction remaining in phase 1 after 2 extractions $= q \cdot q = \left(\frac{V_1}{V_1 + KV_2}\right)^2$

- After n extractions, each with volume V₂,
 - \rightarrow the fraction remaining in the water is

Fraction remaining in phase 1 after *n* extractions $= q^n = \left(\frac{V_1}{V_1 + KV_2}\right)^n$

• Example:

→ If q = ¼, then ¼ of the solute remains in phase 1 after one extraction.
 → A second extraction reduces the concentration to (¼)(¼) =¹/₁₆ of initial concentration.

pH Effects

• If a solute is in acid or base,

 \rightarrow its charge changes as the pH is changed.

- Usually, a neutral species is more soluble in an organic solvent;
 a charged species is more soluble in aqueous solution.
- Consider a basic amine whose neutral form, B, has partition coefficient K between aqueous phase 1 and organic phase 2.

 $K = [\mathbf{B}]_2 / [\mathbf{B}]_1$

- Suppose that the conjugate acid, BH⁺, is soluble only in aqueous phase 1.
- Its acid dissociation constant, K_a

 $K_{\rm a} = [{\rm H}^+][{\rm B}]_1/[{\rm B}{\rm H}^+]_1$

The distribution coefficient, D, is defined as

Distribution coefficient:

 $D = \frac{\text{total concentration in phase 2}}{\text{total concentration in phase 1}}$

$$D = \frac{[B]_2}{[B]_1 + [BH^+]_1}$$
$$K = [B]_2 / [B]_1$$
$$K_a = [H^+][B]_1 / [BH^+]_1$$

Distribution of base between two phases:

$$D = \frac{K \cdot K_{a}}{K_{a} + [H^{+}]} = K \cdot \alpha_{B} \qquad \alpha_{B} = \frac{[D]_{aq}}{[B]_{aq} + [BH^{+}]_{aq}}$$

LD1

→ where α_B is the fraction of weak base in the neutral form, B, in the aqueous phase.

Distribution of base between two phases: $D = \frac{K \cdot K_{a}}{K_{a} + [H^{+}]} = K \cdot \alpha_{B}$

- The distribution coefficient D is used in place of the partition coefficient K in the equation below
 - → when dealing with a species that has more than one chemical form, such as B and BH⁺. $q = \frac{V_1}{V_1 + KV_2}$
- Charged species tend to be more soluble in water than in organic solvent.
- To extract a base into water,
 - \rightarrow use a pH low enough to convert B into BH⁺.
- To extract the acid HA into water,

 \rightarrow use a pH high enough to convert HA into A⁻.

See Figure 23-2

EXAMPLE Effect of pH on Extraction

Suppose that the partition coefficient for an amine, B, is K = 3.0 and the acid dissociation constant of BH⁺ is $K_a = 1.0 \times 10^{-9}$. If 50 mL of 0.010 M aqueous amine are extracted with 100 mL of solvent, what will be the formal concentration remaining in the aqueous phase (a) at pH 10.00 and (b) at pH 8.00?

Solution (a) At pH 10.00, $D = KK_a/(K_a + [H^+]) = (3.0)(1.0 \times 10^{-9})/(1.0 \times 10^{-9} + 1.0 \times 10^{-10}) = 2.73$. Using D in place of K, Equation 22-2 says that the fraction remaining in the aqueous phase is

$$q = \frac{50}{50 + (2.73)(100)} = 0.15 \Rightarrow 15\%$$
 left in water

The concentration of amine in the aqueous phase is 15% of 0.010 M = 0.001 5 M.

(b) At pH 8.00,
$$D = (3.0)(1.0 \times 10^{-9})/(1.0 \times 10^{-9} + 1.0 \times 10^{-8}) = 0.273$$
. Therefore,

$$q = \frac{50}{50 + (0.273)(100)} = 0.65 \Rightarrow 65\%$$
 left in water

The concentration in the aqueous phase is 0.006 5 M. At pH 10, the base is predominantly in the form B and is extracted into the organic solvent. At pH 8, it is in the form BH⁺ and remains in the water.

8th edition

Extraction with a Metal Chelator

- Most complexes that can be extracted into organic solvents
 → neutral.
- Charged complexes, such as Fe(EDTA)⁻ or Fe(1,10-phenanthroline)₃²⁺,
 → not very soluble in organic solvents.
- One scheme for separating metal ions from one another
 → to selectively complex one ion with an organic ligand
 → and extract it into an organic solvent.
- Dithizone, 8-hydroxyquinoline, and cupferron
 → Common ligands.
 - → Each is a weak acid, HL, which loses a proton when it binds to a metal ion through atoms shown in bold type.

8-Hydroxyquinoline (oxine)

Cupferron

$$\operatorname{HL}(aq) \rightleftharpoons \operatorname{H}^{+}(aq) + \operatorname{L}^{-}(aq) \qquad K_{\mathrm{a}} = \frac{[\operatorname{H}^{+}]_{\mathrm{aq}}[\operatorname{L}^{-}]_{\mathrm{aq}}}{[\operatorname{HL}]_{\mathrm{aq}}}$$
$$n\operatorname{L}^{-}(aq) + \operatorname{M}^{n+}(aq) \rightleftharpoons \operatorname{ML}_{n}(aq) \qquad \beta = \frac{[\operatorname{ML}_{n}]_{\mathrm{aq}}}{[\operatorname{M}^{n+}]_{\mathrm{aq}}[\operatorname{L}^{-}]_{\mathrm{aq}}^{n}}$$

- Each ligand can react with many different metal ions,
 → but some selectivity is achieved by controlling the pH.
- Let's derive an equation for the distribution coefficient of a metal between two phases when
 → essentially all the metal in the aqueous phase (aq) is in the form Mⁿ⁺
 - \rightarrow all the metal in the organic phase (org) is in the form ML_n

See Figure 23-3

• We define the **partition coefficients** for ligand and complex as follows:

$$HL(aq) \rightleftharpoons HL(org) \qquad K_{L} = \frac{[HL]_{org}}{[HL]_{aq}}$$
$$ML_{n}(aq) \rightleftharpoons ML_{n}(org) \qquad K_{M} = \frac{[ML_{n}]_{org}}{[ML_{n}]_{aq}}$$

....

• The distribution coefficient we seek is

$$D = \frac{[\text{total metal}]_{\text{org}}}{[\text{total metal}]_{\text{aq}}} \approx \frac{[\text{ML}_n]_{\text{org}}}{[\text{M}^{n+}]_{\text{aq}}}$$
$$K_{\text{M}} = \frac{[\text{ML}_n]_{\text{org}}}{[\text{ML}_n]_{\text{aq}}}$$
$$[\text{ML}_n]_{\text{org}} = K_{\text{M}}[\text{ML}_n]_{\text{aq}}$$
$$= K_{\text{M}}\beta[\text{M}^{n+}]_{\text{aq}}[\text{L}^-]_{\text{aq}}^n$$
$$K_{\text{a}} = \frac{[\text{H}^+]_{\text{aq}}[\text{L}^-]_{\text{aq}}}{[\text{HL}]_{\text{aq}}}$$

- Because most HL is in the organic phase,
 - → we substitute $[HL]_{aq} = [HL]_{org}/K_L$ to produce the most useful expression for the distribution coefficient:

Distribution of metal-chelate complex between phases: $D \approx \frac{K_{\rm M}\beta K_{\rm a}^n}{K_{\rm L}^n} \frac{[{\rm HL}]_{\rm org}^n}{[{\rm H}^+]_{\rm aq}^n}$

We see that the distribution coefficient for metal ion extraction
 → depends on pH and ligand concentration.

See Figure 23-4

- It is often possible to select a pH
 - \rightarrow where D is large for one metal and small for another.
- For example, Figure 23-4 shows that Cu²⁺ could be separated from Pb²⁺ and Zn²⁺ by extraction with dithizone at pH 5.

23.2 What Is Chromatography?

- Chromatography operates on the same principle as extraction,
 → but one phase is held in place while the other moves past it.
- Figure 23-5 shows a solution containing solutes A and B placed on top of a column packed with solid particles and filled with solvent.

See Figure 23-5

• When the outlet is opened,

 \rightarrow solutes A and B flow down into the column.

- Fresh solvent is then applied to the top of the column and the mixture is washed down the column by continuous solvent flow.
- If solute A is more strongly adsorbed than solute B on the solid particles,
 → then solute A spends a smaller fraction of the time free in solution.
- Solute A moves down the column more slowly than solute B and emerges at the bottom after solute B.
- We have just separated a mixture into its components by chromatography.

- The mobile phase (the solvent moving through the column) in chromatography
 → either a liquid or a gas.
- The stationary phase (the one that stays in place inside the column)
 - → most commonly a viscous liquid chemically bonded to the inside of a capillary tube or onto the surface of solid particles packed in the column.
 - ightarrow alternatively, the solid particles themselves may be the stationary phase.
- In any case, the partitioning of solutes between mobile and stationary phases
 → gives rise to separation.

- Fluid entering the column
 - \rightarrow called **eluent**.
- Fluid emerging from the end of the column
 - → called **eluate**:

 $\frac{\text{eluent in}}{\rightarrow} \quad \text{COLUMN} \quad \rightarrow \quad \frac{\text{eluate out}}{\rightarrow} \quad \text{out}$

- The process of passing liquid or gas through a chromatography column
 → called elution.
- Columns are either *packed* or *open tubular*.
 - 1) A packed column \rightarrow filled with particles of stationary phase
 - 2) An open tubular column
 - → a narrow, hollow capillary with stationary phase coated on the inside walls.

Types of Chromatography

- Chromatography is divided into categories
 - → on the basis of the mechanism of interaction of the solute with the stationary phase
 - 1) Adsorption chromatography
 - A solid stationary phase;
 a liquid or gaseous mobile phase.
 - Solute is adsorbed on the surface of the solid particles.
 - The more strongly a solute is adsorbed, the slower it travels through the column.

2) Partition chromatography

- A liquid stationary phase is bonded to a solid surface,
 - → which is typically the inside of the silica (SiO₂) chromatography column in gas chromatography.
- Solute equilibrates between the stationary liquid and the mobile phase,
 → which is a flowing gas in gas chromatography.

Partition chromatography

3) Ion-exchange chromatography

- Anions such as -SO₃⁻ or cations such as - N(CH₃)₃⁺
 - → covalently attached to the stationary solid phase, usually a resin.
- Solute ions of the opposite charge
 → attracted to the stationary phase.
- The mobile phase
 → liquid.

Based on the "electrostatic interaction"

4) Molecular exclusion chromatography

- Also called size exclusion, gel filtration, or gel permeation chromatography
- This technique separates molecules by size,
 - \rightarrow with the larger solutes passing through most quickly.

Molecular exclusion chromatography

- In the ideal case of molecular exclusion,
 - → there is no attractive interaction between the stationary phase and the solute.
- Rather, the liquid or gaseous mobile phase passes through a porous gel.
- The pores are small enough to exclude large solute molecules
 → but not small ones.
- Large molecules stream past without entering the pores.
- Small molecules take longer to pass through the column
 - → because they enter the gel and therefore must flow through a larger volume before leaving the column.

5) Affinity chromatography

- This most selective kind of chromatography
 - → employs specific interactions between one kind of solute molecule and a second molecule that is covalently attached (immobilized) to the stationary phase.

For example,

 \rightarrow the immobilized molecule might be an antibody to a particular protein.

- When a mixture containing a thousand proteins is passed through the column,
 - \rightarrow only the one protein that reacts with the antibody binds to the column.
- After all other solutes have been washed from the column,
 - \rightarrow the desired protein is dislodged by changing the pH or ionic strength.

22.3 A Plumber's View of Chromatography

- The speed of the mobile phase passing through a chromatography column is expressed
 - \rightarrow either i) as a volume flow rate
 - or ii) as a linear flow rate.
- The volume flow rate
 - → tells how many milliliters of solvent per minute travel through the column.
- The linear flow rate
 - \rightarrow tells how many centimeters are traveled in 1 min by the solvent.