- Consider a liquid chromatography experiment
 - \rightarrow in which the column has an inner diameter of 0.60 cm
 - \rightarrow and the mobile phase occupies 20% of the column volume.
- Each centimeter of column length
 - \rightarrow has a volume of πr^2 × length = $\pi (0.30 \text{ cm})^2 (1 \text{ cm}) = 0.283 \text{ mL}$,
 - \rightarrow of which 20% (0.056 5 mL) is mobile phase (solvent).
- For example, the volume flow rate = 0.30 mL/min
- Because 1 cm of column length contains 0.056 5 mL of mobile phase,
 → 0.30 mL would occupy (0.30 mL)/(0.056 5 mL/cm) = 5.3 cm of column length.
- The linear flow rate corresponding to 0.30 mL/min
 → 5.3 cm/min.

The Chromatogram

- Solutes eluted from a chromatography column
 → observed with detectors
- A chromatogram
 - \rightarrow a graph showing the detector response as a function of elution time

See Figure 23-7

Figure 23-7 shows what might be observed
→ when a mixture of
octane, nonane, and an
unknown are separated by
gas chromatography
(Ch. 24).

- The retention time, t_r, for each component
 - → the time that elapses between injection of the mixture onto the column and the arrival of that component at the detector.
- Retention volume, V_r
 - → the volume of mobile phase required to elute a particular solute from the column.

Retention volume, V_n

Retention volume: $V_{\rm r} = t_{\rm r} \cdot u_{\rm v}$

 \rightarrow where

 u_v : the volume flow rate (volume per unit time) of the mobile phase.

→ The retention volume of a particular solute is constant over a range of flow rates.

Mobile phase or an unretained solute

 \rightarrow travels through the column in the minimum possible time, t_m.

- In gas chromatography,
 - → t_m is usually taken as the time needed for CH₄ to travel through the column (Figure 23-7).
- The adjusted retention time, tr', for a retained solute
 - → the additional time required to travel the length of the column, beyond that required by solvent or carrier gas:

Adjusted retention time:

 $t'_{\rm r} = t_{\rm r} - t_{\rm m}$

For two components 1 and 2,

• the relative retention, α (also called separation factor),

 \rightarrow the ratio of their adjusted retention times:

Relative retention:

- \rightarrow where $t'_{r2} > t'_{r1}$, so $\alpha > 1$.
- The greater the relative retention,
 - \rightarrow the greater the separation between two components.
- Relative retention
 - \rightarrow fairly independent of flow rate
 - \rightarrow can therefore be used to help identify peaks when the flow rate changes.

For component 2 eluted after component 1,

- the unadjusted relative retention, γ,
 - \rightarrow the ratio of their unadjusted retention times:

Unadjusted relative retention:

$$\gamma = \frac{t_{r2}}{t_{r1}}$$

- The unadjusted relative retention
 - \rightarrow the inverse of the ratio of the speeds at which the two components travel.

Unadusted relative retention

retention time of component 2

retention time of component 1 speed of component 1

= speed of component 2

For each peak in the chromatogram,

- the retention factor, k,
 - \rightarrow 'the adjusted retention time' over 'the time t_m required for mobile phase to pass through the column',

Retention factor:

$$k = \frac{t_{\rm r} - t_{\rm m}}{t_{\rm m}}$$
 (23-16)

• The longer a component is retained by the column,

 \rightarrow the greater is the retention factor.

- It takes volume V_m to push solvent from the beginning of the column to the end of the column.
- If it takes an additional volume 3V_m to elute a solute,
 → then the retention factor for that solute is 3.

Relation Between Retention Time and the Partition Coefficient

• The retention factor in Equation 23-16 is equivalent to

$$k = \frac{t_{\rm r} - t_{\rm m}}{t_{\rm m}} \implies k = \frac{\text{time solute spends in stationary phase}}{\text{time solute spends in mobile phase}}$$
 (23-17)

- If the solute spends 'all its time in the mobile phase' and 'none in the stationary phase',
 - $\boldsymbol{\rightarrow}$ it would be eluted in time t_m
 - \rightarrow solute spends no time in the stationary phase

 \rightarrow t_r = t_m, so k = 0

 If solute spends three times as much time 'in the stationary phase' as 'in the mobile phase',

→
$$t_r = 4t_m$$
, so $k = (4t_m - t_m)/t_m = 3$.

- If solute spends three times as much time 'in the stationary phase' as 'in the mobile phase',
 - \rightarrow there will be three times as many moles of solute 'in the stationary' phase' as 'in the mobile phase' at any time.
- The quotient in Equation 23-17 is equivalent to.

Time solute spends in stationary phase moles of solute in stationary phase Time solute spends in mobile phase moles of solute in mobile phase

$$k = \frac{c_s V_s}{c_m V_{\rm m}} \qquad (23-18)$$

 \rightarrow where

 c_s : the concentration of solute in the stationary phase,

 V_s : the volume of the stationary phase,

 c_m : the concentration of solute in the mobile phase,

 V_m : the volume of the mobile phase.

$$k = \frac{c_s V_s}{c_m V_m}$$

The quotient c_s /c_m

 \rightarrow the ratio of concentrations of solute in the 'stationary' and 'mobile' phases.

• If the column is run slowly enough to be at equilibrium,

 \rightarrow the quotient c_s /c_m = the partition coefficient, K,

$$K = \frac{c_s}{c_m}$$

 \rightarrow introduced in connection with solvent extraction.

• Therefore, we cast Equation 23-18 in the form.

Relation of retention time to partition coefficient: $k = K \frac{V_s}{V_m} \stackrel{\text{Eq. 23-16}}{=} \frac{t_r - t_m}{t_m} = \frac{t'_r}{t_m}$ (23-19)

→ relates 'retention time' to 'the partition coefficient and the volumes of stationary and mobile phases'.

$$k = K \frac{V_{\rm s}}{V_{\rm m}} \stackrel{\text{Eq. 23-16}}{=} \frac{t_{\rm r} - t_{\rm m}}{t_{\rm m}} = \frac{t_{\rm r}'}{t_{\rm m}}$$

• Because $t'_{\rm r} \propto k \propto K$, relative retention can also be expressed as

Relative retention:
$$\alpha = \frac{t'_{r2}}{t'_{r1}} = \frac{k_2}{k_1} = \frac{K_2}{K_1}$$

- The relative retention of two solutes
 - \rightarrow proportional to the ratio of their partition coefficients.
- This relation is the physical basis of chromatography.

23.4 Efficiency of Separation

- Two factors contribute to how well compounds are separated by chromatography.
- 1) The difference in elution times between peaks:
 - \rightarrow The farther apart, the better their separation.
- 2) The other factor is how broad the peaks are:
 - \rightarrow the wider the peaks, the poorer their separation.
- This section discusses how we measure the efficiency of a separation.

Resolution

- Solute moving through a chromatography column tends to spread into a Gaussian shape with standard deviation σ (Figure 23-9).
- The longer a solute resides in a column,

 \rightarrow the broader the band becomes.

- Common measures of breadth
- (1) the width $w_{1/2}$ measured at a height equal to half of the peak height
- (2) the width w at the baseline between tangents drawn to the steepest parts of the peak.
- From Equation 4-3 for a Gaussian peak (also refer to Table 4-1), \rightarrow it is possible to show that $w_{1/2} = 2.35\sigma$ and $w = 4\sigma$.

In chromatography,

 \rightarrow the resolution of two peaks from each other is defined as

Resolution:	Resolution =	$\Delta t_{\rm r}$	$\Delta V_{\rm r}$	$0.589\Delta t_{\rm r}$
		$W_{\rm av}$	$w_{\rm av}$	$W_{1/2av}$

where

△t_r or △V_r : the separation between peaks (in units of time or volume)
 w_{av} : the average width of the two peaks in corresponding units.
 (Peak width is measured at the base, as shown in Figure 23-9.)
 w_{1/2av} : the width at half-height of Gaussian peaks.

The width at half-height is usually used
 → because it is easiest to measure.

- Figure 23-10 shows
 - \rightarrow the overlap of two peaks with different degrees of resolution.
- For quantitative analysis,
 - \rightarrow a resolution 1.5 is highly desirable.

23.5 Why Bands Spread

- A band of solute broadens as it moves through a chromatography column (Figure 23-11).
- Ideally, an infinitely narrow band applied to the inlet of the column emerges with a Gaussian shape at the outlet.
- In less ideal circumstances, the band becomes asymmetric.

- As a solute travels through a chromatography column (Figure 23-11),
 → A band of solute invariably spreads
 - \rightarrow emerges at the detector with a standard deviation σ .
- Each individual mechanism contributing to broadening produces a standard deviation σ_i .
- The observed variance (σ^2_{obs})
 - \rightarrow the sum of variances from all contributing mechanisms:

Variance is additive: $\sigma_{obs}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \cdots = \sum \sigma_i^2$

Broadening Outside the Column

- Solute cannot be applied to the column in an infinitesimally thin zone,
 → so the band has a finite width even before it enters the column.
- If the band is applied as a plug of width $\triangle t$ (measured in units of time), \rightarrow the contribution to the variance of the final bandwidth is

Variance due to
injection or detection:
$$\sigma_{injection}^2 = \sigma_{detector}^2 = \frac{(\Delta t)^2}{12}$$

Longitudinal Diffusion

- If you could apply a thin disk-shaped band of solute to the center of a column,
 - → the band would slowly broaden as molecules diffuse from the high concentration within the band to regions of lower concentration on the edges of the band
- If solute begins its journey through a column in an infinitely sharp layer with m moles per unit cross-sectional area of the column and spreads by diffusion as it travels,
 - \rightarrow then the Gaussian profile of the band is described by

$$c = \frac{m}{\sqrt{4\pi Dt}} e^{-x^2/4Dt}$$

$$c = \frac{m}{\sqrt{4\pi Dt}} e^{-x^2/4Dt}$$

- where
- c : concentration (mol/m³),
- t:time,
- x : the distance along the column from the current center of the band. (The band center is always x = 0 in this equation.)

$$y = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Standard deviation of band: $\sigma = \sqrt{2Dt}$

Plate Height: A Measure of Column Efficiency

• If solute has traveled a distance x at the linear flow rate u_x (m/s), then the time it has been on the column is $t = x/u_x$ therefore:

$$\sigma^{2} = 2Dt = 2D\frac{x}{u_{x}} = \underbrace{\left(\frac{2D}{u_{x}}\right)}_{x} = Hx$$
Plate height = H
$$H = \frac{\sigma^{2}}{x}$$

- *Plate height*, *H*, is the proportionality constant between the variance, σ^2 of the band, and the distance it has traveled, *x*.
- Plate height is approximately <u>the length of column required for one</u> <u>equilibration of the solute between the mobile and stationary phases.</u>

• It is different for different analytes on the same column due to differences in diffusion coefficients.

• The smaller the plate height, the narrower the band and the better the separation.

 Plate heights are ~0.1-1 mm for gas chromatography, 10 mm for highperformance liquid chromatography, and <1 mm for capillary electrophoresis.

Number of plate on column:
$$N = \frac{L}{H} = \frac{Lx}{\sigma^2} = \frac{L^2}{\sigma^2} = \frac{16L^2}{w^2}$$
 w (unit in length)

Recall that x = L and $\sigma = w/4$ (because $w = 4\sigma$).

The number of plates on a column:

$$N = \frac{16t_{\rm r}^2}{{\rm w}^2} = \frac{t_{\rm r}^2}{\sigma^2}$$

w (unit in time)

If we use the width at half-height:

$$N = \frac{5.55t_{\rm r}^2}{w_{1/2}^2}$$

w (unit in time)

For two closely spaced, symmetric peaks, resolution is governed by the **Purnell** equation:

Resolution =
$$\frac{\sqrt{N}}{4} \frac{(\alpha - 1)}{\alpha} \left(\frac{k_2}{1 + k_2}\right)$$

N: the number of theoretical plates

 α : the relative retention of the two peaks

 k_2 : the retention factor for the more retained component

Resolution is proportional to the square root of N, so doubling the colu mn length increases the resolution by $2^{1/2}$.

Back to "Longitudinal diffusion"

- Diffusional broadening of a band occurs
 - \rightarrow while the band is transported along the column by the flow of solvent
- called longitudinal diffusion
 - \rightarrow because it takes place along the axis of the column

Finite Equilibration Time Between Phases

- Another broadening comes from the finite time required for solute to equilibrate between mobile and stationary phases
- Although some solute is stuck in the stationary phase, the remainder in the mobile phase moves forward, spreading the overall zone of solute (Figure 23-19).

Multiple Flow Paths

- Band spreading from multiple flow paths.
- Because some flow paths are longer than others,

 \rightarrow molecules entering the column at the same time on the left are eluted at different times on the right.

- The smaller the stationary phase particles,
 - \rightarrow the less serious this problem is.
- This process is absent in an open tubular

Asymmetric Bandshapes

- A long tail occurs when some sites retain solute more strongly than other sites.
- Silica surfaces of columns and stationary phase particles have hydroxyl groups that form hydrogen bonds with polar solutes,
 - \rightarrow thereby leading to serious tailing.

 Silanization reduces tailing by blocking the hydroxyl groups with nonpolar trimethylsilyl groups:

-OH groups

Analytical Chemistry

Chapter 24. Gas Chromatography

- This chapter discusses
 - \rightarrow discuss specific chromatographic methods and instrumentation.
- The goal
 - \rightarrow to understand how chromatographic methods work
 - \rightarrow and what parameters you can control for best results.

24.1 The separation process in gas chromatography

• Gas chromatography:

- \rightarrow mobile phase: gas
- \rightarrow stationary phase: usually a nonvolatile liquid, but sometimes a solid
- \rightarrow analyte: gas or volatile liquid
- In gas chromatography,
 - → gaseous analyte is transported through the column by a gaseous mobile phase, called the carrier gas.

In the schematic gas chromatograph,

- volatile liquid or gaseous sample
 - \rightarrow injected through a septum (a rubber disk) into a heated port,
 - \rightarrow in which it rapidly evaporates.
- Vapor is swept through the column by He, N₂, or H₂ carrier gas,