- Separated analytes flow through a detector
 - \rightarrow whose response is displayed on a computer.
- The column must be hot enough
 - → to provide sufficient vapor pressure for analytes to be eluted in a reasonable time.

Open Tubular Columns

- The vast majority of analyses
 - \rightarrow use long, narrow open tubular columns
 - \rightarrow made of fused silica (SiO₂)
 - → coated with polyimide (a plastic capable of withstanding 350°C) for protection from atmospheric moisture
- Open tubular columns offer
 - \rightarrow higher resolution,
 - \rightarrow shorter analysis time,
 - \rightarrow and greater sensitivity than packed columns

- Column inner diameters are typically 0.10 to 0.53 mm
- Column lengths are 15 to 100 m, with 30 m being common.
- Resolution is proportional to the square root of column length (from Purnell eqn in Ch 23).

- In gas-liquid partition chromatography,
 - → the stationary phase is a nonvolatile liquid bonded to the inside of the column or to a fine solid support
- The wall-coated column
 - → features a 0.1- to 5-µm-thick film of stationary liquid phase on the inner wall of the column.

- A support-coated column
 - → has solid particles coated with stationary liquid phase and attached to the inner wall.
- In gas-solid adsorption chromatography,
 - \rightarrow analyte is adsorbed directly on solid particles of stationary phase
- In the porous-layer column,
 - \rightarrow solid particles are the active stationary phase.

Support-coated open tubular column (SCOT)

Porous-layer open tubular column (PLOT)

- Support-coated columns can handle larger samples than wall-coated columns
 - \rightarrow because of their high surface area
- The choice of liquid stationary phase

 \rightarrow is based on the rule "like dissolves like."

- \rightarrow Nonpolar columns are best for nonpolar solutes
- \rightarrow Columns of intermediate polarity are best for intermediate polarity solutes
- \rightarrow strongly polar columns are best for strongly polar solutes.

- The number of theoretical plates, *N*, on a column is proportional to column length.
- Resolution is proportional to the square root of *N* and, therefore, to the square root of column length.

- At constant linear velocity, increasing the stationary phase thickness increases retention time and sample capacity and increases resolution of early-eluting peaks with a retention factor, *k*, of ≤5.
- Thick films can shield analytes from the silica surface and reduce tailing.

See Table 24-1

Retention

The retention of polar and nonpolar solutes changes as the boiling point of the solute (T_{bp}) and the polarity of the stationary phase change.

• The retention factor, k, depends on ΔH°_{vap} and ΔH°_{mix} of pure solute with the stationary phase liquid:

$$\ln k = \frac{\Delta H_{\text{vap}}^{\circ}}{RT} + \frac{\Delta H_{\text{mix}}^{\circ}}{RT} + \text{constant}$$

 For non-hydrogen-bonding solutes, Trouton's rule state that Δ H^o_{vap} is pro -portional to the boiling temperature:

$$\Delta H_{\rm vap}^{\circ} \approx (88 \text{ J mol}^{-1} \text{ K}^{-1}) \cdot T_{\rm bp}$$

• Combining these yields the approximation

$$\ln k \approx \frac{(88 \text{ J mol}^{-1} \text{ K}^{-1})T_{\text{bp}}}{RT} + \frac{\Delta H_{\text{mix}}^{\circ}}{RT} + \text{ constant}$$

- The *Kovats retention index*, *I*, for a linear alkane equals 100 times the number of carbon atoms.
- For octane, $I \equiv 800$; and for nonane $I \equiv 900$.
- A compound eluted between octane and nonane has a retention index between 800 and 900 given by the equation:

$$I = 100 \left[n + (N - n) \frac{\log t'_{r} (\text{unknown}) - \log t'_{r} (n)}{\log t'_{r} (N) - \log t'_{r} (n)} \right]$$
(No need to memorize!)

See Table 24-2

Carrier Gas

Helium

 \rightarrow the most common carrier gas

 \rightarrow is compatible with most detectors.

• Figure 24-12 shows the effect of carrier gas

→ on the separation of two compounds on the same column with the same temperature program.

- H₂ and He give better resolution than N₂ at high flow rate
 - → because solutes diffuse more rapidly through H₂ and He than through N₂.

- The main reason H₂ was not used more often in the past
 → is that concentrations >4 vol% in air are explosive.
- Impurities in carrier gas degrade the stationary phase.
 - → High-quality gas should be used
 - \rightarrow it should be passed through purifiers to remove traces of O₂, H₂O, and organic compounds.
- Steel or copper tubing, rather than plastic or rubber, should be used for gas lines
 - \rightarrow because metals are less permeable to air

- As with thermal degradation,
 - \rightarrow symptoms of oxidative degradation of the stationary phase include

i) increased baseline signal at low temperature,

ii) peak broadening and tailing,

iii) and altered retention times.

24.3 Detectors

For qualitative analysis,

- → identify a peak by comparing its retention time with that of an authentic sample of the suspected compound.
- The most reliable way to compare retention times is by spiking,
 → in which an authentic compound is added to the unknown.
- If the added compound is identical with a component of the unknown,
 → then the relative area of that one peak will increase.

Quantitative analysis

 \rightarrow based on the area of a chromatographic peak.

- In the linear response concentration range,
 - \rightarrow the area of a peak is proportional to the quantity of that component.
- Quantitative analysis is almost always performed
 - \rightarrow by adding a known quantity of internal standard to the unknown.

Quantitative analysis with internal standard:

$$\frac{A_{\mathsf{X}}}{[\mathsf{X}]} = F\left(\frac{A_{\mathsf{S}}}{[\mathsf{S}]}\right)$$

 $A_{\rm X}$ = area of analyte signal

 $A_{\rm S}$ = area of internal standard

- [X] =concentration of analyte
- [S] = concentration of standard

F = response factor

Thermal Conductivity Detector

 In the past, thermal conductivity detectors were common in gas chromatography

 \rightarrow because they are simple and universal – responding to all analytes.

- It is less sensitive than other detectors used with open tubular columns
 - \rightarrow Thermal conductivity is useful for packed columns.

See Table 24-3

Thermal conductivity measures

→ the ability of a substance to transport heat from a hot region to a cold region (Table 24-4).

Helium

 \rightarrow the carrier gas commonly used with a thermal conductivity detector.

• Helium has the second highest thermal conductivity (after H₂),

 \rightarrow so any analyte mixed with helium lowers the conductivity of the gas stream.

See Table 24-4

Eluate from the chromatography column

 \rightarrow flows over a hot tungsten-rhenium filament.

- When analyte emerges from the column,
 - \rightarrow the conductivity of the gas stream decreases,
 - \rightarrow the filament gets hotter,
 - \rightarrow its electrical resistance increases,
 - \rightarrow and the voltage across the filament changes.
- The detector measures the change in voltage.

Flame ionization detector

- Eluate is burned in a mixture of H₂ and air.
- Carbon atoms (except carbonyl and carboxyl carbons) produce CH radicals,
 → which are thought to produce CHO⁺ ions and electrons in the flame.
 CH + O → CHO⁺ + e⁻

- Only about 1 in 10⁵ carbon atoms produces an ion,
 - → but ion production is proportional to the number of susceptible carbon atoms entering the flame.

- When no analyte is present,
 - \rightarrow ~10⁻¹⁴ A flows between the flame tip and the collector.
- When analyte enters the flame,
 - \rightarrow the current is ~10⁻¹² A.

- Functional groups such as carbonyls, alcohols, halogens, and amines
 - \rightarrow yield few ions or none at all,
 - \rightarrow therefore the detector is insensitive to these compounds.
- It is also insensitive toward noncombustible gases
 - \rightarrow such as CO₂, CO, SO₂, H₂O, NO_x, and noble gases.
 - → Good for samples contaminated with water and the oxides of sulfur and nitrogen.
- The detection limit is reduced by 50% when N_2 is used instead of He.
- 100-fold better detection than thermal conductivity detector.

Other detectors

- Electron capture detector \rightarrow halogen containing organic compounds
- Nitrogen-phosphorus \rightarrow highlights P, N
- Flame photometer \rightarrow individual selected elements, such as P, S, Sn, Pb
- Photoionization \rightarrow aromatics, unsaturated compounds
- Sulfur chemiluminescence \rightarrow S
- Nitrogen chemiluminescence \rightarrow N
- Atomic emission → most elements
- Mass spectrometer → most analytes
- Infrared spectrometer → most analytes

Analytical Chemistry

Chapter 25. High Performance Liquid Chromatography

- This chapter discusses
 - \rightarrow discuss liquid chromatography.
- Chromatographers generally choose gas chromatography over liquid chromatography when there is a choice,
 - → because gas chromatography is normally less expensive and generates much less waste.
- Liquid chromatography is important
 - \rightarrow because most compounds are not sufficiently volatile for gas chromatography.

25.1 The chromatographic process

- Diffusion in liquids is 100 times slower than diffusion in gases.
- Therefore, in liquid chromatography,
 - \rightarrow it is not generally feasible to use open tubular columns,
 - → because the diameter of the solvent channel is too great to be traversed by a solute molecule in a short time.
- Liquid chromatography is conducted with packed columns
 - → so that a solute molecule does not have to diffuse very far to encounter the stationary phase.

Small Particles Give High Efficiency but Require High Pressure

• Typical particle sizes in HPLC are 1.7 to 5 μm.

- As the size of the stationary phase particles decreases.
 → The efficiency of a packed column increases
- The peaks are sharper with the smaller particle size
 - \rightarrow Decreasing particle size permits us to improve resolution.

The Stationary Phase

The most common support

 \rightarrow is highly pure, spherical, microporous particles of silica that are permeable to solvent

 \rightarrow have a surface area of several hundred square meters per gram.

- Most silica cannot be used above pH 8,
 - \rightarrow because it dissolves in base.
- For separation of basic compounds at pH 8–12,

 \rightarrow ethylene-bridged silica (see Fig 25-6) or polymeric supports such as polystyrene can be used.

 \rightarrow Stationary phase is covalently attached to the polymer.

- Bare silica can be used as the stationary phase for adsorption chromatography.
- Most commonly, liquid-liquid partition chromatography is conducted
 → with a bonded stationary phase covalently attached to the silica surface by reactions such as

See Table 25-3

Spectrophotometric Detectors

- An ultraviolet detector using a flow cell
 - \rightarrow the most common HPLC detector,
 - \rightarrow because many solutes absorb ultraviolet light.
- Simple systems employ the intense 254-nm emission of a mercury vapor lamp or other discrete ultraviolet wavelengths from zinc or cadmium vapor lamps.

Other detectors

See Table 25-5

Selecting the Separation Mode

- There can be many ways to separate components of a given mixture.
 - \rightarrow Figure 25-17 is a decision tree for choosing a starting point.