$$\sigma_y \approx s_y = \sqrt{\frac{\sum (d_i - \overline{d})^2}{(\text{degrees of freedom})}}$$

- For Equation 4-19, we began with n points.
- Two degrees of freedom were lost in determining the slope and the intercept.
 - \rightarrow Therefore, n 2 degrees of freedom remain.
- Equation 4-19 becomes

$$s_y = \sqrt{\frac{\sum (d_i^2)}{n-2}}$$

Vertical deviation $= d_i = y_i - y = y_i - (mx_i + b)$

 Uncertainty analysis for Equations 4-16 and 4-17 leads to the following results:

- where s_m is an estimate of the standard deviation of the slope,
 - s_b is an estimate of the standard deviation of the intercept,
 s_y is given by Equation 4-20,
 D is given by Equation 4-18.

- At last, we can assign significant figures to the slope and the intercept in Figure 4-11.
- In Table 4-6, we see that

 $\Sigma(d_i^2) = 0.076\,923$

Putting this number into Equation 4-20 gives

$$s_y^2 = \frac{0.076\ 923}{4-2} = 0.038\ 462$$

Now, we can plug numbers into Equations 4-21 and 4-22 to find

(4-21)
$$s_m^2 = \frac{s_y^2 n}{D} = \frac{(0.038\ 462)(4)}{52} = 0.002\ 958\ 6 \Rightarrow s_m = 0.054\ 39$$

(4-22) $s_b^2 = \frac{s_y^2 \sum (x_i^2)}{D} = \frac{(0.038\ 462)(62)}{52} = 0.045\ 859 \Rightarrow s_b = 0.214\ 15$

• Combining the results for m, s_m, b, and s_b, we write

Slope:
$$\frac{0.615\ 38}{\pm 0.054\ 39} = 0.62 \pm 0.05$$
 or $0.61_5 \pm 0.05_4$

Intercept:
$$\frac{1.346\ 15}{\pm 0.214\ 15} = 1.3\ \pm\ 0.2$$
 or $1.3_5\ \pm\ 0.2_1$

 \rightarrow The first digit of the uncertainty is the last significant figure.

Calibration Curves

- A calibration curve shows the response of an analytical method to known quantities of analyte.
- Table 4-8 gives real data from a protein analysis that produces a colored product.

See Table 4-8

A spectrophotometer measures the absorbance of light,
 → which is proportional to the quantity of protein analyzed.

- Solutions containing known concentrations of analyte are called standard solutions.
- Solutions containing all reagents and solvents used in the analysis, but no deliberately added analyte,
 - → are called **blank solutions**.
- Blanks measure the response of the analytical procedure to impurities or interfering species in the reagents.
 - \rightarrow Absorbance of the blank can arise from the color of starting reagents, reactions of impurities, and reactions of interfering species.
 - → Blank values can vary from one set of reagents to another, but corrected absorbance should not.

- When we scan across the three absorbance values in each row of Table 4-8,
 → the number 0.392 seems out of line:
- It is inconsistent with the other values for 15.0 µg, and the range of values for the 15.0-µg samples is much bigger than the range for the other samples.

See Table 4-8

- The linear relation between the average values of absorbance up to the 20.0-µg sample also indicates that
 - \rightarrow the value 0.392 is in error (Figure 4-12).
 - \rightarrow We choose to omit 0.392 from subsequent calculations.

See Fig 4-12

Constructing a Calibration Curve

- We adopt the following procedure for constructing a calibration curve:
 Step 1)
- → Prepare known samples of analyte covering a range of concentrations expected for unknowns.
- → Measure the response of the analytical procedure to these standards to generate data like the left half of Table 4-8.

See Table 4-8

Step 2)

- → Subtract the average absorbance (0.099_3) of the blank samples from each measured absorbance to obtain corrected absorbance.
- → The blank measures the response of the procedure when no protein is present.

See Table 4-8

Step 3)

→ Make a graph of corrected absorbance versus quantity of protein analyzed (Figure 4-13).

See Fig 4-13

- → Use the least-squares procedure to find the best straight line through the linear portion of the data, up to and including 20.0 µg of protein (14 points, including the 3 corrected blanks, in the shaded portion of Table 4-8).
- → Find the slope and intercept and uncertainties with Equations 4-16, 4-17, 4-20, 4-21, and 4-22.
- \rightarrow The results are

$$m = 0.016 \ 3_0 \qquad s_m = 0.000 \ 2_2 \qquad s_y = 0.005_9 b = 0.004_7 \qquad s_b = 0.002_6$$

 \rightarrow The equation of the linear calibration line is

$$\underbrace{absorbance}_{y} = m \times \underbrace{(\mu g \text{ of protein})}_{x} + b$$
$$= (0.016 \ 3_0)(\mu g \text{ of protein}) + 0.004_7$$

→ where y is the corrected absorbance (observed absorbance – blank absorbance)

Step 4)

- \rightarrow If you analyze an unknown at a future time, run a blank at the same time.
- → Subtract the new blank absorbance from the unknown absorbance to obtain corrected absorbance.

EXAMPLE Using a Linear Calibration Curve

An unknown protein sample gave an absorbance of 0.406 and a blank had an absorbance of 0.104. How many micrograms of protein are in the unknown?

Solution The corrected absorbance is 0.406 - 0.104 = 0.302, which lies on the linear portion of the calibration curve in Figure 4-13. Rearranging Equation 4-25 gives

$$\mu g \text{ of protein} = \frac{\text{absorbance} - 0.004_7}{0.016 \, 3_0} = \frac{0.302 - 0.004_7}{0.016 \, 3_0} = 18.2_4 \, \mu g \qquad \textbf{(4-26)}$$

TEST YOURSELF What mass of protein gives a corrected absorbance of 0.250? (*Answer:* 15.0₅ μg)

• We prefer calibration procedures with a linear response,

 \rightarrow in which the corrected analytical signal (signal from sample – signal from blank) is proportional to the quantity of analyte.

• The dashed curve that goes up to 25 μ g of protein comes from a leastsquares fit of the data to a quadratic equation of the form: $y = ax^2 + bx + c$.

See Fig 4-13

- The linear range of an analytical method is the analyte concentration range over which response is proportional to concentration.
- Dynamic range the concentration range over which there is a measurable response to analyte, even if the response is not linear.

See Fig 4-14

Good Practice

- Always make a graph of your data.
 - → The graph gives you an opportunity
 i) to reject bad data or the stimulus to repeat a measurement
 ii) or decide that a straight line is not an appropriate function.
- It is not reliable to extrapolate any calibration curve, linear or nonlinear, beyond the measured range of standards.

 \rightarrow Measure standards in the entire concentration range of interest.

 At least six calibration concentrations and two replicate measurements of unknown are recommended.

Recap

- Grubbs test: outlier test
- Method of least squares: Minimizing deviation²

$$d_i^2 = (y_i - y)^2 = (y_i - mx_i - b)^2$$

 Degree of freedom : (n-2)...the other two used for slope and intercept

 Calibration curve: consisting of standard solutions & blank solutions (use corrected values)

Analytical Chemistry

Chapter 6. Chemical Equilibrium

This chapter introduces equilibria for

- i) the solubility of ionic compounds,
- ii) complex formation, and
- iii) acid-base reactions

Equilibrium constant

• For the reaction

$$a\mathbf{A} + b\mathbf{B} \rightleftharpoons c\mathbf{C} + d\mathbf{D}$$

 \rightarrow the equilibrium constant, K, is written in the form

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

- \rightarrow The lowercase superscript letters: stoichiometry coefficients
- \rightarrow Each capital letter: a chemical species.
- \rightarrow The symbol [A]: the concentration of A relative to its standard state

In the thermodynamic derivation of the equilibrium constant,

 \rightarrow each quantity in the above equation is expressed as the ratio of the concentration of a species to its concentration in its standard state.

For solutes,

 \rightarrow the standard state is 1 M. (moles/liter)

- For gases,
 - \rightarrow the standard state is 1 bar
- For solids and liquids,
 - \rightarrow the standard states are the pure solid or liquid.

- If A is a solute.
 - \rightarrow [A] really means [A]/(1 M)
- If D is a gas,
 - \rightarrow [D] really means (pressure of D in bars)/(1 bar).
- The terms in the above equation are actually dimensionless
 → therefore, all equilibrium constants are dimensionless.

• For the reaction

$$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+} + \mathrm{A}^{-}$$

 \rightarrow the equilibrium constant, K,

$$K_1 = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$$

• For the reverse reaction

$$H^+ + A^- \rightleftharpoons HA$$

 \rightarrow the equilibrium constant, K,

$$K'_{1} = \frac{[\text{HA}]}{[\text{H}^{+}][\text{A}^{-}]} = 1/K_{1}$$

• If the direction of a reaction is reversed,

 \rightarrow the new value of K is simply the reciprocal of the original value of K.

If two reactions are added,

 \rightarrow the new K is the product of the two individual values:

$$HA \rightleftharpoons [H^+] + A^- \qquad K_1$$

$$\underbrace{[H^+] + C \rightleftharpoons CH^+}_{W^+} \qquad K_2$$

$$HA + C \rightleftharpoons A^- + CH^+ \qquad K_3$$

$$K_3 = K_1 K_2 = \frac{\llbracket H^+ \uparrow [A^-]}{[HA]} \cdot \frac{[CH^+]}{\llbracket H^+ \uparrow [C]} = \frac{[A^-][CH^+]}{[HA][C]}$$

EXAMPLE Combining Equilibrium Constants

The equilibrium constant for the reaction H $_2O \rightleftharpoons H^+ + OH^-$ is called K_w (= [H⁺][OH⁻]) and has the value 1.0 $\times 10^{-14}$ at 25 °C. Given that $K_{NH_3} = 1.8 \times 10^{-5}$ for the reaction NH₃(aq) + H₂O \rightleftharpoons NH₄⁺ + OH⁻, find K for the reaction NH₄⁺ \rightleftharpoons NH₃(aq) + H⁺.

Solution The third reaction can be obtained by reversing the second reaction and adding it to the first reaction:

$$H_{\overline{2}}O \rightleftharpoons H^{+} + OH^{=} \qquad K = K_{w}$$

$$\underline{NH_{4}^{+} + OH^{=} \rightleftharpoons NH_{3}(aq) + H_{\overline{2}}O} \qquad K = 1/K_{NH_{3}}$$

$$NH_{4}^{+} \rightleftharpoons H^{+} + NH_{3}(aq) \qquad K = K_{w} \cdot \frac{1}{K_{NH_{3}}} = 5.6 \times 10^{-10}$$

TEST YOURSELF For the reaction $\text{Li}^+ + \text{H}_2\text{O} \rightleftharpoons \text{Li}(\text{OH})(aq) + \text{H}^+, K_{\text{Li}} = 2.3 \times 10^{-14}$. Combine this reaction with the K_w reaction to find the equilibrium constant for the reaction $\text{Li}^+ + \text{OH}^- \rightleftharpoons \text{Li}(\text{OH})(aq)$. (Answer: 2.3)

Equilibrium and thermodynamics

- Equilibrium is controlled by the thermodynamics of a chemical reaction.
- The heat absorbed or released (enthalpy) and the degree of disorder of reactants and products (entropy) independently contribute to the degree to which the reaction is favored or disfavored.

Enthalpy

• The enthalpy change, $\triangle H$, for a reaction

→ the heat absorbed or released when the reaction takes place under constant applied pressure.

- The standard enthalpy change, $\triangle H^{o}$,
 - → the heat absorbed or released when all reactants and products are in their standard states

$\operatorname{HCl}(g) \rightleftharpoons \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$

$\Delta H^\circ = -74.85 \text{ kJ/mol at } 25^\circ \text{C}$

- The negative sign of $\triangle H^{\circ}$ indicates
 - \rightarrow that heat is released
 - \rightarrow the solution becomes warmer.
- For other reactions, $\triangle H$ is positive,
 - \rightarrow means that heat is absorbed.
 - \rightarrow Consequently, the solution gets colder during the reaction.
- A reaction for which $\triangle H$ is positive \rightarrow endothermic.
- A reaction for which $\triangle H$ is negative \rightarrow exothermic.

Entropy

- The entropy, S, of a substance
 - \rightarrow a measure of its "disorder,"
 - \rightarrow The greater the disorder, the greater the entropy.
- In general, a gas is more disordered than a liquid
 → a gas has higher entropy than a liquid
- A liquid is more disordered than a solid.

lons in aqueous solution

 \rightarrow are normally more disordered than in their solid salt:

 $\operatorname{KCl}(s) \rightleftharpoons \operatorname{K}^+(aq) + \operatorname{Cl}^-(aq) \qquad \Delta S^\circ = +76.4 \operatorname{J/(K \cdot mol)} \operatorname{at} 25^\circ \operatorname{C}$

- △S°
 - \rightarrow the change in entropy when all species are in their standard states
 - \rightarrow entropy of products minus entropy of reactants
- The positive value of $\triangle S^{\circ}$
 - \rightarrow Products more disordered than reactants
 - → indicates that a mole of K⁺(aq) plus a mole of Cl⁻(aq) is more disordered than a mole of KCl(s).

Free Energy

• At constant temperature, T,

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S_{tot} = \Delta S_{sys} + \Delta S_{surr}$$

$$\Delta S_{tot} = \Delta S_{sys} - \frac{\Delta H_{sys}}{T}$$

$$T\Delta S_{tot} = T\Delta S_{sys} - \Delta H_{sys}$$

$$T\Delta S_{tot} = -\Delta G$$

- The second law of thermodynamics
 - → In any spontaneous process, the total entropy of a system and its surroundings increases

$$\Delta S_{tot} > 0$$

• At constant temperature, T,

$$\Delta G = \Delta H - T \Delta S$$

- The Gibbs Free Energy is a measure of the total entropy change
- $\Delta G < 0 \rightarrow$ spontaneous
- $\Delta G > 0 \rightarrow$ nonspontaneous
- $\Delta G = 0 \rightarrow at$ equilibrium
- When △H is negative and △S is positive,
 → the reaction is clearly favored.
- When △H is positive and △S is negative,
 → the reaction is clearly disfavored

• For the dissociation of HCl,

$$\operatorname{HCl}(g) \rightleftharpoons \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

= (-74.85 × 10³ J/mol) - (298.15 K)(-130.4 J/K·mol)
= -35.97 kJ/mol

• $\triangle G^{\circ}$ is negative,

 \rightarrow so the reaction is favored when all species are in their standard states.

In most reactions, the reactants and products are not in standard states

$$\Delta G = \Delta G^o + RT \ln Q$$

• Q is the reaction quotient – similar in form to K

$$aA + bB \rightleftharpoons cC + dD$$
$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

- Q « 1, $\Delta G < 0 \rightarrow$ drives towards products
- Q » 1, $\Delta G > 0 \rightarrow$ drives back towards reactants
- At equilibrium, $\Delta G = 0$ (Q = K)

 $\Delta G = \Delta G^{\circ} + RT \ln Q = 0 = \Delta G^{\circ} + RT \ln K$ $\Delta G^{\circ} = -RT \ln K \qquad K = e^{-\Delta G^{\circ}/RT}$

• For the dissociation of HCl,

$$HCl(g) \rightleftharpoons H^{+}(aq) + Cl^{-}(aq)$$
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$= (-74.85 \times 10^{3} \text{ J/mol}) - (298.15 \text{ K})(-130.4 \text{ J/K} \cdot \text{mol})$$
$$= -35.97 \text{ kJ/mol}$$
$$K = e^{-\Delta G^{\circ}/RT}$$

• where R is the gas constant and T is temperature (Kelvin).

 $K = e^{-(-35.97 \times 10^3 \text{ J/mol})/[8.314 \text{ 472 J/(K \cdot mol)}](298.15 \text{ K})} = 2.00 \times 10^6$

• The more negative the value of ΔG° ,

 \rightarrow the larger is the equilibrium constant.

Le Châtelier's Principle

The direction in which the system proceeds back to equilibrium
 → is such that the change is partially offset.

 $BrO_3^- + 2Cr^{3+} + 4H_2O \implies Br^- + Cr_2O_7^{2-} + 8H^+$ Bromate Chromium(III) Dichromate

- Suppose that the equilibrium is disturbed by adding dichromate to the solution to increase the concentration of [Cr₂O₇²⁻].
 - \rightarrow In what direction will the reaction proceed to reach equilibrium?
 - → the reaction should go back to the left to partially offset the increase in dichromate

 $BrO_{3}^{-} + 2Cr^{3+} + 4H_{2}O \bigoplus Br^{-} + Cr_{2}O_{7}^{2-} + 8H^{+}$ Bromate Chromium(III) Dichromate