Verify this behavior algebraically using the reaction quotient, Q

 $BrO_3^- + 2Cr^{3+} + 4H_2O \implies Br^- + Cr_2O_7^{2-} + 8H^+$ Bromate Chromium(III) Dichromate

In one particular equilibrium state of this system,

 \rightarrow the following concentrations exist:

 $[H^+] = 5.0 \text{ M}$ $[Cr_2O_7^{2^-}] = 0.10 \text{ M}$ $[Cr^{3^+}] = 0.003 \text{ 0 M}$ $[Br^-] = 1.0 \text{ M}$ $[BrO_3^-] = 0.043 \text{ M}$

$$K = \frac{[\text{Br}^-][\text{Cr}_2\text{O}_7^{-2}][\text{H}^+]^8}{[\text{Br}\text{O}_3^-][\text{Cr}^{3+}]^2} = 1 \times 10^{11} \text{ at } 25^\circ\text{C}$$

- $BrO_{3}^{-} + 2Cr^{3+} + 4H_{2}O \rightleftharpoons Br^{-} + Cr_{2}O_{7}^{2-} + 8H^{+}$ Bromate Chromium(III) Dichromate $K = \frac{[Br^{-}][Cr_{2}O_{7}^{2-}][H^{+}]^{8}}{[BrO_{3}^{-}][Cr^{3+}]^{2}} = 1 \times 10^{11} \text{ at } 25^{\circ}C$
- Suppose that the equilibrium is disturbed by adding dichromate to the solution to increase the concentration of [Cr₂O₇²⁻] from 0.10 to 0.20 M.
 → In what direction will the reaction proceed to reach equilibrium?

$$Q = \frac{(1.0) (0.20)(5.0)^8}{(0.043)(0.003 \ 0)^2} = 2 \times 10^{11} > K$$

Because Q > K

 \rightarrow the reaction must go to the left to decrease the numerator and increase the denominator, until Q = K

$a\mathbf{A} + b\mathbf{B} \rightleftharpoons c\mathbf{C} + d\mathbf{D}$

- If a reaction is at equilibrium and products are added (or reactants are removed),
 - \rightarrow the reaction goes to the left.
- If a reaction is at equilibrium and reactants are added (or products are removed),
 - \rightarrow the reaction goes to the right

• The effect of temperature on K:

$$K = e^{-\Delta G^{\circ}/RT} = e^{-(\Delta H^{\circ} - T\Delta S^{\circ})/RT} = e^{(-\Delta H^{\circ}/RT + \Delta S^{\circ}/R)}$$
$$= e^{-\Delta H^{\circ}/RT} \cdot e^{\Delta S^{\circ}/R}$$

• The term $e^{\Delta S^{\circ}/R}$ is independent of T

 $\rightarrow \Delta S$ is constant at least over a limited temperature range

- If ΔH° is positive,
 - \rightarrow The term e^{- Δ H°/RT} increases with increasing temperature
- If ΔH° is negative,
 - \rightarrow The term e^{- Δ H°/RT} decreases with increasing temperature

• The effect of temperature on K:

$$K = e^{-\Delta G^{\circ}/RT} = e^{-(\Delta H^{\circ} - T\Delta S^{\circ})/RT} = e^{(-\Delta H^{\circ}/RT + \Delta S^{\circ}/R)}$$
$$= e^{-\Delta H^{\circ}/RT} \cdot e^{\Delta S^{\circ}/R}$$

- If the temperature is raised,
 - → The equilibrium constant of an endothermic reaction (ΔH° >0) increases
 - → The equilibrium constant of an exothermic reaction (Δh° <0) decreases
- If the temperature is raised,
 - \rightarrow an endothermic reaction is favored
- If the temperature is raised, then heat is added to the system.
 - \rightarrow The reaction proceeds to partially offset this heat
 - \rightarrow an endothermic reaction
 - → Le Châtelier's principle

Solubility product

- The equilibrium constant for the reaction in which a solid salt dissolves to give its constituent ions in solution.
 - → Solid is omitted from the equilibrium constant because it is in its standard state.
- Consider the dissolution of mercury(I) chloride (Hg₂Cl₂, also called mercurous chloride) in water.
 - \rightarrow The reaction is

$$Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+} + 2Cl^-$$

 $\boldsymbol{\rightarrow}$ for which the solubility product, $K_{sp,}$ is

$$K_{\rm sp} = [{\rm Hg}_2^{2^+}] [{\rm Cl}^-]^2 = 1.2 \times 10^{-18}$$

- The physical meaning of the solubility product is:
- If an aqueous solution is left in contact with excess solid Hg₂Cl₂, \rightarrow the solid will dissolve until the condition $K_{sp} = [Hg_2^{2+}][Cl^{-}]^2$ is satisfied.
- Thereafter, the amount of undissolved solid remains constant.
- If Hg₂²⁺and Cl⁻ are mixed together (with appropriate counterions) such that the product [Hg₂²⁺][Cl⁻]² exceeds K_{sp},
 - \rightarrow then Hg₂Cl₂ will precipitate

See Appendix F

 We most commonly use the solubility product to find the concentration of one ion when the concentration of the other is known or fixed by some means.

For example,

 What is the concentration of Hg₂²⁺ in equilibrium with 0.10 M Cl⁻ in a solution of KCl containing excess, undissolved Hg₂Cl₂(s)?

 \rightarrow To answer this question,

$$[\text{Hg}_2^{2^+}] = \frac{K_{\text{sp}}}{[\text{Cl}^-]^2} = \frac{1.2 \times 10^{-18}}{0.10^2} = 1.2 \times 10^{-16} \text{ M}$$

Because Hg₂Cl₂ is so slightly soluble,

 \rightarrow additional Cl⁻ obtained from Hg₂Cl₂ is negligible compared with 0.10 M Cl⁻.

- Most salts form soluble **ion pairs** to some extent.
 - \rightarrow That is, MX(s) can give MX(aq) as well as M⁺(aq) and X⁻(aq).
 - \rightarrow MX(aq): ion pair
 - → the ion pair is a closely associated pair of ions that behaves as one species in solution
- In a saturated solution of CaSO₄,
 - \rightarrow two-thirds of the dissolved calcium is Ca²⁺
 - \rightarrow one third is CaSO₄(aq).

Common Ion Effect

For the ionic solubility reaction

$$CaSO_4(s) \rightleftharpoons Ca^{2+} + SO_4^{2-} \qquad K_{sp} = 2.4 \times 10^{-5}$$

- In the presence of excess solid CaSO₄,
 - \rightarrow the product [Ca²⁺][SO₄²⁻] is constant at equilibrium
- If the concentration of [Ca²⁺] were increased by adding another source of Ca²⁺, such as CaCl₂,
 - → then the concentration of $[SO_4^2]$ must decrease so that the product remains constant.
 - → In other words, less CaSO₄(s) will dissolve if $[Ca^{2+}]$ or $[SO_4^{2-}]$ is already present from some other source.

$$CaSO_4(s) \rightleftharpoons Ca^{2+} + SO_4^{2-} \qquad K_{sp} = 2.4 \times 10^{-5}$$

 Figure 6-1 shows how the solubility of CaSO₄ decreases in the presence of dissolved CaCl₂.

Le Châtelier's principle

- → A salt will be less soluble if one of its constituent ions is already present in the solution.
- → called the **common ion effect**.

See Fig 6-1

Pbl₂(s) in 0.030 M Nal (complete dissociate to Na⁺ & I⁻), [Pb²⁺]?

	Pbl ₂ (s)	⇒	Pb ²⁺ +	<u>- 21-</u>
initial conc	solid		0	0.030
final conc	solid		Х	2x+0.030

$$K_{\rm sp} = [Pb^{2+}][I^{-}]^2 = 7.9 \times 10^{-9}$$

i) Without Nal

$$[Pb^{2+}][I^{-}]^{2} = (x) \cdot (2x)^{2} = 7.9 \times 10^{-9}$$
$$x = [Pb^{2+}] = \underline{1.3 \times 10^{-3} M}$$

ii) With Nal

$$[Pb^{2+}][I^{-}]^{2} = (x) \cdot (2x + 0.030)^{2} = 7.9 \times 10^{-9}$$

expect $2x < <0.030 \rightarrow (x) \cdot (0.030)^{2} = 7.9 \times 10^{-9}$
 $x = [Pb^{2+}] = 8.8 \times 10^{-6} \text{ M}$

Complex formation

- If anion X⁻ precipitates metal M⁺,
 - → it is often observed that a high concentration of X⁻ causes solid MX to redissolve.
- The increased solubility arises from formation of complex ions, such as MX₂⁻, which consist of two or more simple ions bonded to one another.

Effect of Complex Ion Formation on Solubility

- If Pb²⁺ and I⁻ only reacted to form solid PbI₂,
 - → then the solubility of Pb²⁺ would always be very low in the presence of excess I⁻

$$PbI_2(s) \rightleftharpoons K_{sp} Pb^{2+} + 2I^- K_{sp} = [Pb^{2+}][I^-]^2 = 7.9 \times 10^{-9}$$

- However, we observe that high concentrations of I⁻ cause solid Pbl₂ to dissolve.
 - \rightarrow We explain this by the formation of a series of complex ions:

$$Pb^{2+} + I^{-} \xleftarrow{K_{1}} PbI^{+} \qquad K_{1} = [PbI^{+}]/[Pb^{2+}][I^{-}] = 1.0 \times 10^{2}$$

$$Pb^{2+} + 2I^{-} \xleftarrow{\beta_{2}} PbI_{2}(aq) \qquad \beta_{2} = [PbI_{2}(aq)]/[Pb^{2+}][I^{-}]^{2} = 1.4 \times 10^{3}$$

$$Pb^{2+} + 3I^{-} \xleftarrow{\beta_{3}} PbI_{3}^{-} \qquad \beta_{3} = [PbI_{3}^{-}]/[Pb^{2+}][I^{-}]^{3} = 8.3 \times 10^{3}$$

$$Pb^{2+} + 4I^{-} \xleftarrow{\beta_{4}} PbI_{4}^{2-} \qquad \beta_{4} = [PbI_{4}^{2-}]/[Pb^{2+}][I^{-}]^{4} = 3.0 \times 10^{4}$$

$$Pb^{2+} + I^- \rightleftharpoons^{K_1} PbI^+$$
 $K_1 = [PbI^+]/[Pb^{2+}][I^-] = 1.0 \times 10^2$
 $Pb^{2+} + 2I^- \rightleftharpoons^{\beta_2} PbI_2(aq)$
 $\beta_2 = [PbI_2(aq)]/[Pb^{2+}][I^-]^2 = 1.4 \times 10^3$
 $Pb^{2+} + 3I^- \rightleftharpoons^{\beta_3} PbI_3^ \beta_3 = [PbI_3^-]/[Pb^{2+}][I^-]^3 = 8.3 \times 10^3$
 $Pb^{2+} + 4I^- \rightleftharpoons^{\beta_4} PbI_4^{2-}$
 $\beta_4 = [PbI_4^{2-}]/[Pb^{2+}][I^-]^4 = 3.0 \times 10^4$

- The species Pbl₂(aq) is dissolved Pbl₂, containing two iodine atoms bound to a lead atom.
- At low I⁻ concentrations,
 - \rightarrow the solubility of lead is governed by precipitation of PbI₂(s).
- At high I⁻ concentrations,
 - \rightarrow the above reactions are driven to the right (Le Chatelier's principle)
 - → the total concentration of dissolved lead is considerably greater than that of Pb²⁺ alone

As [I⁻] increases,

→ [Pb]_{total} decreases because of the common ion effect.

At high values of [I⁻], → Pbl₂(s) redissolves because it reacts with I⁻ to form soluble complex ions, such as Pbl₄²⁻.

$$PbI_{2}(s) \xleftarrow{K_{sp}} Pb^{2+} + 2I^{-} \qquad K_{sp} = [Pb^{2+}][I^{-}]^{2} = 7.9 \times 10^{-9}$$
$$Pb^{2+} + 4I^{-} \xleftarrow{\beta_{4}} PbI_{4}^{2-} \qquad \beta_{4} = [PbI_{4}^{2-}]/[Pb^{2+}][I^{-}]^{4} = 3.0 \times 10^{4}$$

See Fig 6-3

T.7

- A most useful characteristic of chemical equilibrium is that all equilibria are satisfied simultaneously.
- If we know [I-],
- → we can calculate [Pb²⁺] by substituting the value of [I⁻] into the equilibrium constant expression for the reaction below, regardless of whether there are other reactions involving Pb²⁺
- The concentration of Pb²⁺ that satisfies any one equilibrium must satisfy all equilibria.
 - \rightarrow There can be only one concentration of Pb²⁺ in the solution

EXAMPLE Effect of I⁻ on the Solubility of Pb²⁺

Find the concentrations of PbI⁺, PbI₂(aq), PbI₃, and PbI₄²⁻ in a solution saturated with PbI₂(s) and containing dissolved I⁻ with a concentration of (**a**) 0.001 0 M and (**b**) 1.0 M.

Solution (a) From K_{sp} for Reaction 6-12, we calculate

$$[Pb^{2+}] = K_{sp}/[I^-]^2 = (7.9 \times 10^{-9})/(0.001 \ 0)^2 = 7.9 \times 10^{-3} M$$

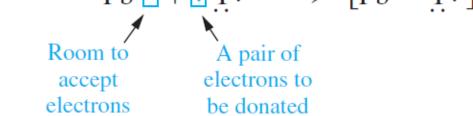
From Reactions 6-13 through 6-16, we then calculate the concentrations of the other Pb[II] species:

$$[PbI^{+}] = K_{1}[Pb^{2+}][I^{-}] = (1.0 \times 10^{2})(7.9 \times 10^{-3})(1.0 \times 10^{-3})$$

= 7.9 × 10⁻⁴ M
$$[PbI_{2}(aq)] = \beta_{2}[Pb^{2+}][I^{-}]^{2} = 1.1 \times 10^{-5} M$$

$$[PbI_{5}] = \beta_{3}[Pb^{2+}][I^{-}]^{3} = 6.6 \times 10^{-8} M$$

$$[PbI_{6}^{2-}] = \beta_{4}[Pb^{2+}][I^{-}]^{4} = 2.4 \times 10^{-10} M$$


(b) If, instead, we take $[I^-] = 1.0 \text{ M}$, then analogous computations show that

$$\begin{split} [\text{Pb}^{2^+}] &= 7.9 \times 10^{-9} \text{ M} \qquad [\text{Pb}\text{I}_3^-] = 6.6 \times 10^{-5} \text{ M} \\ [\text{Pb}\text{I}^+] &= 7.9 \times 10^{-7} \text{ M} \qquad [\text{Pb}\text{I}_4^{2^-}] = 2.4 \times 10^{-4} \text{ M} \\ [\text{Pb}\text{I}_2(aq)] &= 1.1 \times 10^{-5} \text{ M} \end{split}$$

TEST YOURSELF Find $[Pb^{2+}]$, $PbI_2(aq)$, and $[PbI_3^-]$, in a saturated solution of PbI $_2(s)$ with $[I^-] = 0.10$ M. (*Answer:* 7.9×10^{-7} , 1.1×10^{-5} , 6.6×10^{-6} M)

Lewis Acids and Bases

- In complex ions such as Pbl⁺, Pbl₃⁻, and Pbl₄²⁻,
 → iodide is said to be the <u>ligand</u> of Pb²+.
- A ligand is any atom or group of atoms attached to the species of interest.
- Pb²⁺ acts as a Lewis acid and I⁻ acts as a Lewis base in these complexes.
 → A Lewis acid accepts a pair of electrons from a Lewis base when the two form a bond:
 ++Pb□+: I: -→ [Pb-: I:]⁺

 \rightarrow The product of the reaction between a Lewis acid and a Lewis base is called an **adduct**.

→The bond between a Lewis acid and a Lewis base is called a **coordinate** covalent bond.

Protic Acids and Bases

 The word protic refers to chemistry involving transfer of H+ from one molecule to another.

Arrhenius acids

- In aqueous chemistry, an acid is a substance that increases the concentration of H₃O⁺ (hydronium ion) when added to water.
- Conversely, a base decreases the concentration of H₃O⁺.
 - → a decrease in H_3O^+ concentration necessarily requires an increase in OH^- concentration.
 - \rightarrow Therefore, a base increases the concentration of OH⁻ in aqueous solution.

Brønsted-Lowry Acids and Bases

- Brønsted and Lowry classified
 - \rightarrow acids as proton donors
 - \rightarrow bases as proton acceptors.
- HCl is an acid (a proton donor), and it increases the concentration of H_3O^+ in water:

 $HCl + H_2O \rightleftharpoons H_3O^+ + Cl^-$

The Brønsted-Lowry definition does not require that H₃O⁺ be formed.
 → This definition can therefore be extended to nonaqueous solvents and to

the gas phase:

 $\begin{array}{rcl} \mathrm{HCl}(g) &+& \mathrm{NH}_3(g) &\rightleftharpoons & \mathrm{NH}_4^+\mathrm{Cl}^-(s) \\ \mathrm{Hydrochloric\ acid} & \mathrm{Ammonia} & \mathrm{Ammonium\ chloride} \\ (\mathrm{acid}) & (\mathrm{base}) & (\mathrm{salt}) \end{array}$

Salts

- Any ionic solid, such as ammonium chloride, is called a salt.
- In a formal sense, a salt can be thought of as the product of an acid-base reaction.
 - \rightarrow When an acid and a base react, they are said to neutralize each other.
- Most salts containing cations and anions with single positive and negative charges are strong electrolytes
 - \rightarrow they dissociate nearly completely into ions in dilute aqueous solution.

 $\mathrm{NH}_{4}^{+}\mathrm{Cl}^{-}(s) \rightarrow \mathrm{NH}_{4}^{+}(aq) + \mathrm{Cl}^{-}(aq)$

Autoprotolysis

Water undergoes self-ionization, called autoprotolysis,
 → it acts as both an acid and a base:

 $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^$ or $H_2O \rightleftharpoons H^+ + OH^-$

- Protic solvents have a reactive H⁺
 - \rightarrow all protic solvents undergo autoprotolysis.
 - \rightarrow An example is acetic acid:

$$2CH_{3}COH \rightleftharpoons CH_{3}C_{+}OH + CH_{3}C_{-}O^{-} \text{ (in acetic acid)}$$

• Examples of **aprotic solvents** (no acidic protons):

CH₃CH₂OCH₂CH₃ CH₃CN Diethyl ether Acetonitrile

рΗ

• The autoprotolysis constant for H_2O has the special symbol K_{w} , where "w" stands for water:

Autoprotolysis of water: $H_2O \rightleftharpoons^{K_w} H^+ + OH^- \qquad K_w = [H^+][OH^-]$

\rightarrow H₂O (the solvent) is omitted from the equilibrium constant

EXAMPLE Concentration of OH⁻ When [H⁺] Is Known

What is the concentration of OH⁻ if $[H^+] = 1.0 \times 10^{-3}$ M? (From now on, assume that the temperature is 25°C unless otherwise stated.)

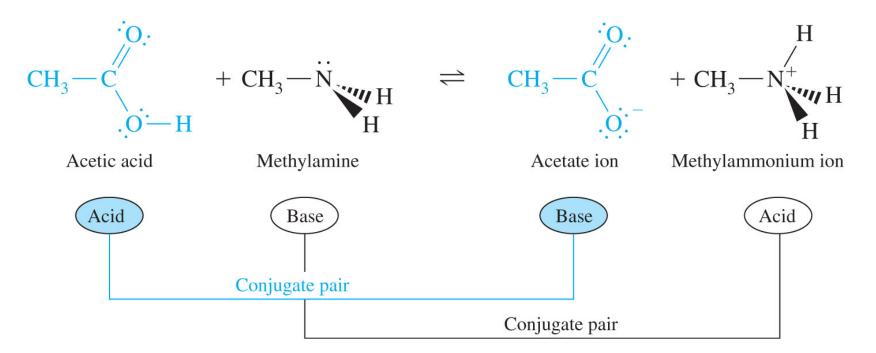
Solution Putting [H⁺] = 1.0×10^{-3} M into the K_w expression gives

$$K_{\rm w} = 1.0 \times 10^{-14} = (1.0 \times 10^{-3})[\text{OH}^-] \Rightarrow [\text{OH}^-] = 1.0 \times 10^{-11} \text{ M}$$

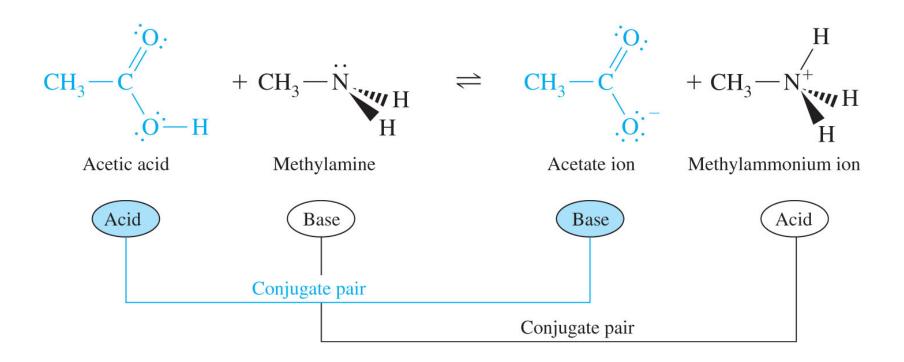
A concentration of $[H^+] = 1.0 \times 10^{-3} \text{ M}$ gives $[OH^-] = 1.0 \times 10^{-11} \text{ M}$. As the concentration of H^+ increases, the concentration of OH^- necessarily decreases, and vice versa. A concentration of $[OH^-] = 1.0 \times 10^{-3} \text{ M}$ gives $[H^+] = 1.0 \times 10^{-11} \text{ M}$.

TEST YOURSELF Find [OH⁻] if [H⁺] = 1.0×10^{-4} M. (*Answer:* 1.0×10^{-10} M)

 An approximate definition of pH is the negative logarithm of the H⁺ concentration.


Approximate definition of pH: $pH \approx -\log[H^+]$ $pH + pOH = -\log(K_w) = 14.00 \text{ at } 25^{\circ}C$ $pOH = -log[OH^-]$ \rightarrow if pH = 3.58, then pOH = 14.00 - 3.58 = 10.42, \rightarrow [OH⁻] = 10^{-10.42} = 3.8 × 10⁻¹¹ M. $pH \xrightarrow{-1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15}$ $\longleftarrow Acidic \longrightarrow \uparrow \longleftarrow Basic \longrightarrow$ acidic if $[H^+] > [OH^-]$ Neutral **basic** if $[H^+] < [OH^-]$

- Pure water at 25°C should have a pH of 7.00.
- Distilled water from the tap in most labs is acidic
 - \rightarrow because it contains CO₂ from the atmosphere.
 - \rightarrow CO₂ is an acid by virtue of the reaction


$$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+$$

Bicarbonate

Conjugate Acids and Bases

 The products of a reaction between an acid and a base are also classified as acids and bases

- Acetate is a **base** because it can accept a proton to make acetic acid.
- Methylammonium ion is an acid because it can donate a proton and become methylamine.

- Acetic acid and the acetate ion are said to be **a conjugate acid-base pair**.
- Methylamine and methylammonium ion are likewise conjugate.

→ Conjugate acids and bases are <u>related to each other by the gain or loss</u> of one H⁺

Strengths of Acids and Bases

- Acids and bases are commonly classified as strong or weak, depending on whether they react nearly "completely" or only "partially" to produce H⁺ or OH⁻.
- Although there is no sharp distinction between weak and strong,
 → a strong acid or base is completely dissociated in aqueous solution.
 - \rightarrow that is, the equilibrium constants for the strong acids and bases are large

 $\operatorname{HCl}(aq) \rightleftharpoons \operatorname{H}^{+} + \operatorname{Cl}^{-}$ $\operatorname{KOH}(aq) \rightleftharpoons \operatorname{K}^{+} + \operatorname{OH}^{-}$

• by convention, everything else is termed weak.

Strong Acids and Bases

- Common strong acids and bases are listed in Table 6-2
 - Even though the hydrogen halides HCl,
 HBr, and HI are strong acids,
 → HF is not a strong acid
 - HF does completely give up its proton to H₂O:

See Table 6-2

$$\begin{array}{rcl} \mathrm{HF}(aq) & \rightarrow & \mathrm{H_3O^+} & + & \mathrm{F^-} \\ & & \mathrm{Hydronium} & & \mathrm{Fluoride} \\ & & \mathrm{ion} & & \mathrm{ion} \end{array}$$

- Fluoride forms the strongest hydrogen bond of any ion.
- The hydronium ion remains tightly associated with F through a hydrogen bond.
 - \rightarrow We call such an association an ion pair.

$$H_3O^+ + F^- \rightleftharpoons F^- \cdots H_3O^+$$

An ion pair

• HF does not behave as a strong acid

 \rightarrow because F⁻ and H₃O⁺ remain associated with each other.

- Dissolving one mole of the strong acid HCl in water creates one mole of free H₃O⁺.
 - → Dissolving one mole of the "weak" acid HF in water creates little free H_3O^+ .

Weak Acids and Bases

All weak acids, denoted HA, react with water by donating a proton to H₂O:

Dissociation of weak acid: $HA + H_2O \rightleftharpoons H_3O^+ + A^-$

Dissociation of weak acid: $HA \rightleftharpoons K_a = \frac{[H^+][A^-]}{[HA]}$

- The equilibrium constant is called K_a, the acid dissociation constant.
- By definition, a weak acid is one that is only partially dissociated in water,
 → so K_a is "small.".

• Weak bases, B, react with water by abstracting a proton from H₂O:

Base
hydrolysis:
$$B + H_2O \rightleftharpoons BH^+ + OH^- \qquad K_b = \frac{[BH^+][OH^-]}{B}$$

- The equilibrium constant K_b is the base hydrolysis constant,
 - \rightarrow which is "small" for a weak base.