• At low pH,

 \rightarrow both the ammonium group and the carboxyl group are **protonated**.

- At high pH,
 - \rightarrow neither is protonated.

R H₂NCHCO₂

Acid dissociation constants of amino acids are listed in Table 10-1
 → where each compound is drawn in its fully protonated form.

See Table 10-1

Zwitterions are stabilized in solution

 \rightarrow by interactions of $-NH_3^+$ and $-CO_2^-$ with water.

- In the solid state,
 - \rightarrow The zwitterion is also the stable form of the amino acid
 - → where hydrogen bonding from $-NH_3^+$ to $-CO_2^-$ of neighboring molecules occurs.
- In the gas phase,
 - \rightarrow there are no neighbors to stabilize the charges,
 - → so the nonionized structure with intramolecular hydrogen bonding from $-NH_2$ to a carboxyl oxygen, predominates.

Our discussion will focus on the amino acid leucine, designated HL.

The equilibrium constants refer to the following reactions:

Diprotic acid:	$H_2L^+ \rightleftharpoons HL + H^+$	$K_{a1} \equiv K_1$	(10-1)
	$HL \rightleftharpoons L^- + H^+$	$K_{a2} \equiv K_2$	(10-2)
Diprotic base:	$L^- + H_2O \rightleftharpoons HL + OH^-$	K _{b1}	(10-3)
	$HL + H_2O \rightleftharpoons H_2L^+ + OH^-$	K_{b2}	(10-4)

- \rightarrow We customarily omit the subscript "a" in K_{a1} and K_{a2}.
- \rightarrow We will always write the subscript "b" in K_{b1} and K_{b2}.

 Recall that the relations between the acid and base equilibrium constants are

Relations between K_a and K_b :

$$K_{a1} \cdot K_{b2} = K_w$$
$$K_{a2} \cdot K_{b1} = K_w$$

- Calculate the pH and composition of individual solutions of
 i) 0.050 0 M H₂L⁺,
 - ii) 0.050 0 M HL,
 - iii) and 0.050 0 M L⁻.

The acidic form, H₂L⁺

- Leucine hydrochloride contains the protonated species, H₂L⁺,
 - → which can **dissociate twice** (Reactions 10-1 and 10-2).

Diprotic acid:	$H_2L^+ \rightleftharpoons HL + H^+$	$K_{a1} \equiv K_1$	(10-1)
	$HL \rightleftharpoons L^- + H^+$	$K_{a2} \equiv K_2$	(10-2)

- H₂L⁺ is a weak acid.
 - → Because $K_1 = 4.70 \times 10^{-3}$
- HL is an even weaker acid,

→ because $K_2 = 1.80 \times 10^{-10}$.

$$\begin{array}{ll} H_2 L^+ \rightleftharpoons HL + H^+ \\ HL \rightleftharpoons L^- + H^+ \end{array} & K_{a1} \equiv K_1 = 4.70 \times 10^{-3} \\ K_{a2} \equiv K_2 = 1.80 \times 10^{-10} \end{array}$$

- The H₂L⁺ will dissociate only partly,
- The resulting HL will hardly dissociate at all.
- For this reason,
 - → we make the approximation that a solution of H_2L^+ behaves as a monoprotic acid, with $K_a = K_1$.
- With this approximation,
 - \rightarrow finding the pH of 0.050 0 M H₂L⁺ is easy.

$$K_{a} = K_{1} = 4.70 \times 10^{-3}$$

$$\frac{x^{2}}{F - x} = K_{a} \Rightarrow x = 1.32 \times 10^{-2} M$$

$$[HL] = x = 1.32 \times 10^{-2} M$$

$$[H^{+}] = x = 1.32 \times 10^{-2} M \Rightarrow pH = 1.88$$

$$[H_{2}L^{+}] = F - x = 3.68 \times 10^{-2} M$$

- What is **the concentration of L**⁻ in the solution?
 - \rightarrow We have already assumed that it is very small,
 - \rightarrow but it cannot be 0.
- We can calculate [L-] from the K₂ equation,

 \rightarrow with the concentrations of HL⁻ and H⁺ that we just computed.

$$K_{2} = \frac{[\mathrm{H}^{+}][\mathrm{L}^{-}]}{[\mathrm{HL}]} \Rightarrow [\mathrm{L}^{-}] = \frac{K_{2}[\mathrm{HL}]}{[\mathrm{H}^{+}]}$$
$$[\mathrm{L}^{-}] = \frac{(1.80 \times 10^{-10})(1.32 \times 10^{-2})}{(1.32 \times 10^{-2})} = 1.80 \times 10^{-10} \,\mathrm{M} \,(= K_{2})$$

• Our approximation is confirmed by this last result.

- The concentration of L⁻ is about eight orders of magnitude smaller than that of HL.
 - → The dissociation of HL is indeed negligible relative to the dissociation of H_2L^+ .
- For most diprotic acids,
 - \rightarrow K₁ is sufficiently larger than K₂
 - \rightarrow this approximation is valid.
- In summary,
 - → a solution of a diprotic acid behaves like a solution of a monoprotic acid, with $K_a = K_1$.

The basic form, L-

- The species L-,
 - \rightarrow found in a salt such as sodium leucinate,
 - → can be prepared by treating leucine (HL) with an equimolar quantity of NaOH.
- Dissolving sodium leucinate in water gives a solution of L-, the fully basic species.
- K_b values for this dibasic anion are

 $L^{-} + H_2O \rightleftharpoons HL + OH^{-} \qquad K_{b1} = K_w/K_{a2} = 5.55 \times 10^{-5}$ $HL + H_2O \rightleftharpoons H_2L^{+} + OH^{-} \qquad K_{b2} = K_w/K_{a1} = 2.13 \times 10^{-12}$

$$L^{-} + H_2O \rightleftharpoons HL + OH^{-} \qquad K_{b1} = K_w/K_{a2} = 5.55 \times 10^{-5}$$
$$HL + H_2O \rightleftharpoons H_2L^{+} + OH^{-} \qquad K_{b2} = K_w/K_{a1} = 2.13 \times 10^{-12}$$

• K_{b1} tells us that

 \rightarrow L⁻ will not hydrolyze (react with water) very much to give HL.

- Furthermore, K_{b2} tells us that
 - → the resulting HL is such a weak base that hardly any further reaction to make H₂L⁺ will occur.
- We therefore **treat L**⁻ as a monobasic species, with $K_b = K_{b1}$.

 \rightarrow This approximation simplify the calculations:

$$H_2 NCHCO_2^- + H_2 O \iff K_b = K_{b1} \qquad + H_3 NCHCO_2^- + OH^-$$

$$L^- \qquad HL \qquad OH^- \qquad x \qquad x$$

$$K_{b} = K_{b1} = \frac{K_{w}}{K_{a2}} = 5.55 \times 10^{-5}$$
$$\frac{x^{2}}{F - x} = 5.55 \times 10^{-5} \Rightarrow x = 1.64 \times 10^{-3} M$$
$$[HL] = x = 1.64 \times 10^{-3} M$$
$$[H^{+}] = K_{w}/[OH^{-}] = K_{w}/x = 6.11 \times 10^{-12} M \Rightarrow pH = 11.21$$
$$[L^{-}] = F - x = 4.84 \times 10^{-2} M$$

• The concentration of H_2L^+ can be found from the K_{b2} (or K_{a1}) equilibrium.

$$K_{b2} = \frac{[H_2L^+][OH^-]}{[HL]} = \frac{[H_2L^+]x}{x} = [H_2L^+]$$

- We find that $[H_2L^+] = K_{b2} = 2.13 \times 10^{-12} \text{ M}$
 - → The approximation that $[H_2L^+]$ is insignificant relative to [HL] is well justified.

In summary,

- if there is any reasonable separation between K_{a1} and K_{a2} (and, therefore, between K_{b1} and $K_{b2}),$
 - → the fully basic form of a diprotic acid can be treated as monobasic, with $K_b = K_{b1}$.

The intermediate form, HL

- A solution prepared from leucine, HL, is more complicated than one prepared from either H₂L⁺ or L⁻,
 - \rightarrow because HL is both an acid and a base.

 $HL \rightleftharpoons H^{+} + L^{-} \qquad K_{a} = K_{a2} = 1.80 \times 10^{-10} \qquad (10-8)$ $HL + H_{2}O \rightleftharpoons H_{2}L^{+} + OH^{-} \qquad K_{b} = K_{b2} = 2.13 \times 10^{-12} \qquad (10-9)$

- A molecule that can both donate and accept a proton
 → is said to be amphiprotic.
- The acid dissociation reaction (10-8) has a larger equilibrium constant than the base hydrolysis reaction (10-9),

 \rightarrow so we expect that a solution of leucine will be acidic.

 $HL \rightleftharpoons H^{+} + L^{-} \qquad K_{a} = K_{a2} = 1.80 \times 10^{-10} \qquad (10-8)$ $HL + H_{2}O \rightleftharpoons H_{2}L^{+} + OH^{-} \qquad K_{b} = K_{b2} = 2.13 \times 10^{-12} \qquad (10-9)$

However, we cannot simply ignore Reaction 10-9,

 \rightarrow even if K_a and K_b differ by several orders of magnitude.

- Both reactions proceed to nearly equal extent,
 - \rightarrow because H⁺ produced in Reaction 10-8 reacts with OH⁻ from Reaction 10-9,
 - \rightarrow thereby driving Reaction 10-9 to the right.
- To treat this case,

→ we resort to the **systematic treatment of equilibrium**.

• For Reactions 10-8 and 10-9, the **charge balance** is

 $[H^+] + [H_2L^+] = [L^-] + [OH^-]$ $[H_2L^+] - [L^-] + [H^+] - [OH^-] = 0$

• From the acid dissociation equilibria,

 \rightarrow we replace [H₂L⁺] with [HL][H⁺]/K₁, and [L⁻] with [HL]K₂/[H⁺].

→ Also, we can always write $[OH^-] = K_w/[H^+]$.

Putting these expressions into the charge balance gives

$$\frac{[\text{HL}][\text{H}^+]}{K_1} - \frac{[\text{HL}]K_2}{[\text{H}^+]} + [\text{H}^+] - \frac{K_{\text{w}}}{[\text{H}^+]} = 0$$

$$\frac{[\text{HL}][\text{H}^+]}{K_1} - \frac{[\text{HL}]K_2}{[\text{H}^+]} + [\text{H}^+] - \frac{K_{\text{w}}}{[\text{H}^+]} = 0$$

• First, multiply all terms by [H⁺]:

$$\frac{[\text{HL}][\text{H}^+]^2}{K_1} - [\text{HL}]K_2 + [\text{H}^+]^2 - K_{\text{w}} = 0$$

• Then rearrange and factor out [H⁺]²:

$$[\mathrm{H}^{+}]^{2} \left(\frac{[\mathrm{HL}]}{K_{1}} + 1 \right) = K_{2}[\mathrm{HL}] + K_{w}$$
$$[\mathrm{H}^{+}]^{2} = \frac{K_{2}[\mathrm{HL}] + K_{w}}{\frac{[\mathrm{HL}]}{K_{1}} + 1}$$

Now multiply the numerator and denominator by K₁ and take the square root:

$$[\mathrm{H}^{+}] = \sqrt{\frac{K_1 K_2 [\mathrm{HL}] + K_1 K_{\mathrm{w}}}{K_1 + [\mathrm{HL}]}}$$
(10-10)

- Up to this point, we have made no approximations, except to neglect activity coefficients.
- We solved for [H⁺] in terms of known constants plus the single unknown, [HL].
- Where do we proceed from here?
 - → The major species is HL, because it is both a weak acid and a weak base.
 - \rightarrow Neither Reaction 10-8 nor Reaction 10-9 goes very far.
- For [HL] in Equation 10-10,

→ you can simply **substitute the formal concentration**, 0.050 0 M.

• We write Equation 10-10 in its most useful form.

$$[\mathrm{H}^{+}] = \sqrt{\frac{K_1 K_2 [\mathrm{HL}] + K_1 K_{\mathrm{w}}}{K_1 + [\mathrm{HL}]}}$$

Intermediate form of diprotic acid: $[H^+] \approx \sqrt{\frac{K_1 K_2 F + K_1 K_w}{K_1 + F}}$ (10-11)

- where F is the formal concentration of HL \rightarrow 0.050 0 M in the present case.
- At long last, we can calculate the pH of 0.050 0 M leucine:

 $[\mathrm{H^{+}}] = \sqrt{\frac{(4.70 \times 10^{-3})(1.80 \times 10^{-10})(0.050 \ 0) + (4.70 \times 10^{-3})(1.0 \times 10^{-14})}{4.70 \times 10^{-3} + 0.050 \ 0}}$ $= 8.80 \times 10^{-7} \mathrm{M} \Rightarrow \mathrm{pH} = 6.06$

- The concentrations of H₂L⁺ and L⁻
 - \rightarrow can be found from the K₁ and K₂ equilibria,
 - → using [H⁺] = 8.80×10^{-7} M and [HL] = 0.050 0 M.

$$[H_{2}L^{+}] = \frac{[H^{+}][HL]}{K_{1}} = \frac{(8.80 \times 10^{-7})(0.050 \text{ }0)}{4.70 \times 10^{-3}} = 9.36 \times 10^{-6} \text{ M}$$
$$[L^{-}] = \frac{K_{2}[HL]}{[H^{+}]} = \frac{(1.80 \times 10^{-10})(0.050 \text{ }0)}{8.80 \times 10^{-7}} = 1.02 \times 10^{-5} \text{ M}$$

- Was the approximation [HL] \approx 0.050 0 M a good one?
 - → It certainly was, because $[H_2L^+]$ (9.36 × 10⁻⁶ M) and $[L^-]$ (1.02 × 10⁻⁵ M) are small in comparison with [HL] (≈ 0.050 0 M).
 - \rightarrow Nearly all the leucine remained in the form HL.

$$HL \rightleftharpoons H^{+} + L^{-} \qquad K_{a} = K_{a2} = 1.80 \times 10^{-10} \qquad (10-8)$$
$$HL + H_{2}O \rightleftharpoons H_{2}L^{+} + OH^{-} \qquad K_{b} = K_{b2} = 2.13 \times 10^{-12} \qquad (10-9)$$

$$[H_{2}L^{+}] = \frac{[H^{+}][HL]}{K_{1}} = \frac{(8.80 \times 10^{-7})(0.050 \text{ 0})}{4.70 \times 10^{-3}} = 9.36 \times 10^{-6} \text{ M}$$
$$[L^{-}] = \frac{K_{2}[HL]}{[H^{+}]} = \frac{(1.80 \times 10^{-10})(0.050 \text{ 0})}{8.80 \times 10^{-7}} = 1.02 \times 10^{-5} \text{ M}$$

- Note also that [H₂L⁺] is nearly equal to [L⁻].
- This result confirms that Reactions 10-8 and 10-9 proceed equally, \rightarrow even though K_a is 84 times bigger than K_b for leucine.

• A summary of results for leucine is given here.

Solution	рН	$[H^{+}](M)$	$\left[H_{2}L^{+}\right]\left(M\right)$	[HL] (M)	[L ⁻] (M)
0.050 0 M H ₂ A 0.050 0 M HA ⁻	1.88 6.06	1.32×10^{-2} 8.80×10^{-7}	3.68×10^{-2} 9.36×10^{-6}	1.32×10^{-2} 5.00×10^{-2}	1.80×10^{-10} 1.02×10^{-5}
$0.050 0 \text{ M HA}^{2-}$	11.21	6.11×10^{-12}	2.13×10^{-12}	1.64×10^{-3}	4.84×10^{-2}

Simplified Calculation for the Intermediate Form

- Usually Equation 10-11 is a fair-to-excellent approximation.
- An even simpler form results from two conditions that usually exist.
- First, if $K_2F >> K_w$

 \rightarrow the second term in the numerator of Equation 10-11 can be dropped.

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_1 K_2 \mathrm{F} + K_1 K_{\mathrm{w}}}{K_1 + \mathrm{F}}}$$

• Then, if $K_1 << F$, the first term in the denominator also can be neglected.

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_1 K_2 \mathrm{F}}{K_1 + \mathrm{F}}}$$

Canceling F in the numerator and denominator gives

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_1 K_2 \mathrm{F}}{K_1 + \mathrm{F}}}$$

$$[\mathrm{H}^+] \approx \sqrt{K_1 K_2}$$
$$\log[\mathrm{H}^+] \approx \frac{1}{2} (\log K_1 + \log K_2)$$
$$-\log[\mathrm{H}^+] \approx -\frac{1}{2} (\log K_1 + \log K_2)$$

$$log(x^{1/2}) = \frac{1}{2} log x$$
$$log(xy) = log x + log y$$
$$log(x/y) = log x - log y$$

Intermediate form of diprotic acid:

$$pH \approx \frac{1}{2}(pK_1 + pK_2)$$
 (10-12)

- Equation 10-12 says that
 - → the pH of the intermediate form of a diprotic acid is close to midway between pK_1 and pK_2 , regardless of the formal concentration.

10.4 Which is the principal species?

- We sometimes must identify which species of acid, base, or intermediate predominates under given conditions.
- For example, "What is the principal form of benzoic acid at pH 8?"

$$\bigvee$$
 CO₂H $pK_a = 4.20$ $pH = pK_a + \log \frac{[A^-]}{[HA]}$
Benzoic acid

- pK_a for benzoic acid is 4.20.
- So, at pH 4.20,

 \rightarrow there is a 1:1 mixture of benzoic acid (HA) and benzoate ion (A⁻).

• At $pH = pK_a + 1$ (= 5.20),

 \rightarrow the quotient [A⁻]/[HA] is 10:1.

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

- At pH = pK_a + 2 (= 6.20),
 → the quotient [A⁻]/[HA] is 100:1.
- As pH increases,

 \rightarrow the quotient [A-]/[HA] increases still further.

For a monoprotic system,

- When pH > pK_a
 → the basic species A⁻ is the predominant form
- When pH < pK_a PH Major species $< pK_a$ HA $> pK_a$ A⁻
 - → the acidic species, HA, is the predominant form.
- The predominant form of benzoic acid at pH 8
 - \rightarrow is the benzoate anion, C₆H₅CO₂⁻

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

> рк _а		A	
	$\leftarrow \frac{More}{acidic} p$	$\begin{array}{c} More \\ basic \end{array} \rightarrow$	
Predominant form	НА	A	
	1		
	p/	K _a	

For polyprotic systems,

- Our reasoning is similar,
 → but there are several values of pK_a.
- Consider oxalic acid, H_2Ox , with $pK_1 = 1.25$ and $pK_2 = 4.27$.
- At pH = pK₁, \rightarrow [H₂Ox] = [HOx⁻].
- At pH = pK₂, \rightarrow [HOx⁻] = [Ox²⁻].

рН	Major species
рН < р <i>К</i> 1	H ₂ A
$pK_1 < pH < pK_2$	HA ⁻
$pH > pK_2$	A ²⁻

→ The chart in the margin
 shows the major species in each
 pH region.

10.5 Fractional Composition Equations

 Derive equations that give the fraction of each species of acid or base at a given pH.

1) Monoprotic Systems

- Our goal is to find an expression for the fraction of an acid in each form (HA and A-) as a function of pH.
- We can do this by combining the equilibrium constant with the mass balance.
- Consider an acid with formal concentration F:

$$HA \rightleftharpoons^{K_{a}} H^{+} + A^{-} \qquad K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

Mass balance: $F = [HA] + [A^{-}]$

$$HA \rightleftharpoons^{K_{a}} H^{+} + A^{-} \qquad K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$Mass \text{ balance:} \quad F = [HA] + [A^{-}]$$

$$K_{a} = \frac{[H^{+}](F - [HA])}{[HA]}$$

$$[HA] = \frac{[H^{+}]F}{[H^{+}] + K_{a}}$$

• The fraction of molecules in the form HA is called α_{HA} .

$$\alpha_{\rm HA} = \frac{[\rm HA]}{[\rm HA] + [\rm A^-]} = \frac{[\rm HA]}{\rm F}$$

Fraction in the form HA:

$$\alpha_{\rm HA} = \frac{[{\rm HA}]}{{\rm F}} = \frac{[{\rm H}^+]}{[{\rm H}^+] + K_{\rm a}}$$

.

In a similar manner,

• the fraction in the form A⁻, designated α_{A-} , can be obtained:

Fraction in the form A^- :

$$\alpha_{A^{-}} = \frac{[A^{-}]}{F} = \frac{K_a}{[H^{+}] + K_a}$$

 α_{HA} = fraction of species in the form HA α_{A^-} = fraction of species in the form A⁻

 $\alpha_{HA} + \alpha_{A^-} = 1$

See Fig 10-3

- Figure 10-3 shows α_{HA} and α_{A-} for a system with pK_a = 5.00.
- At low pH,
- \rightarrow almost all of the acid is in the form HA.
- At high pH,
- \rightarrow almost everything is in the form A⁻.

2) Diprotic Systems

 The derivation of fractional composition equations for a diprotic system follows the same pattern used for the monoprotic system.

$$H_{2}A \rightleftharpoons^{K_{1}} H^{+} + HA^{-}$$

$$HA^{-} \rightleftharpoons^{K_{2}} H^{+} + A^{2-}$$

$$K_{1} = \frac{[H^{+}][HA^{-}]}{[H_{2}A]} \Rightarrow \underline{[HA^{-}]} = [H_{2}A]\frac{K_{1}}{[H^{+}]}$$

$$K_{2} = \frac{[H^{+}][A^{2-}]}{[HA^{-}]} \Rightarrow \underline{[A^{2-}]} = [HA^{-}]\frac{K_{2}}{[H^{+}]} = [H_{2}A]\frac{K_{1}K_{2}}{[H^{+}]^{2}}$$

Mass balance: $F = [H_2A] + [HA^-] + [A^{2-}]$

$$F = [H_2A] + \frac{K_1}{[H^+]} [H_2A] + \frac{K_1K_2}{[H^+]^2} [H_2A]$$

$$F = [H_2A] \left(1 + \frac{K_1}{[H^+]} + \frac{K_1K_2}{[H^+]^2}\right) = [H_2A] \frac{[H^+]^2 + [H^+]K_1 + K_1K_2}{[H^+]^2}$$

- For a diprotic system,
 - \rightarrow we designate the fraction in the form H₂A as α_{H2A} ,
 - \rightarrow the fraction in the form HA⁻ as α_{HA-}
 - \rightarrow and the fraction in the form A²⁻ as α_{A2-} .
- From the definition of α_{H2A} ,
 - \rightarrow we can write,

Fraction in the form
$$H_2A$$
: $\alpha_{H_2A} = \frac{[H_2A]}{F} = \frac{[H^+]^2}{[H^+]^2 + [H^+]K_1 + K_1K_2}$

In a similar manner,

 \rightarrow we can derive the following equations:

Fraction in the form HA^{-} : $\alpha_{HA^{-}} = \frac{[HA^{-}]}{F} = \frac{K_{1}[H^{+}]}{[H^{+}]^{2} + [H^{+}]K_{1} + K_{1}K_{2}}$ Fraction in the form $A^{2^{-}}$: $\alpha_{A^{2^{-}}} = \frac{[A^{2^{-}}]}{F} = \frac{K_{1}K_{2}}{[H^{+}]^{2} + [H^{+}]K_{1} + K_{1}K_{2}}$

Fraction in the form H_2A : $\alpha_{H_2A} = \frac{[H_2A]}{F} = \frac{[H^+]^2}{[H^+]^2 + [H^+]K_1 + K_1K_2}$

 $\alpha_{H_2A} = \text{fraction of species in the form } H_2A$ $\alpha_{HA^-} = \text{fraction of species in the form } HA^ \alpha_{A^{2-}} = \text{fraction of species in the form } A^{2-}$ $\alpha_{H_2A} + \alpha_{HA^-} + \alpha_{A^{2-}} = 1$