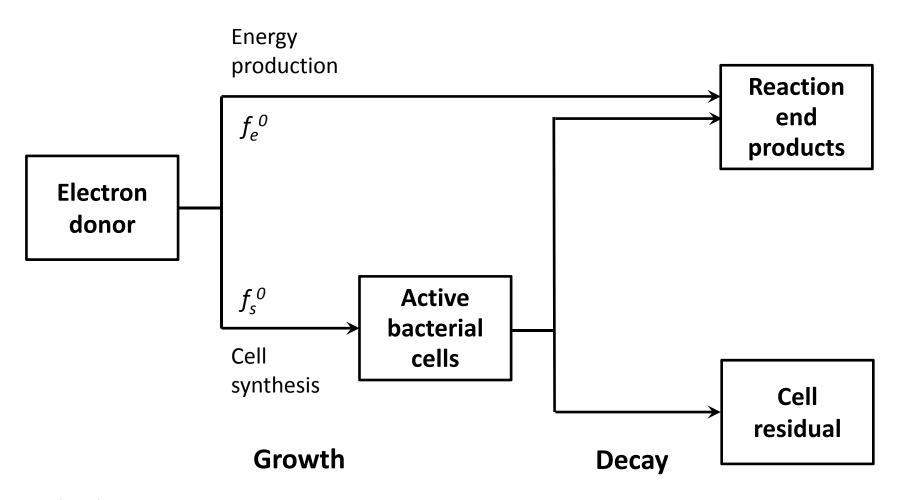
Stoichiometry of Biochemical Reactions I

Today's lecture

- Biochemical reaction stoichiometry
- Cell yield
- Half reactions

Stoichiometry


- "An aspect of chemistry concerned with mole relationships among reactants and products"
- Based on mass conservation
- Balancing chemical reactions

Cell formula

Most common: C₅H₇O₂N

COD for a bacterial cell?

Substrate partitioning

Textbook Fig. 2.1

Cell yield

True yield, Y
 Y = (g cells produced) / (g substrate utilized)

• Conversion of f_s^0 to Y:

$$Y = f_s^0 \frac{(M_c \ g \ cells/mole \ cells)}{(n_e \ e^- \ eq/mole \ cells)(8 \ g \ COD/e^- \ eq \ donor)}$$

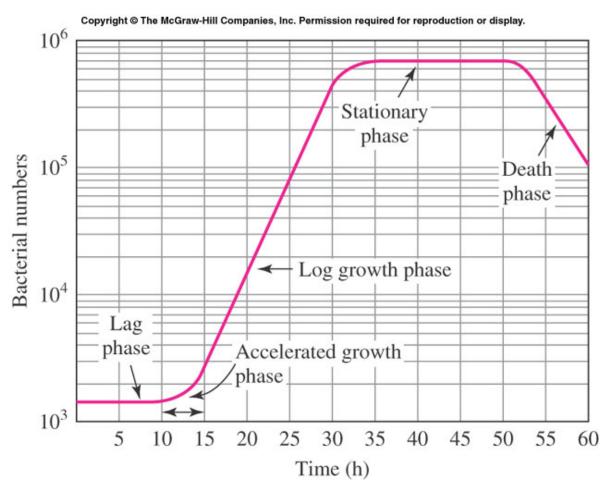
Microbial growth rate

$$\frac{dX_a}{dt} = Y \left(\frac{-dS}{dt}\right) - bX_a$$
growth decay

 X_a = active biomass concentration [M/L³]

S = substrate concentration [M/L³]

Y = true yield [M/M]


b = decay rate [1/T]

Net yield

• Net yield, Y_n $Y_n = (g net cell growth) / (g substrate utilized)$

$$= \frac{dX_a / dt}{-dS / dt}$$
$$= Y - b \frac{X_a}{-dS / dt}$$

Net yield

Log (exponential) growth:

Stationary phase:

Death phase:

Bacterial growth curve for pure culture

Net yield

• Electron partitioning considering net yield, Y_n :

$$f_s^0 \rightarrow f_s$$
 $(f_s < f_s^0)$
 $f_e^0 \rightarrow f_e$ $(f_e > f_e^0)$

still,
$$f_s + f_e = 1$$

Energy reactions

Aerobic oxidation:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
, $\Delta G = -2880 \text{ kJ/mole}$ glucose

VS.

Sulfate reduction:

$$2C_6H_{12}O_6 + 6SO_4^{2-} \rightarrow 12CO_2 + 12H_2O + 3H_2S + 3 HS^-,$$

 $\Delta G = -492 \text{ kJ/mole glucose}$

Half reactions

- For complex biochemical redox reactions, it is easier to use half reaction approach
- The oxidation reaction for an electron donor and the reduction reaction for an electron acceptor can be splitted
- Usually written as a reduction reaction (see [Table 2.2] & [Table 2.3])

Half reactions

- **Step 1** Write oxidized form on the left and reduced form on the right
- **Step 2** Add other species involved in the reaction
- **Step 3** Balance the reaction for all elements except for oxygen and hydrogen
- Step 4 Balance oxygen using water
- Step 5 Balance hydrogen using H⁺
- Step 6 Balance charge using e
- **Step 7** Convert the equation to the e⁻-equivalent form