Microbial kinetics

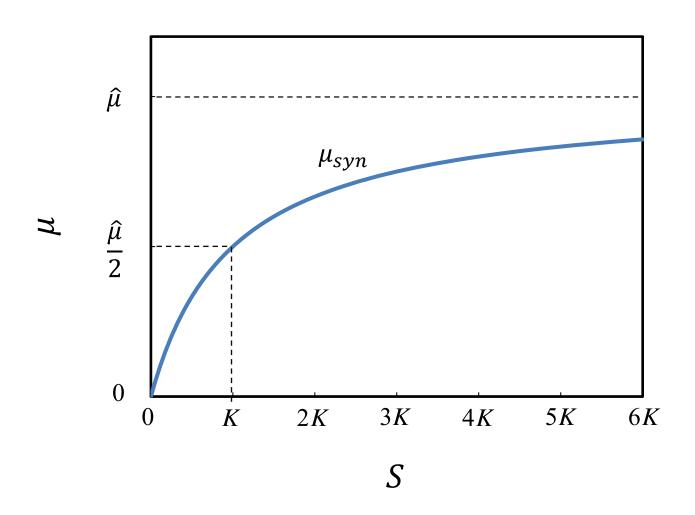
Today's lecture

- Monod kinetics
- Addressing decay
- Rate of substrate utilization associated with microbial growth

Monod equation

$$\mu_{syn} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{syn} = \hat{\mu} \frac{S}{K + S}$$

where μ_{syn} = specific growth rate due to synthesis (T^{-1})


 X_a = concentration of active biomass $(M_{\chi}L^{-3})$

 $S = \text{concentration of the rate-limiting substrate } (M_S L^{-3})$

 $\hat{\mu}$ = maximum specific growth rate (T^{-1})

 $K = \text{half saturation coefficient } (M_s L^{-3})$

Monod equation

Typical values for K

Process	K (mg substrate/L)
Aerobic:	
organic mixtures	50-150 mg COD/L
single organics	1-10 mg COD/L
nitrification	0.4-2 mg NH ₃ -N/L
Anaerobic:	
denitrification	0.06-0.20 mg NO ₃ ⁻ -N/L
methane fermentation:	
acetate, propionate	600-900 mg COD/L
sewage sludge	2000-3000 mg COD/L

Growth kinetics with decay

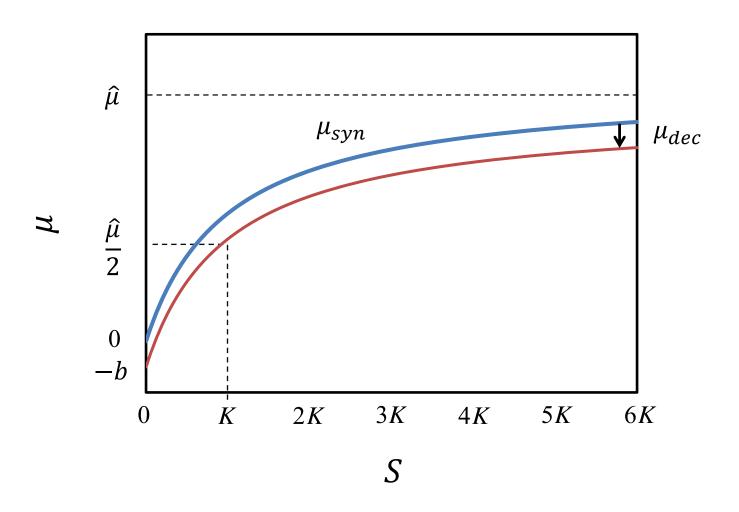
 As discussed in the previous lecture, we assume decay is proportional to cell biomass

$$\left(\frac{dX_a}{dt}\right)_{decay} = -bX_a$$

in the form of specific growth rate,

$$\mu_{dec} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{decay} = -b$$

where μ_{dec} = specific growth rate due to decay (T^{-1}) b = decay coefficient (T^{-1})


Overall bacterial growth kinetics

(Net growth) = (New growth) + (Decay)

$$\mu = \frac{1}{X_a} \cdot \frac{dX_a}{dt} = \mu_{syn} + \mu_{dec} = \hat{\mu} \frac{S}{K + S} - b$$

where μ = net specific growth rate (T^{-1})

Growth kinetics with decay

More on decay

$$\mu_{dec} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{decay} = -b$$

- Most fraction ($f_d \approx 0.8$) is oxidized
- The other fraction $(1-f_d \approx 0.2)$ is accumulated as inert biomass

Rate of oxidation (respiration):
$$\left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{resp} = -f_d b$$

Rate of conversion to inert biomass:

$$\left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{inert} = -\frac{1}{X_a} \cdot \frac{dX_i}{dt} = -(1 - f_d)b$$

$$X_i = \text{inert biomass } (M_x L^{-3})$$

Substrate utilization rate

Recall that,
$$Y = \frac{(g \ cells \ produced)}{(g \ substrate \ utilized)} = \frac{(dX_a/dt)_{syn}}{-dS/dt}$$

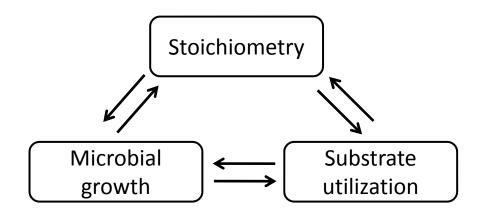
and

$$\mu_{syn} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{syn} = \hat{\mu} \frac{S}{K + S}$$

So Monod equation can be also written as:

$$\frac{dS}{dt} = -\frac{1}{Y} \left(\frac{dX_a}{dt} \right)_{Sym} = -\frac{\hat{\mu}}{Y} \frac{S}{K + S} X_a$$

Substrate utilization rate


Substrate utilization rate, $r_{ut} [M_s L^{-3} T^{-1}]$

$$r_{ut} = \frac{dS}{dt} = -\frac{\hat{q}S}{K+S}X_a$$

 $\hat{q} = \hat{\mu}/Y$, max. specific rate of substrate utilization $(M_s M_x^{-1} T^{-1})$

Recall that,

$$Y = f_s^0 \frac{M_c}{n_e \cdot (8 g COD/e^- eq)}$$

