Microbial kinetics in reactors I

Today's lecture

- Master equations and key trends
- Including inert biomass
- Observed yield
- Soluble microbial products

CSTR, Monod: Master equations

Assumption:

- (negligible influent biomass)

$$S = K \frac{1 + b\theta}{Y\hat{q}\theta - (1 + b\theta)}$$

$$X_a = Y \frac{S^0 - S}{1 + h\theta}$$

HRT vs. SRT

- HRT: Hydraulic Retention Time; the average time the water stays in the system
- SRT: Soilds Retention Time (or mean cell residence time, MCRT); the average time the biomass stays in the system

θ_x vs. S: key trends

- 1) $\Theta_x \le \Theta_x^{min}$: washout
- 2) $\Theta_x \to \infty$: $S = S_{min}$
- 3) For $\Theta_x^{min} < \Theta_x$, S decreases with increase in Θ_x , but X_a peaks at some point

Including inert biomass

Influent contains some non-biodegradable, particulate organics: this is included when you measure VSS

Recall:

$$\left(\frac{1}{X_a}\frac{dX_a}{dt}\right)_{inert} = -\frac{1}{X_a}\frac{dX_i}{dt} = -(1 - f_d)b$$

Including inert biomass

Solution for inert biomass: $X_i = X_i^0 + X_a(1 - f_d)b\theta_x$

Solution for total VSS:

$$X_v = X_i + X_a = X_i^0 + Y(S^0 - S) \frac{1 + (1 - f_d)b\theta_x}{1 + b\theta_x}$$

Observed yield

The VSS in a CSTR is calculated as:

The net yield in the CSTR is:
$$Y \frac{1 + (1 - f_d)b\theta_x}{1 + b\theta_x}$$

This value is more often called as **Observed Yield** (Y_{obs}) .

Soluble microbial products (SMP)

- Cell components that released during cell lysis, diffuse through the cell membrane, are lost during synthesis, or are excreted for some purpose
- Does not include intermediates of degradation pathway
- MW = 100s 1000s
- Biodegradable

Significance of SMP

- Appear in all cases
- Constitute the majority of the effluent COD & BOD in many cases
- Can complex metals, foul membranes, & cause color or foaming

Two types of SMP

 UAP (substrate-Utilization-Associated Products): produced directly during substrate metabolism

$$r_{UAP} = -k_1 r_{ut}$$
 $r_{UAP} = rate of UAP-formation [M_pL^{-3}T^{-1}]$ $k_1 = UAP-formation coefficient [M_pM_s^{-1}]$

 BAP (Biomass-Associated Products): formed directly from biomass as part of maintenance and decay

$$r_{BAP} = k_2 X_a$$
 r_{BAP} = rate of BAP-formation [M_pL⁻³T⁻¹] k_2 = BAP-formation coefficient [M_pM_x⁻¹T⁻¹]

SMP biodegradation

 Assume both UAP and BAP follow Monod kinetics with different parameters:

$$r_{deg-UAP} = -\frac{\hat{q}_{UAP}UAP}{K_{UAP} + UAP}X_a$$

$$r_{deg-BAP} = -\frac{\hat{q}_{BAP}BAP}{K_{BAP} + BAP}X_a$$

SMP in a CSTR (a Chemostat)

Steady-state mass balance for UAP & BAP:

$$0 = -k_1 r_{ut} V - \frac{\hat{q}_{UAP} UAP}{K_{UAP} + UAP} X_a V - Q \cdot UAP$$

$$0 = k_2 X_a V - \frac{\hat{q}_{BAP} BAP}{K_{BAP} + BAP} X_a V - Q \cdot BAP$$

Solution for UAP & BAP in Eqs. [3.38] & [3.39]