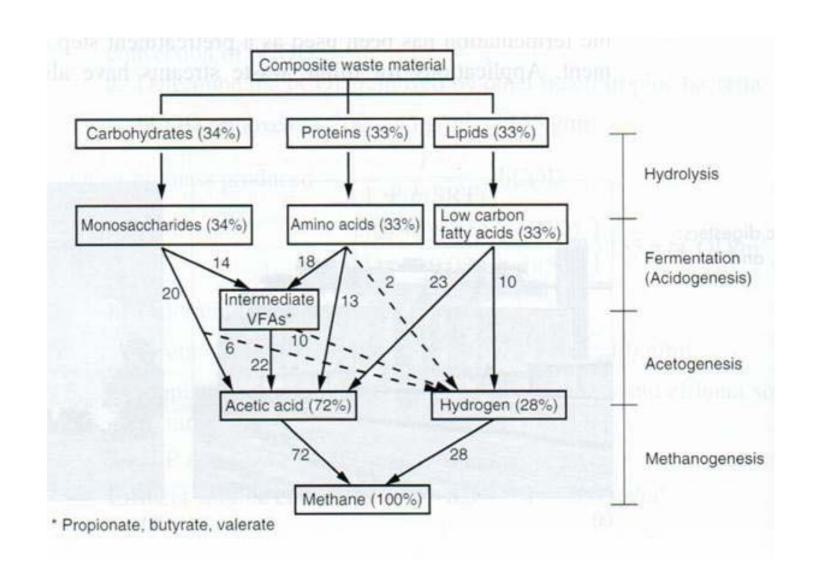
Anaerobic processes Tertiary treatment

Applications

- Treatment of waste sludge & high-strength organic wastes
- Pretreatment step for conventional biological treatment

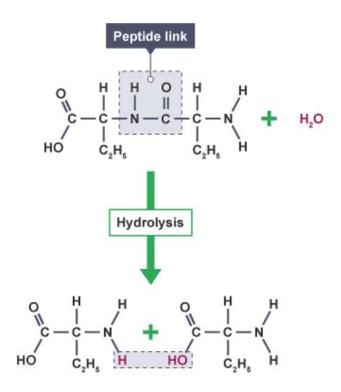

Advantage

- Low biomass yield
- Energy production in the form of methane (of recent interest!)
 - WWTP -- ~3% of total energy cost in USA
 - Target on energy positive treatment of wastewater

Disadvantage

Effluent quality usually not as good as aerobic treatment

Hydrolysis


- Particulates ---- → Soluble molecules ---- → Monomers
- By extracellular enzymes

Acidogenesis (fermentation)

- Use: sugars, amino acids, fatty acids (both e- donor & acceptor)
- Produce: VFAs, CO₂, H₂

Acetogenesis

- Use: VFAs other than acetate
- Produce: acetate, H₂, CO₂

Methanogenesis

- By methanogens (belongs to domain <u>Archaea</u>)
- Two groups of methanogens
 - aceticlastic methanogens: <u>acetate → CH₄ + CO₂</u>
 - hydrogenotrophic methanogens: H₂ + CO₂ → CH₄
- − In anaerobic digestion process, ~72% methane from acetic acid & ~28% from H_2 (→ gas production of ~65% CH_4 & ~35% CO_2)

Syntrophic relationship

- Methanogens acidogens & acetogens
 - Acidogens & acetogens: produce H₂, acetate, etc.
 - Methanogens: cleans up the acido/acetogenesis end products
- "Interspecies hydrogen transfer"

COD balance for anaerobic process

(COD utilized) = (Biomass COD) + (Methane COD)

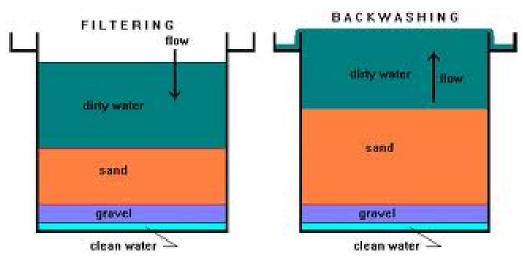
- No e⁻ acceptor consumed!
- COD of methane = 2.86 g COD/L CH_4 (@ 0°C, 1 atm)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Process kinetics

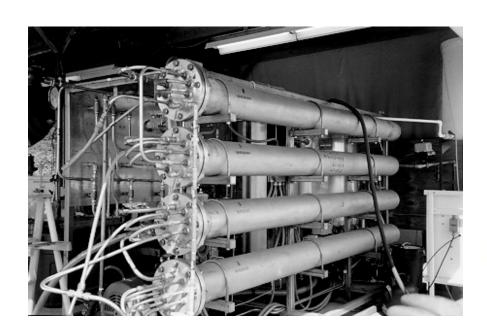
- Low yield coefficients
 - Low energy gain by chemical transformation
 - Fermentation: Y \sim 0.06 g VSS/g COD; b \sim 0.02 d⁻¹
 - Methanogenesis: Y ~ 0.03 g VSS/g COD; b ~ 0.008 d⁻¹
- Consider two steps:
 - Hydrolysis
 - Soluble substrate utilization for fermentation and methanogenesis
 - Methanogenesis the rate-limiting step
- High SRT is needed (around 40 d) due to slow degradation rate

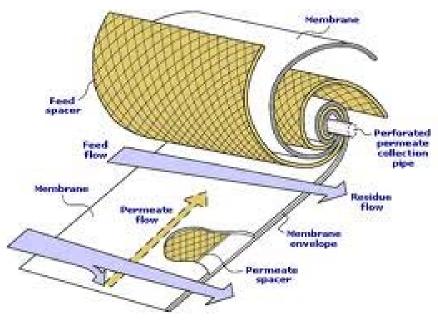
Process stability


- Kinetics of VFA production is faster than utilization (methanogenesis)
- At steady state, sufficient methanogen population is established to maintain low VFA concentration (<200 g/m³) & pH≥7.0
- Unstable digester operation may develop under transient loading conditions (VFA production > utilization): VFA accumulation & pH drop
- Low pH leads to decline in methanogenic activity: process failure
- Methanogenic inhibition can also occur by acetate accumulation (acetate conc. $> 3000 \text{ g/m}^3$)

Tertiary (advanced) treatment

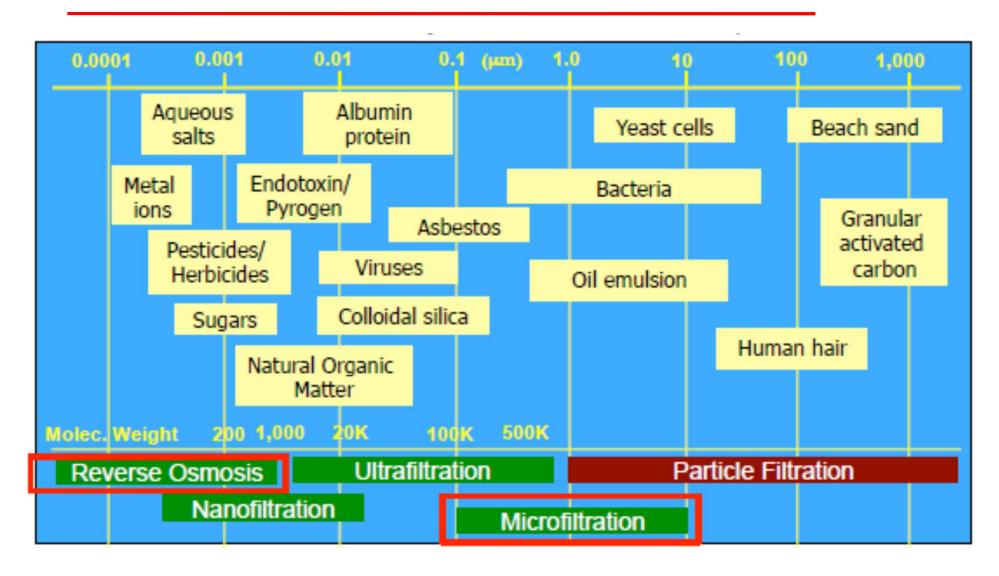
- Goal: to improve the quality of the secondary treatment effluent
- Many of the Korean wastewater treatment plants now have advanced treatment process
- Further BOD and SS removal, nutrient removal, TDS removal, or the removal of refractory organic compounds
- Different processes can be used depending on the major target


Tertiary – Granular filtration


- Additional removal of SS
- Sand is most frequently used
- Backwash needed when effluent quality degrades or the filter clogs

Tertiary – Membrane filtration

- Additional removal of SS
- Getting economically viable by advances in membrane techniques



http://www.clu-in.org

http://www.onlinembr.info

Tertiary – Membrane filtration

Tertiary – Chemical P removal

- Use chemicals (ferric chloride, alum, lime, ...) to precipitate P from secondary effluent
 - Using ferric chloride:

$$FeCl_3 + HPO_4^{2-} \rightleftharpoons FePO_4 \downarrow + H^+ + 3Cl^-$$

Using alum

$$Al_2(SO_4)_3 + 2HPO_4^{2-} \rightleftharpoons 2AlPO_4 \downarrow +2H^+ + 3SO_4^{2-}$$

– Using lime:

$$5Ca(OH)_2 + 3HPO_4^{2-} \rightleftharpoons Ca_5(PO_4)_3OH \downarrow +3H_2O + 6OH^{-}$$

Tertiary – Granular activated carbon adsorption

Removal of refractory organic compounds

http://www.chemvironcarbon.com