Neural Networks - Exercise

PROBLEM: Figure 1 shows a multilayer feed-forward neural network. Let the learning rate be 0.9 The initial weight and bias values are given in Table 1, along with the first training sample, X = (1, 0, 1), whose output is 1. (Han and Kamber, 2001)

Figure 1: An example of a multilayer feed-forward neural network

Initial input, weight, and bias values.

x ₁	x_2	<i>x</i> ₃	W14	w_{15}	w ₂₄	w ₂₅	w ₃₄	w ₃₅	W46	w ₅₆	θ_4	θ_3	θ_{6}
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Table 1: Initial input, weight, and bias values

Perform the calculations for backpropagation for the given first training sample X.

FORMULAS:

 I_j : net input to unit j

$$I_{j} = \sum w_{ij} O_{i} + \theta_{j}$$

where:

 \mathcal{W}_{ij} is the weight of the connection from unit i in the previous layer to unit j

 O_i is the output of unit i from the previous layer

 $heta_i$ is the bias (threshold) of the unit j

 O_i : output of unit j

$$O_{j} = \frac{1}{1 + e^{-I_{j}}}$$

where:

 I_j is the net input to unit j

 Err_j : error of unit j

Case A: unit j is in the output layer
$$Err_{j} = O_{j} * (1 - O_{j}) * (T_{j} - O_{j})$$

 O_j is the actual output of unit j

 T_j is the true output of unit j (based on known value from the training sample)

Case B: unit j is in a hidden layer
$$Err_{j} = O_{j} * (1 - O_{j}) * \sum_{k} Err_{k} w_{jk}$$

where:

 O_j is the actual output of unit j

 E_{FF_k} is the error of unit k in the next layer

 \mathcal{W}_{jk} is the weight of the connection from unit j to unit k in the next layer

```
\Delta_{\mathcal{W}_{ij}}: change in weight W_{ij}
```

$$\Delta_{\mathcal{W}_{ij}} = \ell * Err_{j} * O_{i}$$

where:

 ℓ is the learning rate (typically between 0.0 and 1.0) Err_j is the error of unit j

 O_i is the actual output of unit i

$$New = Old W_{ij} + \Delta W_{ij}$$

 $\Delta \theta_j$: change in bias θ_j

$$\Delta \theta_j = \ell * Err_j$$

where:

 ℓ is the learning rate (typically between 0.0 and 1.0) Err_j is the error of unit j

$$\theta_y = \theta_y + \Delta \theta_y$$

Neural Networks - Exercise

PROBLEM: Figure 1 shows a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight and bias values are given in Table 1, along with the training sample, Y = (-1, 1, 0), whose output is 1.

Figure 1: multilayer feed-forward neural network

Table 1: weight, and bias values

W46	W56	W14	W15	W24	W25	W34	W35	Θ6	Θ5	Θ4
-0.261	-0.138	0.192	-0.306	0.4	0.1	-0.508	0.194	0.218	0.194	-0.408

Perform the calculations for backpropagation for the given training sample Y.

FORMULAS:

 I_j : net input to unit j $I_{j} = \sum w_{ij} O_{i} + \theta_{j}$

where:

 \mathcal{W}_{ij} is the weight of the connection from unit i in the previous layer to unit j

 O_i is the output of unit i from the previous layer

 θ_j is the bias (threshold) of the unit j

 O_j : output of unit j

Use Sign function

 Err_j : error of unit j

Case A: unit j is in the output layer $Err_{j} = O_{j} * (1 - O_{j}) * (T_{j} - O_{j})$

where:

 O_j is the actual output of unit j

 $T_{_{J}}$ is the true output of unit j (based on known value from the training sample)

Case B: unit j is in a hidden layer

 $Err_j = O_j * (1 - O_j) * \sum_k Err_k w_{jk}$

where:

 O_j is the actual output of unit j

 Err_k is the error of unit k in the next layer

 \mathcal{W}_{jk} is the weight of the connection from unit j to unit k in the next layer

 $\Delta_{\mathcal{W}_{ij}}$: change in weight \mathcal{W}_{ij}

$$\Delta_{\mathcal{W}_{ij}} = \ell * Err_{j} * O_{i}$$

where:

 ℓ is the learning rate (typically between 0.0 and 1.0) E_{rr} , is the error of unit j

 O_i is the actual output of unit i

$$W_{ij} = W_{ij} + \Delta W_{ij}$$

 $\Delta \theta_j$: change in bias θ_j

$$\Delta \theta_j = \ell * Err_j$$

where:

 ℓ is the learning rate (typically between 0.0 and 1.0) $E_{\it TT_j}$ is the error of unit j

$$\theta_y = \theta_y + \Delta \theta_y$$