Neural Networks - Exercise **PROBLEM:** Figure 1 shows a multilayer feed-forward neural network. Let the learning rate be 0.9 The initial weight and bias values are given in Table 1, along with the first training sample, X = (1, 0, 1), whose output is 1. (Han and Kamber, 2001) Figure 1: An example of a multilayer feed-forward neural network Initial input, weight, and bias values. | x ₁ | x_2 | <i>x</i> ₃ | W14 | w_{15} | w ₂₄ | w ₂₅ | w ₃₄ | w ₃₅ | W46 | w ₅₆ | θ_4 | θ_3 | θ_{6} | |----------------|-------|-----------------------|-----|----------|-----------------|-----------------|-----------------|-----------------|------|-----------------|------------|------------|--------------| | 1 | 0 | 1 | 0.2 | -0.3 | 0.4 | 0.1 | -0.5 | 0.2 | -0.3 | -0.2 | -0.4 | 0.2 | 0.1 | Table 1: Initial input, weight, and bias values Perform the calculations for backpropagation for the given first training sample X. ## FORMULAS: I_j : net input to unit j $$I_{j} = \sum w_{ij} O_{i} + \theta_{j}$$ where: \mathcal{W}_{ij} is the weight of the connection from unit i in the previous layer to unit j O_i is the output of unit i from the previous layer $heta_i$ is the bias (threshold) of the unit j O_i : output of unit j $$O_{j} = \frac{1}{1 + e^{-I_{j}}}$$ where: I_j is the net input to unit j Err_j : error of unit j Case A: unit j is in the output layer $$Err_{j} = O_{j} * (1 - O_{j}) * (T_{j} - O_{j})$$ O_j is the actual output of unit j T_j is the true output of unit j (based on known value from the training sample) Case B: unit j is in a hidden layer $$Err_{j} = O_{j} * (1 - O_{j}) * \sum_{k} Err_{k} w_{jk}$$ where: O_j is the actual output of unit j E_{FF_k} is the error of unit k in the next layer \mathcal{W}_{jk} is the weight of the connection from unit j to unit k in the next layer ``` \Delta_{\mathcal{W}_{ij}}: change in weight W_{ij} ``` $$\Delta_{\mathcal{W}_{ij}} = \ell * Err_{j} * O_{i}$$ where: ℓ is the learning rate (typically between 0.0 and 1.0) Err_j is the error of unit j O_i is the actual output of unit i $$New = Old W_{ij} + \Delta W_{ij}$$ $\Delta \theta_j$: change in bias θ_j $$\Delta \theta_j = \ell * Err_j$$ where: ℓ is the learning rate (typically between 0.0 and 1.0) Err_j is the error of unit j $$\theta_y = \theta_y + \Delta \theta_y$$ ## Neural Networks - Exercise **PROBLEM:** Figure 1 shows a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight and bias values are given in Table 1, along with the training sample, Y = (-1, 1, 0), whose output is 1. Figure 1: multilayer feed-forward neural network Table 1: weight, and bias values | W46 | W56 | W14 | W15 | W24 | W25 | W34 | W35 | Θ6 | Θ5 | Θ4 | |--------|--------|-------|--------|-----|-----|--------|-------|-------|-------|--------| | -0.261 | -0.138 | 0.192 | -0.306 | 0.4 | 0.1 | -0.508 | 0.194 | 0.218 | 0.194 | -0.408 | Perform the calculations for backpropagation for the given training sample Y. ## FORMULAS: I_j : net input to unit j $I_{j} = \sum w_{ij} O_{i} + \theta_{j}$ where: \mathcal{W}_{ij} is the weight of the connection from unit i in the previous layer to unit j O_i is the output of unit i from the previous layer θ_j is the bias (threshold) of the unit j O_j : output of unit j Use Sign function Err_j : error of unit j Case A: unit j is in the output layer $Err_{j} = O_{j} * (1 - O_{j}) * (T_{j} - O_{j})$ where: O_j is the actual output of unit j $T_{_{J}}$ is the true output of unit j (based on known value from the training sample) Case B: unit j is in a hidden layer $Err_j = O_j * (1 - O_j) * \sum_k Err_k w_{jk}$ where: O_j is the actual output of unit j Err_k is the error of unit k in the next layer \mathcal{W}_{jk} is the weight of the connection from unit j to unit k in the next layer $\Delta_{\mathcal{W}_{ij}}$: change in weight \mathcal{W}_{ij} $$\Delta_{\mathcal{W}_{ij}} = \ell * Err_{j} * O_{i}$$ where: ℓ is the learning rate (typically between 0.0 and 1.0) E_{rr} , is the error of unit j O_i is the actual output of unit i $$W_{ij} = W_{ij} + \Delta W_{ij}$$ $\Delta \theta_j$: change in bias θ_j $$\Delta \theta_j = \ell * Err_j$$ where: ℓ is the learning rate (typically between 0.0 and 1.0) $E_{\it TT_j}$ is the error of unit j $$\theta_y = \theta_y + \Delta \theta_y$$