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457.212 Statistics for Civil & Environmental Engineers 

In-Class Material: Class 26 (Final) 

Introduction to Bayesian Approach (A&T: 9.1-9.3) 

 
 
 Given: Sample data set {𝑥ଵ, 𝑥ଶ, … , 𝑥௡} assumed to follow a distribution model 𝑓௑(𝑥; 𝜃) 

 Question: Considering the distribution parameter 𝜃 as a random variable, what is 𝑓஀(𝜃)? 

  Bayesian parameter estimation 

 
 
1. Bayes Rule and Bayesian Parameter Estimation 

(a) Bayes rule (Thomas Bayes, 1763) 
 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)

𝑃(𝐵)
𝑃(𝐴) 

 
Update our degree of b_______ on the event 𝐴 based on new 
evidence 𝐵 
 

(b) Bayesian parameter estimation? 
 
In non-Bayesian approaches, the unknown parameters of a probability distribution, e.g. 
𝜇, 𝜎, 𝜆, 𝜁… are considered d____________ quantities. 
 
The uncertainty in their estimation has been acknowledged, but in terms of a ________ 
interval. 
 
The Bayesian approach: any uncertainty quantity is treated as a __________ 
__________  Rules of p________ are used to assess and analyze all types of 
uncertainties, i.e. inherent randomness, model and measurement errors, and statistical 
uncertainties. 
 
Following the Bayesian approach, how to find the distribution of the unknown/uncertain 
parameter 𝜃 in 𝑓௑(𝑥; 𝜃), i.e. 𝑓௵(𝜃) based on samples {𝑥ଵ, 𝑥ଶ, … , 𝑥௡}? 
 

2. Bayesian Parameter Estimation 
 

(a) Bayesian updating formula 
 
Let us define the events appearing in Bayes rule as follows: 
 
 Target event: 𝐴 = {𝜃 < Θ ≤ 𝜃 + 𝑑𝜃} 
 Evidence: 𝐵 = ⋂ 𝐸௜

௡
௜ୀଵ  

 
Now, the Bayes rule becomes 
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𝑃(𝜃 < Θ ≤ 𝜃 + 𝑑𝜃| ∩௜ୀଵ
௡ 𝐸௜) =

𝑃(⋂ 𝐸௜
௡
௜ୀଵ |𝜃 < Θ ≤ 𝜃 + 𝑑𝜃)

𝑃൫⋂ 𝐸௜
௡
௜ୀଵ ൯

𝑃(𝜃 < Θ ≤ 𝜃 + 𝑑𝜃) 

 
Using the PDF definition, 

𝑓஀(𝜃| ∩௜ୀଵ
௡ 𝐸௜)𝑑𝜃 =

𝑃(∩௜ୀଵ
௡ 𝐸௜|Θ = 𝜃) 

𝑃(∩௜ୀଵ
௡ 𝐸௜)

𝑓஀(𝜃)𝑑𝜃 

 
Dividing by 𝑑𝜃 and introducing new notations, we obtain the Bayesian updating formula 
 

𝑓஀
ᇱᇱ(𝜃) = 𝑐 ⋅ 𝐿(𝜃) ⋅ 𝑓஀

ᇱ(𝜃) 
 
where 
 
 𝐿(𝜃) ∝ 𝑃(∩௜ୀଵ

௡ 𝐸௜|Θ = 𝜃) is “Likelihood Function,” e.g. ∏ 𝑓௑(𝑥௜; 𝜃)௡
௜ୀଵ  

 𝑓஀
ᇱ (𝜃) is the “Prior Distribution” ~ Degree of belief before ∩௜ୀଵ

௡ 𝐸௜ occurs (or assumed) 
 𝑓஀

ᇱᇱ(𝜃) is the “Posterior Distribution” ~ Updated degree of belief after ∩௜ୀଵ
௡ 𝐸௜ 

 𝑐 is the normalizing factor (to make 𝑓஀
ᇱᇱ(𝜃) a valid PDF) 

𝑐 = ൥ න 𝐿(𝜃)𝑓஀
ᇱ(𝜃)𝑑𝜃

ஶ

ିஶ

൩

ିଵ

 

 
  

 The sharpness of the curve indicates the information content: the sharper, the more 
information 

 The posterior distribution is generally ________ than the other two because it 
contains the information content of both curves 

 The posterior statistics can be computed using 𝑓஀
ᇱᇱ(𝜃), e.g. 

𝜇ఏ
ᇱᇱ = න 𝜃𝑓஀

ᇱᇱ(𝜃)𝑑𝜃
ஶ

ିஶ

  

(𝜎ఏ
ᇱᇱ)ଶ = න (𝜃 − 𝜇ఏ

ᇱᇱ)ଶ𝑓஀
ᇱᇱ(𝜃)𝑑𝜃

ஶ

ିஶ

 

 It is generally challenging to compute 𝑐, 𝜇ఏ
ᇱᇱ and 𝜎ఏ

ᇱᇱ, especially when 𝜃 → 𝜽 
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𝑓஀
ᇱ(𝜃) 

Prior 
distribution 

𝐿(𝜃) 
Likelihood 
function 

𝑓஀
ᇱᇱ(𝜃) 

Posterior 
distribution 
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(b) “Predictive” distribution 𝑓ሚ௑(𝑥) 
 
When the inherent variability in 𝑋 and the uncertainty in θ are combined, the 
“predictive” distribution of 𝑋 is given as 
 

𝑓ሚ௑(𝑥) = න 𝑓௑(𝑥; 𝜃)𝑓஀
ᇱᇱ(𝜃)𝑑𝜃

ஶ

ିஶ

 

 
(c) Choice of the prior distribution 𝑓஀

ᇱ (𝜃) 
 
The prior distribution reflects the state of knowledge about the parameter 𝜃 before 
observations are made. There are various available options including: 
 
 Subjective Prior: a distribution reflecting expert judgment and opinion. Determine 

mean and standard deviation, and then select a type of distribution considering the 
boundedness and/or possibility of using conjugate priors 

 Previous Posterior as Prior: the posterior distribution from a previous updating. 
(Note: sequential updating should give the same result as an updating based on 
the all data sets; the sequence does not affect the end result either) 

 Diffuse Prior: Flat distribution in the non-zero interval to avoid influence on the 
posterior 

 Non-informative Prior: prior distribution reflecting no prior information regardless 
of the parameter transformation 𝜂 = 𝜂(𝜃) (Box and Tiao, 1992) 

 
3. Conjugate Prior Distributions 
 

(a) Recall the Bayesian updating formula: 
 

𝑓஀
ᇱᇱ(𝜃) = 𝑐 ⋅ 𝐿(𝜃) ⋅ 𝑓஀

ᇱ(𝜃) 
 
If the use of a certain type of distribution for 𝑓஀

ᇱ (𝜃) guarantees that the posterior 
distribution 𝑓஀

ᇱᇱ(𝜃) follows the same distribution, we call the type of distribution as 
“___________ __________” distribution for the sample distribution 𝑓௑(𝑥; 𝜃) 
 

(b) In such cases, we do not need to compute 𝑐, 𝜇ఏ
ᇱᇱ and 𝜎ఏ

ᇱᇱ by numerical integrations. Just 
obtain the posterior statistics by closed-form formulas 

   
 

 Example 1: Conjugate prior 𝑓஀
ᇱ(𝜃) of the Binomial distribution 𝑓௑(𝑥; 𝜃) = ቀ

𝑛
𝑥

ቁ 𝜃௫(1 − 𝜃)௡ି௫? 

  
 Likelihood function: 𝐿(𝜃) = 
 
 
 To be a conjugate prior,  the prior distribution should keep the same mathematical form 
 after being multiplied by 𝐿(𝜃) 
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 Let us try the Beta distribution as 𝑓௵

ᇱ(𝜃), i.e. 
 

𝑓஀
ᇱ(𝜃) =

Γ(𝑞ᇱ + 𝑟ᇱ)

Γ(𝑞ᇱ)Γ(𝑟ᇱ)
𝜃௤ᇲିଵ(1 − 𝜃)௥ᇲିଵ, 0 < 𝜃 < 1 

 
 According to the Bayesian updating formula, 
 

𝑓஀ 
ᇱᇱ(𝜃) = 𝑐                           

Γ(𝑞ᇱ + 𝑟ᇱ)

Γ(𝑞ᇱ)Γ(𝑟ᇱ)
𝜃௤ᇲିଵ(1 − 𝜃)௥ᇲିଵ 

              ∝ 𝜃௤ᇲᇲିଵ(1 − 𝜃)௥ᇲᇲିଵ
          

 
 

where 
 

𝑞ᇱᇱ =                          
𝑟ᇱᇱ =                         

 
It is seen that the posterior distribution is beta with its parameters 𝑞ᇱᇱ and 𝑟ᇱᇱ obtained by 
the closed-form updating formula given above. 

 
The corresponding predictive distribution is derived as so-called Beta-Binomial distribution 

 

𝑓௑
෩ (𝑥) = න 𝑓௑(𝑥; 𝜃)𝑓ఏ

ᇱᇱ(𝜃)𝑑𝜃
ଵ

଴

 

=
𝑛!

𝑥! (𝑛 − 𝑥)!

Γ(𝑞ᇱᇱ + 𝑟ᇱᇱ)

Γ(𝑞ᇱᇱ)Γ(𝑟ᇱᇱ)

Γ(𝑞ᇱᇱ + 𝑥)Γ(𝑟ᇱᇱ + 𝑛 − 𝑥)

Γ(𝑞ᇱᇱ + 𝑟 + 𝑛)
 

 
 
 (c) Extensive table of conjugate distributions is available, e.g., 

https://en.wikipedia.org/wiki/Conjugate_prior  
 

 
 

Other notable conjugate priors: Gamma for Poisson, Normal for Normal (with known           
variance), etc. 

 
4. Applications of Bayesian Parameter Estimation  
 

(a) Estimation with “perfect” tests (Der Kiureghian 
2009) 
 
Consider a quarry with a mixture of “good” and 
“bad” materials, and let 𝜃 denote the fraction of 
good materials in the mixture. 



Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 
 

 5

Suppose the number of good samples out of 𝑛 tested samples, denoted by 𝑋 follows 
the binomial distribution. 
 
Example 1 showed that the conjugate prior of 𝜃 is Beta distribution.The posterior 
distribution has hyper-parameters 𝑞ᇱᇱ = 𝑞ᇱ + 𝑥 and 𝑟ᇱᇱ = 𝑟ᇱ + 𝑛 − 𝑥. 
 
From the property of Beta distribution, the posterior mean and c.o.v. are 
 

𝜇஘
ᇱᇱ =

𝑞′′

𝑞ᇱᇱ + 𝑟′′
 

𝛿஘
ᇱᇱ = ඨ

𝑟′′

𝑞′′(𝑞ᇱᇱ + 𝑟ᇱᇱ + 1)
 

 
Suppose the prior distribution is assumed to be Uniform, i.e. Beta with 𝑞ᇱ = 1 and 𝑟ᇱ =
1. The following test results were obtained sequentially: (i) 2 out of 3 samples are 
good, (ii) 2 out of next 3 samples are good, (iii) 2 out of next 4 samples. obtain the 
posterior PDFs and the corresponding mean and c.o.v. 
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# (2) Application - Perfect test 
 
rm(list=ls()) 
th = seq(0,1,0.01) 
q=1 
r=1 
p = dbeta(th,shape1=q,shape2=r) # conjugate prior - beta (start with 
uniform) 
mu0=q/(q+r) 
cov0=sqrt(r/q/(q+r+1)) 
 
# 1st test: n=3, x=2 
q=q+2 
r=r+3-2 
f1=dbeta(th,shape1=q,shape2=r) 
mu1=q/(q+r) 



Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 
 

 6

 
(b) Estimation with “imperfect” tests (Der Kiureghian 2009) 

 
Suppose each test is not perfect, i.e. could give a wrong outcome from the test. 
 
Test outcome True state is Good (G) True state is Bad (B) 
Test indicates Good (IG) 0.7 0.1 
Test indicates Bad (IB) 0.1 0.8 
Test is inconclusive (IN) 0.2 0.1 
 
Likelihood function ∝ 𝑃(𝑥 "IG", 𝑦 "IB", and (𝑛 − 𝑥 − 𝑦)"IN"|Θ = 𝜃)  
 

𝑃(𝐼𝐺) = 𝑃(𝐼𝐺|𝐺)𝑃(𝐺) + 𝑃(𝐼𝐺|𝐵)𝑃(𝐵) = 0.7𝜃 + 0.1(1 − 𝜃) = 0.1 + 0.6𝜃 
𝑃(𝐼𝐵) = 𝑃(𝐼𝐵|𝐺)𝑃(𝐺) + 𝑃(𝐼𝐵|𝐵)𝑃(𝐵) = 0.1𝜃 + 0.8(1 − 𝜃) = 0.8 − 0.7𝜃 
𝑃(𝐼𝑁) = 𝑃(𝐼𝑁|𝐺)𝑃(𝐺) + 𝑃(𝐼𝑁|𝐵)𝑃(𝐵) = 0.2𝜃 + 0.1(1 − 𝜃) = 0.1 + 0.1𝜃 

 
Therefore, the likelihood function is 
 

𝐿(θ) = (0.1 + 0.6𝜃)௫(0.8 − 0.7𝜃)௬(0.1 + 0.1𝜃)௡ି௫ି௬ 
 
No more conjugate priors! We need to directly rely on the Bayesian updating formula 
 
𝑓஀

ᇱᇱ(𝜃) = 𝑐𝐿(𝜃)𝑓஀
ᇱ(𝜃) with 

 

𝑐 = ൥ න 𝐿(𝜃)𝑓஀
ᇱ(𝜃)𝑑𝜃

ஶ

ିஶ

൩

ିଵ

 

= ൥ න (0.1 + 0.6𝜃)௫(0.8 − 0.7𝜃)௬(0.1 + 0.1𝜃)௡ି௫ି௬𝑓஀
ᇱ(𝜃)𝑑𝜃

ஶ

ିஶ

൩

ିଵ

 

cov1=sqrt(r/q/(q+r+1)) 
 
# 2nd test: n=3, x=2 
q=q+2 
r=r+3-2 
f2=dbeta(th,shape1=q,shape2=r) 
mu2=q/(q+r) 
cov2=sqrt(r/q/(q+r+1)) 
 
# 3rd test: n=4, x=2 
q=q+2 
r=r+4-2 
f3=dbeta(th,shape1=q,shape2=r) 
mu3=q/(q+r) 
cov3=sqrt(r/q/(q+r+1)) 
 
plot(th,p,xlab=expression(theta),ylab="distributions and likelihood 
function",type="l",lty=5,ylim=c(0,3),col="green",lwd=2) 
lines(th,f1,type="l",lty=4,col="blue",lwd=2) 
lines(th,f2,type="l",lty=3,col="red",lwd=2) 
lines(th,f3,type="l",lty=1,col="black",lwd=2) 
 
post_means = c(mu0,mu1,mu2,mu3) 
post_covs = c(cov0,cov1,cov2,cov3) 
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For a single parameter 𝜃, you could do this by numerical integration, but could be 
challenging if there are more than one parameter to estimate. 
 
Researchers had developed special algorithms for the purpose, but recently, we had 
so-called … MCMC revolution (Diaconis, 2009)! 
 
Although this is a single-parameter estimation, let us perform Bayesian parameter 
estimation by a Markov Chain Monte Carlo method (Metropolis-Hastings algorithm). 
 

 
Histograms representing the prior and the posterior distributions after three tests: 
 
(1) 𝑛 = 3, 𝑥 = 2, 𝑦 = 1 (2 “IG”, 1 “IB”, 0 “IN”) 
(2) 𝑛 = 5, 𝑥 = 3, 𝑦 = 1 (3 “IG”, 1 “IB”, 1 “IN”) 
(3) 𝑛 = 4, 𝑥 = 2, 𝑦 = 1 (2 “IG”, 1 “IB”, 1 “IN”) 

 

# (3) Bayesian parameter estimation by MCMC 
# Ref: https://bayesianbiologist.com/2012/02/06/general-bayesian-estimation-
using-mhadaptive/ 
rm(list=ls()) 
install.packages("MHadaptive") 
library(MHadaptive) 
 
li_est=function(pars,data) #likelihood function 
{ 
  theta = pars[1] 
  n = data[1] 
  x = data[2] 
  y = data[3] 
  likelihood = (0.1+0.6*theta)^x*(0.8-0.7*theta)^y*(0.1+0.1*theta)^(n-x-y) 
  log_likelihood = log(likelihood) 
  prior = prior_est(pars) 
  return(log_likelihood + prior) 
} 
 
prior_est=function(pars) # prior distribution 
{ 
  theta = pars[1] 
  prior=dunif(theta,0,1,log=TRUE) 
  return(prior) 
} 
 
m0=Metro_Hastings(li_func=li_est,pars=c(0.5),par_names=c('theta'),data=c(0,0,0)) 
m1=Metro_Hastings(li_func=li_est,pars=c(0.5),par_names=c('theta'),data=c(3,2,1)) 
m2=Metro_Hastings(li_func=li_est,pars=c(0.5),par_names=c('theta'),data=c(8,5,2)) 
m3=Metro_Hastings(li_func=li_est,pars=c(0.5),par_names=c('theta'),data=c(12,7,3)) 
# c(3,2,1) means n=3, x=2, y=1 (2 "Good", 1 "Bad", 0 “Inconclusive”) 
 
plotMH(m0) 
plotMH(m1) 
plotMH(m2) 
plotMH(m3) 
 
PostMean=c(mean(m0$trace),mean(m1$trace),mean(m2$trace),mean(m3$trace)) 
PostSd=c(sd(m0$trace),sd(m1$trace),sd(m2$trace),sd(m3$trace)) 
PostCOV = PostSd/PostMean 
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“The best thing about being a statistician is that you get to play in everyone’s backyard.” – 
John Tukey (1915-2000) 
 
“What would be the best thing about knowing probability and statistics as a civil and 
environmental engineer? I hope my humble course helped you get ready to answer the 
question in near future. Thank you” – J.S. 
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