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Some Linear Algebra

e Counsider a matrix L € R™*P which may then be thought of as a linear
mapping L : X — Y from the domain X = R? to the range Y ~ R™.

— Null-space N(L) :={z € R | Lz =0} € X.
' — L is called surjective (or onto) if R(L) = Y (i.e., column rank of

' — Range-space R(L) := {y € R™ | y = Lz, for some z € RP} € ).

L =m with Y = ®™).
— L is called injective (or one-to-one) if N(L) =0 (i.e., if 1 # =,

\ / Lz1 # Lzo; not many-to-one).
A — L is called bijective if surjective and injective.

e Fundamental theorem of linear algebra (w.r.t. Euclidean metric
llz||? := 27 Iz):
DD _®m — R(L) ® N(LT), ie, ¥y € R™, 3z € R? and g, € R™ s
|y = Lz + yn [with LTy, = 0 and llyl[? = ||Lz||? + ||ya]?-
— Rp —’RLT O N(L), ie.,, Vz € RP, Iy € R™ and z,, € NP st
(5= LTy + un |with Lu, = 0 and [lal[* = [[L73]|2 + | un][2.
— R(LLT) = R(L) and N(L) = N(LTL).
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Controllability

e Consider a dynamical system with state transition map:

z(t) = s(t, to, To, u{[to; t1])

We say it is controllable on [t,,t1], t1 > to if VI, 25, Ju([te; t1]) s.t.,
zs = 8(t1,to, To, t([to; t1]). We also say it is controllable at t,, if Vz,, zy,
1 > t, and u([te; t1]) s.t., T5 = 5(t1, b0, o, t([Loe; 11])-

— CTRB at t, implies the system can be transferred from any initial
state z, at £, to any finial state {7 in finite time.

— For LTV system, two stat’ts equivalent and CTRB may change w/
time (i.e., t, important). For LTI system, if CTRB at t,, CTRB Vi.

— CTRB is a fundamental property to check before any control design.

— If some states not CTRB, yet, still AS = stabilizable; if not CTRB
and unstable = unstable pz-cancelation.

12 1o [

2 12 e
R |
‘ K @ S NS
(current J{- \
service) 12 I
X,: uncontrollable from u
oDongjun Lee X1° unobservable from y x: not CTRB, not OBSV due to symmetry X;+X,: CTRB, yet, not x;-x, E‘

Effect of State-FB on CTRB

e Consider a dynamical system with state transition map:

z(t) = s(t,to, To, u([to; t1])

We say it is controllable on [t,,%1], t1 > t, if Vz,, 25, Ju([te; t1]) s.t.,
z5 = 8(t1,to, o, t([to; t1]). We also say it is controllable at ¢,, if Vz,, zy,
t1 > t, and u([to; t1)) s.t., x5 = s(t1,to, To, t([to; £1])-

e A system % = f(z,u,t) is CTRB iff CTRB under static state feedback.
— CTRBof & = f'(z,v,t) & & = f(z,u,t) equivalent w/ u = v—g(z, ).
— Static state-FB doesn’t change original CTRB.
e If £ = f(x,u,t) with dynamic state-FB is CTRB, oiginal system is CTRB.
Even if original CTRB, dynamic state-FB may not CTRB (un-OBSV).
—v=u+g(z,1): (%0, 60) = (#1,61) > u=v—g(z,&,t) 1 2, = 1.
— Even dynamic state-FB can’t make un-CTRB system CTRB.

g = W(Eﬂht)
9(z. ¢ 1)
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Reachability Map and CT-LTV CTRB
e Consider CT-LTV system & = A(t)z + B(t)u, z(t,) = z, with the state
response given by:

Fi) o T2

2(t1) = B(t1, to)To + / " ®(ts, 7)B(r)u(r)dr /L. ;fj

to X,
e Define reachability map: to t [2)
i1 u Z2
Loltort1)(u()) == / ®(t1, 7) B(r)u(r)dr o
to /\j 1
s s . . Zo[ B(t) =0
which is a linear map w.r.t. the control input u([t,;%1])- — "
2 1

e Th. 6-11R1: CT-LTV system is CTRB on [t,,%1] iff L,.(%,,%1) is surjec-
tive (i.e., can produce any vector in R").

e Th. 6-11R2: If CT-LTV system is CTRB on [t,, t1], it is also CTRB on
[to, t2] ViEa > 1.

— (Pf) Since CTRB on [t,,%1], can obtain any z; at ¢; = given za,
choose z1 s.t., zo = P(t2,%1)z1 = can steer to z using u([t,, t1]) :
ZTg — T and 'u.([tl,tz]) =0 W/ To = <I>(t2,t1):c1.

— For CT-LT'V system, CTRB on [t,, t1] doesn’t imply CTRB on [t,, 2],
t2 < t1. For CT-LTI, CTRB on [t,, t1] implies CTRB for any interval. .,
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Reachability Map and DT-LTV CTRB
e Consider DT-LTV system zxy1 = A(k)zx + B(k)ur z(k,) = z, with the
state response given by: with ®(ki,k,) = Hi;,lcaA(k),

k]_—]
z(k1) = B(k1, ko)zo + Y, B(kr, k + 1)B(k)u(k)
k=ko
e Reachability map:
k1—1
Ly (Ko k) (ks o tiky—1) s = Y ®(ky, k +1)B(k)ux
k=k,
= Lr(koa kl)Uko;kl—l

where Ly (Ko, k1) = [¢k1,ko+lBkoy':I’kl,ko+ZBk,,+1: -3 Phy ki —1Br, 1] €
Rrxpkr—ko) and U = [ug,, ..., g, —1]7 € RPF1—Fo),
e Th. 6-11RD1: DT-LTV system is CTRB on [k,,k;] iff L.(ko,, k1) is
surjective (i.e., column rank of L,(ko, k1) = n).
e Th. 6-11RD2: If DT-LTV system is CTRB on [k, k1] and A(k) is
non-singular k; < k < ks, it is also CTRB on [k,, k2]-
— Non-singular A(k) necessary to pull zo to z;1 via invertible ®g, , .

— DT-LTV CTRB on [k,, k1] doesn’t imply CTRB on [k, k2], k2 < k;.
ooongniee  DT-LTI CTRB on [k,, k1] implies CTRB for any interval. 2]




Reachability Grammian
e Consider CT-LTV system ¢ = A(t)z + B(t)u, with reachability map:

T
L, (0, T)(u()) = /0 &(T, 7)B(r)u(r)dr

o If we split [0, 7] into N sub-interval, we have:
N -
Le (0, T)(u(-)) ~ Y (T, £T)B(ET)u(£T) % =: L, (0, T)U
k=1

where L,(0,T) := [®(T, #T)B(%T), ..., ®(XT, T)B(ZT)] x % and U :=
[w(FT), - u(FFT), (D))

e Since R(L,LY) = R(L,) and T > 0, CTRB on [0, T iff rank(L,LT) = n.

e With % removed and N — 0o, we then achieve reachabillty grammian:

o

‘ Wb, t1) = / " B(t, 7)B(r)BT (1)87 (b, 7)dr

which is sometimes also called controllability grammian (Chen). &
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Reachability Grammian and CTRB
e For CT-LTV system & = A(t)z+ B(t)u, reachabillty grammian is given
by:

Wilto, t1) = / " (t1,7)B(r) BT (r)®% (t2, T)dr

to

— W..(t5,t1) is symmetric and PSD (if singular) or PD (if non-singular).

— W,.(to,t1) captures not only how input u can directly affect z via
B(t), but also through the dynamics ® over [t,,#].

— Controllability (to zero) grammian (Rugh):

Weltort) = [ @(t0, VB BT ()0 (1, e

is related to Wi.(to,t1) by Wi.(to, t1) = ®(t1, to)Welto, t1)®7 (t1, o).

— For CT-LTL, Wy(to,t1) = Jo' " eA"BBTeA Tdr and We(to,t1) =
f(f 17t g—ArpBTe—ATqr.

— DT-LTV system: W, (ko, k1) := Y k%, ®(k1, k+1)B(k)BT (k)®T (k1, k1)
= Ly (Ko, k1) LT (ko, k1) € R7X™

e Th. 6-11R3: CT-LTV system is CTRB on [t,,%1] iff its reachability
 o0ep, Grammian Wo.(t,,11) is non-singular. 5




CTRB of CT-LTV System - |

Th. 6-11: CT-LTV system is CTRB at ¢, iff 3¢; > £, s.t., the controllability
grammian W,.(t,,t1) is non-singular.

o (<) Recall z(t1) = B(t1,to)zo + f, ®(t1, 7)B(r)u(r)dr. Then, with

u(t) := =BT ()BT (t1, )W, (o, t1)[@(t1, t0) 20 — T1]

we can steer from any z, = z(t,) to any 1 = z(t1) = CTRB on [t,, 1]

= CTRB at ¢, (u(t) is the min. norm control w.r.t. Euclidean metric).
e (=) Suppose W, (i,,11) singular for all £; — should’t be CTRB?

If W.(t,,t1) singular, W,.(t,,¢1) only PSD = 3 v € R" s.t., V; > ¢,

i1

0 = VW, (to, t1)v = / BT (187 (£, )o||dr
io

ie., vT®(t1,7)B(T) =0, V7 € [to, 1], V1 > t, (from continuity of B, ®).

Now, suppose CTRB at t, = 3 u(t) to drive z from z, := ®(t,,%1)v to

z1(t1) = 0 for some #; > &,, ie., 0=v+ ftil &(t1, 7)B(T)u(r)dr. Yet,

21
0= T+ 7 / (ty, ") B(r)u(r)dr = vTv £ 0

to &
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CTRB of CT-LTV System - Il

e Th. 6.11 requires ®(¢1,7) = better if can check CTRB w/o computing ®.

e Define M,(t) := B(t) and
Moy y1(t) == —At)Mn(t) + £ Mn(2)

e We then have recursive relation: 2 [®(t2,t)Mm(t)] = P(t2,t)Mmi1(t),
e.g., from ®(is, £)B(t) = ®(t2, t)M,(t),

%[@(tz,t)Mo(t)] = —®B(t2, ) A(F) M,(t) + Q(tz,t)%Mo(t) = ®(tq, t) M (t)

Th. 6-12: CT-LTV system with A(t),B(t) € C*! is CTRB on [t,, 1] if,

It > ¢, s.t.,
rank[M,,(tl), M1 (tl), veey Mn—l(tl)] =n

e Suppose not CTRB = W,.(t,, 1) singular Vt; > £, = Jv € R” s.t.,

131

0 = vTW, (to, t1)v = / BT (1)07 (ta, 7)ol [2dr
to

ie., vT®(t), T)Mo(1) = 0= vT (8, )My (1) = 0... = vT®(ty, 7)Mp (1) =

0 = vT®(t1,7)[M,(T), M1 (7), ..., M (T)] = 0 V7 > t, implying a contra-

diction:
[Mo(T), Mi(T)y ey Mpn(T)] < m, VT 21, L
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CT-LTV CTRB: Example 6.13

Th. 6-12: For CT-LTV system with A(t), B(t) € C*~!, define M,(t) := B(t)
and Mp11(t) = —A({t)Mm(t) + £M,(t). Then, it is CTRB on [t,,t] if,
3t > t, st

ra.nk[Mo(tl), Ml(tl), veey Mn—l (tl)] =N

e This is the CT-LTV version of the well-known CT-LTI CTRB condition:
rank(C) :=rank[B, AB, A’B, ..., A" 'B] =n

e A(t)M,,(t) and %Mm (t) respectively represents how the m-th propagated
input can affect the state thru the dynamics A(t) and thru the time-
varying component of B(t).

t -1 0 0
e (Ex6.13:) Consideré= | 0 —t t |z+ | 1 [u
0 0 ¢
— M,(t) = B(t) = [0; 1;1].
— My(t) = —A@t)M, + LM, = [1;0; —t].
— My(t) = —A@)M; + LM, = [—t;¢%¢2 — 1.
— rank [M,M; M,] = 3 with determinant t* + 1 CTRB at every ¢.
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Minimum Norm Control
e Recall u(t) = —BT (£)®7 (1, t)W,1(to, t1)[®(%1, to)To—21], which is minimum-
norm control, i.e., min, f:: uT (t)u(t)dt with (z,,z1).

e Consider DT-LTV system with
.’B(tl) = @(kh ko)$o + L.,-(ko, kl)Uko:kl—l

e Minimum-norm control is then given by minycgs(e ko) U U, subject to
L, (ko, k1)U = 21 — ®(k1,ko)zo =: x4, or, using Lagrange-multiplier
Ae R,

: ._ 17T T _
I L(U,X) := U U + X" [Ly(k1, ko)U — z4]

e Necessary conditions for optimality:
=0 = U*+ LIk, k))X* =0
=0 = Lr(ko,kl)U* —z4=0

oL
ou
aL
22N

U* A+

U*2*
Le, N* = — WY (ko, k1) Ly (Ko, k1 )U* = —W (Ko, k1)za and
U* = —LT (ko, k1)W " (to, 11)[@ (k1 ko)zo — 21]

with the optimal cost L(U*, A\*) = 1z W (ko, k1)za-

O
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Minimum Norm Control

e For DT-LTV system, the minimum-norm control ming ge; &) %UT U,
subject to L,(ko, k1)U = z1 — ®(k1, ko), is

| U = LT (ko k)W (b, 0)[@ (ks ho)to — 7] |

with the optimal cost L* = 1sTW1(ko, k1)za.

e For CT-LTV system, the minimum-norm control min,, ftil suT (t)u(t)dt
subject to :: &(t1, 7)B(T)u(r)dr = T3 — B(t1,%0)7, is

u(t) = —BT ()27 (t, )W, (to, t1) [B(t1, to)To — 1]

with the optimal cost L* = 227 W (to, t1)z4.

e The larger \; of W, is, the easier to control x along the direction of its
eigenvector; if not CTRB, the cost of control becomes oo.

e Longer the final time ¢, = larger W,.(t,,t1) = easier to attain z; = z(1).
o From W, (to,t1) = [;* ®(t1,7)B(r) BT (1)®7 (t1,7)dr,

a2L* Tow ! Tyr—10Wepr—1,. _ - Tyr—1 T -1
at—‘,:md—atoLmd:—der WOLW"' md—de,,. BB QWT deO

i.e., the later ¢, is, the more difficult to control to attain z1 = z(¢1).
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Controllability of CT-LTI System

Th. 6-1: For CT-LTI system, the following statements are equivalent:
1. (4, B) is CTRB.
2. CTRB gramian W,.(t) = fg eA" BBT A" " dr is non-singular V¢ > 0.
3. rank(C) :=rank [ B AB A?B .. A" !B | =n, where C € R"X"
4
5

. [ A=A B ] € R"X("+P) has full-row rank VA(A).
. If A is Hurwitz, AP+ PAT = — BBT has unique PD solution P = W,.(c0).

e (1 & 2): Already shown for CT-LTV system in Th. 6-11.
e (3 > 2): Already shown in Th. 6-12.
® (2 — 3): Suppose rank(C) < n = Jv € R" s.t.,
=0 = +TA*B=0, Vk=0,1,..,n—1
Further, using Cayley-Hamilton theorem (i.e., given CE of A, det(A —
A) = A"+ a1 A" +.ap, A(A) = A" A"+ L+ @, =0),

vTeA'B=oT[I+ At + AL 4 1B =vT[I+ Bi(t)A+ ... + Bn1(t)A" B =0

implying vTW;(tyv = [ ||[vTe4™ B||%dr = 0, i.e., Wy (2) is singular V¢ >0,
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CT-LTI System CTRB (cont'd)

Th. 6-1: For CT-LTI system, the following statements are equivalent:
1. (4, B) is CTRB.
2. CTRB gramian W,(¢) = fot e” BBTeA" "dr is non-singular V£ > 0.
3. rank(C) :=rank [ B AB A?B .. A"!'B | =n, where C € R**"?.
4. [ A—X B ] e R+ has full-row rank YA(A).
5. If Ais Hurwitz, AP+ PAT = — BBT has unique PD solution P = W,.(c0).

e (2 + 5): For this, we need an extened version of Lyapunov theorem
Th. 5-6: if A is Hurwitz, ATP + PA = —N has a unique solution
P:= > eA"t NeAtdt for any N.
(Pf: Th. 5-6) Suppose not => 3 another solution P’ s.t., AT(P — P') +
(P—P)A=0= A"t {AT(P— P')+(P—P")AleA"t = 0 = L[eA"t(P—

oo

P)ert] =0 = A" (P — P)ett| "= —(P - P) =0.

e (2 — 5): From Th. 5-6, a unique P exists w/ P = W,(oc), which is
well-defined (from A Hurwitz) and PD (from 2).

e (5 — 2): Solution P = W,(c0) is PD = W,(t) is also PD V¢ > 0 from
continuity of e4?.

3
U
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CT-LTI System CTRB (cont'd)

Th. 6-1: For CT-LTI system, the following statements are equivalent:
1. (4, B) is CTRB.
2. CTRB gramian W,.(t) = fg eA" BBT A" " dr is non-singular V¢ > 0.
3. rank(C) :=rank [ B AB A?B .. A" !B | =n, where C € R*X"
4. [ A= X B ] e R+ has full-row rank YA(A).
5. If A is Hurwitz, AP+ PAT = —BBT has unique PD solution P = W,.(c0).

e (3 — 4): Suppose not, i.e., Ig € R s.t., for some \;(A4),
gT[A-NIB|=0 = ¢TA=Xq", ¢*B=0
gt A% = )\? T .., ¢fAF = )\:-“qT, ¢*B=0
This then implies that
¢¥[B AB ... A" 'B] = [¢"B \i¢"B ... \}7'¢"B] =0
that is, rank(C) < n.

e (4 — 3): For this, we need the following theorems.

R
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CTRB Invariance and Decomposition

Th. 6-2, 6.3: CT-LTI system CTRB is invariant under any similarity trans-
form x = P~z with

rank(C) = rank[B AB ... A" !B| = rank(C) = rank[B AB ... A" 1B]

(Pf) This is a direct consequence of: from A = PAP~! and B = PB with
full-rank P € R™*",

rank[B AB ... A" 'B]| = rank(P[B AB .. A" 'B|) = rank[B AB ...A" ' B]

Th. 6-6: Consider CT-LTI system & = Az+ Bu, y = Cz+ Du, with rank(C) =
n1 < n. Then, 3 similarity-TF £ = P~'% s.t., the transformed system is given
by

ic _ Ac A12 I Bc _ ~ ~_ Zc
G)-15 2G5 ] v-1a a1(F)+on
where Z, € ®" and Z; € ®* ™. Further, the CTRB reduced system
Z. = AcZ.+ Bou, §=C.Z.+ Du

is CTRB and has the same TF as the original system.

©oDongjun Lee &)

Canonical Decomposition - |

Th. 6-6: For CT-LTI system with rank(C) = n; <n, 3z = P7'% s.t.,

E)=1% ]C)+[5]w v=10 a1(Z)+ou

where &, = A.Z. + B.u, § = C.Z. + Du is CTRB has the same original TF.

e rank(C) = ny = define g; s.t., span[B AB ... A" ! B| =~ span|[q1 q2 .. qn,]-

e Construct P—l — [41 q2 --Gn, |qn1+1 ...q"] = [Qc l QEL where Qc €
R and Qz € R™*—m1) st rank[Q. | Qe] = n.

® (). is then A-invariant, i.e., span{AQ.} € span{Q.} (from CH-theorem).

e Define P = [ ﬁj ] st P.Qo = I, PoQz = 0, PsQ. = 0, PxQz = I.

e Then, the transformed matrices are given by

—1 __ PcAQc PcAQE _ PcB —1 __ _
PAP _[PEAQC pag. | PB=|pp | CP'=10Q:1CQd

where P;AQ. = 0 (from A-invariance of Q.) and P;B = 0 {from P;Q. = 0)
= transformed dynamics structure proved.

O
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Canonical Decomposition - Il

Th. 6-6: For CT-LTI system with rank(C) =n; <n, 3z = P71% s.t.,

@;):[% %:](ZZ)JF[%]“, y=[Cc CE](ZZ)JFDU

where &, = A Z. + B.u, § = C.%. + Du is CTRB has the same original TF.

e A=PAP~', B= PB, with A, = P,AQ,, B. = P.B and C. = CQ..
o CTRB of (4, B): using the structures of A, B,

¢ [[Be AB. .. An'B,|AmB, .. A5,
I L 0 0 .. 0

with rank(C) = rank(C,) = n; (due to CH-therorem).

e From H(s) = C(sI — A)™'B+ D = CP~!(sI — A)"'PB = D and the
structure of the transformed dynamics:

Hs)=[C. C:] [ (s —(;‘Ic)_1 (sI—tﬁié)‘l ] [ % ] P
=Cu(sI - A) 'B.+D
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CT-LTI System CTRB (cont'd)

Th. 6-1: For CT-LTI system, the following statements are equivalent:
1. (4, B) is CTRB.
2. CTRB gramian W, (t) = [T eA” BBTeA" "dr is non-singular V¢ > 0.
3. rank(C) := ra.nk[ B AB A?B .. A~'B ] = n, where C € R™**"P.
4. [ A—X B ] € R*(*P) has full-row rank YA(A).
5. If Ais Hurwitz, AP+ PAT = — BBT has unique PD solution P = W,.(c0).

e (4 — 3): Suppose rank(C) < n = from Th. 6-6, can transform with
A Ac A12 D __ Bc
a5 ) e
Denote an eigenvalue of Az by A; w/ ¢F Az = MigF = ¢F (Ae — MI) =0.
Define ¢ := [0; ¢;] (i-e., (i, @) is an un-CTRB mode). Then,

T - —_ —
Tz a1 _ (0 Ac— NI Asp B, |
¢ [A-NIB] = (q,—) [ 0 Ag-x1 0 |0

i.e., item 4 violated for (A, B) w/ CTRB invariance btw (4, B) and (4, B).
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Example: Cart-Pendulum

Linearized dynamics:

Mijj=u—mgd, MLI=(m+ M)gh —u

with 4 states z = [y, 7,9, 6] and or 2-DOF with 1 control
1 input » = under-actuated unstable system
= can control all 4 states by one control?

01 0 0 0
. ._|00 —Zg 0 i
e State-space representation: & = 0 0 0 1 + 0 Uu.
0 0 g 0 —ML
0 L 0 —mLg
o L 0 —mLg 0
e CTRB space: C = span 0 -1 0 (m+ M)g
-1 0 (m+M)yg 0

e CTRB thanks to the gravity g if M =0 (i.e., singular)

— Gravity is necessary for CTRB by breaking symmetry
— If not gravity = not CTRB (pendubot, acrobot)
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Example: CTRB Decomposition

110 01
CT-LTIsystem: €= 0 1 0 |+ |1 0 |u, y=[111]z.
0 11 01

Qc = Qne =

e Define CTRB transformation: z = P71z = [Q. Qz]Z. oo o0 oo

-0.2851  -0.9585 0.0000
e CTRB space: Q. = orth(ctrb(A,B)) (2-dim) 0678 0.2016 0.7071
e unCTRB space: Qn. = null(Q,) (1-dim) Avar = far =

1.3865 1.2992  (-0.0000

e A= PAP-', B=PB, C= CcP1, D=D. 01150 0.6135 | 0.0000

-0.0000  0.0000 1.0000

e Not CTRB and not stabilizable e
-1.6406 -0.5553  -0.0000
s2-1 s+1
e )= | P <[ T |-
82251 s—1
e Canceled unstable pole s = 1 constitutes the unCTRB/unstable state,

whereas other two states can be controlled by u.

e Minimal realization with 2 states and OBSV H. = (A, B,, C., D)

O
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Observability

Def 6.01: A state-space dynamical system is said to be observable on [t,, 1],
if, for any initial condition z(%,), given the output y(t) and the input u(t)
Vi € [to,t1], we can uniquely determine x(t,).

* Equivalent to say estimate x(¢) from u(t), y(¢), even if z(t,) unknown.
e Consider CT-LTV system:
z = A(t)z + B(t)u, y=C(t)z+ D(t)u

with the output response given by:

y(t) = C(®)®(t,t5)xo + C(t) /; ®(t, 7)B(T)u(r)dr + D(t)u(t)

o Since y(t), u(t) known Vi € [t,,t1], OBSV condition boils simply down to:
given 7(t) = y(t) — C(t) f:a ®(t, 7)B(T)u(7)dr + D(t)u(t), t € [ts,t1], can
we estimate z, by observing §(t) = C(£)®(t,t,)z?

o That is, equivalently, OBSV of the following simple system:

¢ =A@z, F(t)=CH)2( to)(to)
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Observability Map and Grammian
e Now, for CT-LTV system OBSV on [t,,%1], we can consider OBSV of

&(t) = A)z(t), y(t) = C(B)z(t) = CH)D(¢, t0)z(to)

e Observability map:

Lot )(") : 2o > y(&) = CR)®(t, to)Z0r 1 € [to, ta]

which is a linear map w.r.t. the argument z,.

e For OBSV, this obserability map L,(t,,t) should not possess an invariant
null-space, since, if not, dz; € R s.t.,

y(t) = Lo(to, t)(zo + azxs) = C()P(t, 1) (x0 + az5), Vit E [to,t1]

where z; at a certain # could be ok with time-varying information gath-
ering (e.g., rotating C(¢)®(¢,t,): cf. persistency of excitation).

e Recall N(L,) = N(LTL,) and, similarly for W,(t,,t1), we define observ-
ability grammian:

Wo(to,t1) :=/ 1 CI)T(Ty to)CT(T)C(T)Q(Tyto)dT

o WIR
£:5)
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Observability of CT-LTV Systems

e Th. 6-0O11: CT-LTV system & = A(t)z, y = C(t)z is observable at ¢,,
iff 3ty > ¢, s8.t., the following OBSV grammian W,(,,%1) is non-singular:

W, (to, t1) = /t " B(r,£,)CT (1) C(7)B(r, £.)dr

e (Proof) From y = C(t)z = C(t)®(t,t,)z,, we have
[ oot = [ 8710 0w i -2,

thus, if the above condition holds, z, is uniquely determined by

To = W (o, 11) /t " 8T (1, 1,) 0T (P ()i

e Th. 6-012: Define Ny 1(t) := N (t) A(t)+ 3 Nim () with No(2) := C(2).
Then, CT-LTV system with A(¢),C(t) € C* " is OBSV at t, if, Jt; > ¢,
s.t.,

rank[N,(t1); N1(t1); ..., Nn—1(t1)] = n

©oDongjun Lee &)

Observability of CT-LTI System

Th. 6-1: For CT-LTI system, the following statements are equivalent:
1. (4,C) is OBSV.
2. OBSV grammian W,(t) = fot eA"7CT CeA™dr is non-singular V¢ > 0.

c
CA
3. rank(OQ) := rank ) = n, where O € R™*",
CAn—l
4. [ 4 Z,)‘I ] € R +mIX7 has full-column rank YA(A).

5. If A is Hurwitz, AT P+PA = —CTC has unique PD solution P = W,(o0).

Th. 6-5 (Duality of CTRB & OBSV): For the CT-LTI system,
(A,B) CTRB « (AT,BT) OBSV; (4,C)OBSV & (AT,CT) CTRB

- A direct consequence of

£ t
Wr(O,t)=/ eA"BBTeA " dr, Wo(O,t)=/ A" TCTCeATdr

o
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Geometry of CTRB and OBSV @z

For CT-LTI CTRB: W,.(t) is non-singular iff rank(C) = n.

For CT-LTI OBSV: W,(t) is non-singular iff rank(O) = n.
e If not CTRB, 3 z; € R" s.t.,

gl [B AB ... A"'B|=0 = zlA*B=0 = zle®B=0,Vr>0

£ t
zT W, (t)ze = / a:geATBBTeAT"zadT = / ||zLe4™ B||?dr = 0
0 0

i.e., control successively generated by eA*B always orthogonal to zz.

If not OBSV, 1 z; € R™ s.t.,
C Ts
CA
z5;=0 = CA¥z; =0 = Ce*z; =0, Vr >0
CAn—l

t £
eI W,(t)zs = / a:geAT"'CTC'eAT:I:EdT = / [|CeAz5|[2dr = 0
0 0

i.e., null-space successively eliminated by Ce4t always contains ;.
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OBSV Decomposition - |
Th. 6-06: For CT-LTI system with rank(®) =ns <n, 3z =T"'% s.t.,

(2):[;%21 ga]@;)*[g;]“’ y=[C 0](2;_’)+Du

where Z, = A,Zo + Bou, § = C,%, + Du is OBSV, has the same original TF.

(o4
CA
e rank(O) = rank ) = ng = construct @, = null(Q) € Rrx(n—n2),
CA'n—l
e Construct T = [Q; | Qo], where Q, € R"*"™2 s.t., rank[Q; | Qo] = n.

Null-space of O is A-invariant, e.g., @5 € null{O) = AQs € null(O).

Define T — [ i"’ ] st., PsQy = I, PsQ, =0, P,Qs =0, P,Q, = I.

e Then, the transformed matrices are given by

-1 _ PaAQa PaAQo _ P;B —1 __
TAT _[POAQa pao. |» TB=| pg | CT _[CQ,-,|ESQ,,]

oDongjun Lee
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OBSV Decomposition - Il
Th. 6-06: For CT-LT1 system with rank(Q) =ng <n, 3z =T"17Z s.t.,

(22):[:%1 i]@;ﬁ[g;]u, y=[Co 0](§Z)+Du

where &, = A,F, + Bou, § = C,T, + Du is OBSV, has the same original TF.

e OBSV of (4,C): using the structures of 4, C,

C, 0
O=|C,AM"1| 0 = rank(O) = rank(O,) = rank(O) = n,
C,An1 0

e From H(s) = C(sI — Ay 'B+ D = CT (sl — A)"'TB + D and the
structure of the transformed dynamics:

~ sI— Ay)™! 0 B,
H(s)=[C’o 0] ( * ) (SI—Aa)_l][Ba]—{-D
oDongjun Lee = C_'o(SI — Ao)_léo +D %)

Example: OBSV Decomposition

1 10 01
01 0[|+(|1 0]u y=[111z

e CT-LTI system: & =

0 1 1 0 1 Qo = Qno =
e Check OBSV: rank(obsv((4,C)) = 2. hum MBI ham
-0.24%2  0.6617 0.701
e OBSV sub-space: @, = orth(obsv((A,C))’ = span(OT). - e -
R -0.6778  0.2016 ~0-108
e non-OBSV sub-space: @no =null(Q)) (1-dim). 0,985 -0.9565 0.0000
0.678  0.2016 o-om
e A=TAT !, B=TB,C=CT"',D=D. Abar_o = Bhar o =
E -0.0000 -0.9358  -0.4985
e Not OBSVB and not detectable 0.0000 03825 1325
1.0000 0.0000 0.0000
32_1 . 3:t1 Char_o
3 _3¢2 — —
| g | = | TET -
e Canceled unstable pole s = 1 constitutes the unstable/unOBSV mode,
whereas other two states can be observed from y, u.
e Minimal realization with 2 states and CTRB H, = (A,, Bo, Co, D)
&

Note that Q, = Q. and @5 = Qz, i.e., CTRB/OBSV subspaces concidepE.
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Kalman Decomposition

Th. 6-7: For CT-LTI system & = Az + Bu, y = Cz + Du, 3P € R**" s.t.,
with z = P71, it can be transformed to:

(I;’co 4(;0 _0 413 _0 Teo Eco
Tz | | A1 Aes A2z Ao Zea 5
|| 0 0 Ap 0 |lzm]T| 0 |
Teo 0 0 Ay Az Tz 0

y= [ ém 0 C_'Eo 0 ] (Z'_’)+Du
e Given R(C) and N(O),

P_1=[Qoo Res || Qzo aa]

— Qe = R(C) NN(O) - CTRB/unOBSV mode

— Qo =R(C)\ Qez —» CTRB/OBSV mode

— Qz = N(0)\ Qcz = unOBSV/CTRB mode

— Qazo = R\ (Qeo U Qs U Qz3) — unCTRB/OBSV mode.

® Ty, T, 2o, Lap TESpectively specify dynamics of their corresponding modes.

R
U
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Kalman Decomposition

Th. 6-7: For CT-LTI system ¢ = Az + Bu, y = Cz + Du, 3P € R™*" s.t.,
with z = P~1Z, it can be transformed to:

QLIC,, Am 0 A13 0 Zco Bco

Teo | Ay Az Azz A ZTeo B.s

ol =l 0 0 Ao 0 ||ze|T| o [*
Iiaa 0 0 A43 AE& Teo 0

y=[Co 0 Ca o](gf)wu

e Given R(C) and N(0), P71 =[ Qeo Qes Qoo Qs |
® Tco, Tesy Tooy Top Tespectively specify dynamics of these modes.
e CTRB/OBSV (Aco, Beo, Ceo, D) produces the same TF matrix, i.e.,
H(s)=C(sI — A)"'B+ D =Cy(sI — App) 'Beo+ D
i.e., minimal realization of H(s).

e If unCTRB or unOBSV modes are unstable, need to change system stuc-
ture itself (e.g., change or add actuators and sensors).

R
oDongjun Lee B4
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Kalman Decomposition: Example

-1
2
-2
-1

-1
6
-5
-2

-3
9
-4
—4

-1
6
-3
-2

NO =

Beo
P2 |y, y=[1 00 —1](%
o | %5
0 RC =
-0.2291  -0.7286

0.0038  -0.4082
-1.0000 -0.0093

o MA) ={-1,-2, -2+ j}.

-0.3463
0.2811

0.6807
0.0239

0.0076
0.0038

-0.8165
-0.4082

e H(s)=

33+5$2 +8s4+4

p={-1,-2,-2+3j}, 2={-1,-2,-2}.

814+753+19s24+23s+107
e rank(ctrb(4,B)) = 2 and rank(obsv(4,C)) = 2.

e R(C) = orth(ctrb(4,B) and N(O) = orth(null(obsv(4,C)")).
. P_1=[Qco Qs Qoo Qéa]

* Qs =R(C)NN(0) = Qs = R(C)[a; 8] = N(O)[c;d], ie.,

[R(C) N(O)]la; b;¢;d] =0
yet, null([R(C) N(O)]) =0 = Q5 = 0.

e Q:5UQ = R(C) = Qco = R(C), ie., all the CTRB modes are also OBSV
(some OBSV modes may still be unCTRB). =

oDongjun Lee

Kalman Decomposition: Example

0 -1 -1 -37 (-1 Beo
9 2 6 9 ||6 Bes B 1 (%o
4 2 =5 —a||-s|T| 0 |w v=l1 00 ”(-a)
3 -1 —2 -4 | \-2 0

e P1=[ Qe Q= Qe Qs |

® Qo =0 = Qoo = R(C).

e N(O) =QuUQs = Qaz = N(O).

e null[R(C) N(O)] = 0 = span[R(C) N(O)] = R* = Qz0 = 0.

—1 _ — Abar = Bbar =
s Pl=[Qw Qux]|=[R(EC) N(O)] ;
7 5e_ggqy s 12 00000 -0.0000 | 7.016
=0 —_A. 118 — —17.58—35.11  _o.1592 -2.9947 0.0000  0.0000 .-0.8352
® H(s) = CeolsI — Aco] " Beo + D s2+4s+5 " 00000 0.0000 1.97%67 4.9635 | 0.0000
0.0000 -0.0000 +2.3850 -4.9767 -0.0000
e Recall o i
— )\(A) — {_1, _2’ -2 :l:]} 0.0586  -0.7047 0.0000  0.0000
— 82455218544 — - _
— H(s)= 7311952 +23s110° P = {-1,-2,-24j}, z={-1,-2,-2}.

.
B
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CTRB/OBSV Canonical Forms

e So far, we have witnessed that coprimness of H(s) = II\JA(E% should have

something with its minimal CTRB/OBSYV state-space realization (A, B, C, D).

- 2_
Consider H(s) = 33_3832_:33_1(: 321J2rs+1)'

e CTRB canonical form of H(s):

0 1 0 0
=0 0 1 |z+| 0 |, y=[—1 0 l]m
1 -3 3 1

which is CTRB, yet, not OBSV. However, CTRB canonical form of co-
prime form is both CTRB and OBSV with H(s) = 25 .

e OBSV canonical form of H(s):

0 1 -1

0 3 |z+]| 0 |u, y=[001]m
1

which is OBSV, yet, not CTRB. However, CTRB canonical form of co-
prime form is both CTRB and OBSV with H(s) = x%55.

©Dongjun Lee
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Coprime Fraction and Minimal Realization

e Th. 7-1: Consider H(s) = %(3. Then, its CTRB (or OBSV) canonical
form is also OBSV (or CTRB) iff N(s) and D(s) are coprime polynomials.

- Now, define deg(H(s)) to be the order of the denomenator of H(s) after
removing common factor among N(s) and D(s) (i.e., order of coprime

H(s)).

e Th. 7-2: The following statements are equivalent:
— (A, B,C, D) is a minimal realization of H(s).
— (A,B,C, D) is CTRB and OBSV.
— dim(A) = deg(H(s)).

- Consider H(s) = 4(3:3__11) = 4(52?:: gy with deg(H(s)) = 2, Then, any
2-dimensional realization (A, B, C, D) is a minimal realization, which will
also be CTRB and OBSV.
- If (A,B,C, D) is CTRB and OBSV, poles of H(s) = eigenvalues of A,
implying that

internal stability < BIBO stability

Recall that, in general, internal stability = BIBO stability. &

oDongjun Lee
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Equivalence of Minimal Realizations
‘ Th. 7-3M: Any minimal realizations of H(s) are equivalent.

e Recall that, with A = PAP~!, B=PB and C =CP-!, D =D,
C=prC, O=0pP!

e Note also that OAC = OPAP~1C = OAC.

e We then have - _
A=0"'0-A.cC!?

where, with all the matrices full-rank,

cct-0lo=cc'Pt-POO=1

implying that we can choose the similarity transform

P=0710, with P7'=¢cC!

. o 1170
(Ex) H(s) = ﬁ CTRB form: ([ 1 2 ] , [ 1 ] .1 1],0);OBSVform:

0 -1 1 1, | -3 1 1
([1 9 ],[1],[01],0)=>P—0,, O,,._[ 1 l]w/PAcP = A,.
[ODongjun Lee ff‘

Minimal and Characteristic Polynomials

e Consider two matrices with Jordan form:

M 0O 0 O M 0 0 O

_ 0 X 1 0 - _ 0 X 0 O _1

A=T| 4 A O L, A=Dh| , A2 O b
0 0 0 X 0 0 0 X

e Characteristic polynomial: with the multipicity of X;,
L AW =80 =A-M)A-2PA- ) |

which specifies the dimension of state vector, yet, can’t tell stability of A.
e Minimal polynomial: with the index of A;,

[ %1 = (A= M)A = 22)’(A = Aa) £ 2(0) = A= M) (A =) (A — As) |

which specifies stability of A, but not dimension of A.

e Th. 7-M1: Suppose (4, B,C, D) is minimal realization of H(s). Then,

— Monic least common denomenator of all entries of H(s) = 14(s).

— Monic least common denomenator of all minors of H(s) = A4(s)

o
oDongjun Lee B4
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MIMO Minimal Realization

e Th. 7-M1: Suppose (4, B, C, D) is minimal realization of H(s). Then,
— Monic least common denomenator of all entries of H(s) = 1 4(s).

— Monic least common denomenator of all minors of H(s) = A(s)

s ___ 1 1
o (Ex75)H(s)= | ot HIG+D) 533 | o, (5) = s(s+1)(s+2)(s+
st (DG s
3). Also, mi(s) = m, ma(s) = @Tﬁ'é.;._g), ma(s) = m
= A(s) = s(s+ 1)(s + 2)(s + 3) = four states necessary with A € R4*4
having all distinct eigenvalues {0,—1,—2,—3}.

S S
e (Ex 7.4) Hi(s) = [% % ] = 1(s) = s+ 1 = A(s) = only one

state is necessary with A = —1 (y = y1 = y2 = 735(u1 +ug)). Ha(s) =
2 1

S ] = P(s) = s+1, A(s) = (s+1)? = A € R2*2 with repeated
s+1 s+1

yet non-deficient A\; = Ap = —1.

e Th. 7-M2: (A,B,C,D) is a minimal realization of proper rational
H(s) € C™7 iff dim A = deg(H(s))
where deg(H(s)) = order of LCD of all minors of H(s).

Minimal Realization: Example

e Th. 7-M2: (A,B,C,D) is a minimal realization of proper rational
H(s) € C™*P iff dim A = deg(H(s))
where deg(H (s)) = order of LCD of all minors of H(s).

o (Ex 7.6):
4510 3
2541 542
H(s) = il
(2s+1)(s+2) (s+2)2
T J— « A= =
e Using (4, B, C, D) = ssdata(H): b
-0.5000 0 0 0 0 0 2.0000 0
0 -2.5000 -1.0000 0 0 0 0.5000 0
0 1.0000 0 0 0 0 0 0
0 0 0 -2.0000 0 0 0 2.0000
0 0 0 0 -4.0000 -2.0000 0 0.5000
0 0 0 0 2.0000 0 0 0
- O_r
3.0000 0 0 1.5000 0 0
0 0 1.0000 0 0 1.0000 2 0
0 0
. . Ar B_r
e Using (A,, By, Cy, D,) = minreal(sysorg):
-0.7192 0.4546  -0.2440 1.9704 0.1037
0.5904  -1.7353 0.5292 0.4723  -0.1052
0.0508 0.0228 2.0455 0.0406 2.0476
Cr=
0_r -
-2.7962  -0.9041 1.5603 0
oDongjun Lee -0.1971 0.8267 0.0525 o o El:
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Balanced Model Reduction

e Now, suppose that all modes are stablizable and detectable. Then, it
would be possible to use only the CTRB/OBSV part of Kalman decom-
position to describe the system I0-behavior.

Even among these CTRB/OBSV modes, some may be easy to control/observe

(i-e., large 27 W,z and =T W,z), yet, others may be very difficult to do so
(i-e., non-zero, yet, very small z7 W,z and =7 W,zx).
If some stabilizable/detectable modes are very difficult to control/observe

(i.e., almost unCTRB/unOBSV), their omission will not affect the sys-
tem’s I0-behavior that much => model reduction.

Model reduction is particularly useful/necessary to reduce the model ob-
tained by spatial discretization of PDE systems (e.g., deformable object).

It would then nice if we can "realign” the state vectors so that some
modes are easy to control/observe while other modes are difficult to con-

©Dongjun Lee

trol/observe, i.e., define similarity-TF s.t.,

W, =W, = X = diag[o1, 02, ...0]

and retain only modes with large enough o;. In this case, realization has

"balanced” W,, W, = balanced model reduction.

R
U

Equivalence of WcWo

w/

Th. 7-5: (4, B,C) and (4, B,C) are minimal realization (i.e., also equivalent

z = P71%). Then, W, - W, and W, - W, have the same eigenvalues and

futher all of them are real and non-negative.

oDongjun Lee

e For (A,C), we can compute W, from AW, + W.AT = —BBT.
e Using A = PAP~! and B = PB, we can then obtain:
AP"'W P T+ P'W.P TAT = -BBT
implying that W, = P~'W_P~T. Similarily, W, = PTW,P.
e Thus, W.W, = P~'W_.W,P = W,W, and W_W, share same eigenvalues
(rather not suprising...).
101
e W.>0=>W,.=QTA2A2Q = RTR with A = diag[A, ..., An], Xi > 0.
e Further, using det(AB) = det(A) det(B) with det(A~!) = 1/ det(A),
det(A — W, W,) = det(ARTR~T — RTRW,)
= det(RT)(MI — RW,RT) det(R™T) = det(\ — RW,RT)

implying that A\;(W.W,) > 0 (rather suprising!).

R
&
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Balanced Realization

Th. 7-6: For any minimal realization (A, B,C), there exists an equivalent
realization (A4, B, C) s.t.,

W, = W, = & = diag[oy, 02, ...00)

e From Th. 7-5, since {\;(RW,RT)} = {(\(W.W,)}, if W. =W, =3,
RW,RT =ux?UT, vTu=1
e Further, using W, = RTR and W.W, = PW.W,PL,
¥ =W, W, =PWW,P!=PRTU.32.UTRTP!

1 1 -
Choose \P‘l = RTUY "2 with P = EEUTR‘T‘=> W.=PW.P1l=3%
and W, = PW_. Pl =3%.
We can also decompose the system s.t.,

z\ _ [ An A | (% B _ z;
G-l 2] )+ B ]w v=to @1 (G) e
e Reduced system: Z; = A11%; + Biu, y = C1Z1 + Du, whose steady-state
behavior may be altered (e.g., different dc-gain).

¢ Inject original steady-state behavior: Ty = —Az_zl (A21Z1 + Bau) =

©Dongjun Lee

Balanced Reduction

Th. 7-6: For any minimal realization (A, B,C), there exists an equivalent
realization (4, B, C) s.t.,

W, = W, = X = diag|o1, 03, ...00)

1 _ _
e P1=RTUY "2 with W,=W, =X and
71\ _ [ An A | (7 By _ Z
@)=la 2] @)+ 5 ] vt @)+

¢ Reduced system with steady-state behavior possibly altered:

'571 = A11% + Biu, y=C1Z; + Du

e To retain original steady-state behavior, using Zs = —A;zl (A21Z1 + Bau),
T1 = (A1 — A1245y A21)T1 + (B1 — A1a Ay, Bo)u
Y= (01 - 02A2_21A21)51 + (D - 02A2_2132)’u.

O
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Balanced Reduction: Example
eig(A) A= B=
sys = ss(A,B.C.D): -1 -1 -1 -3 -2 4 ) 4 > eig(h)
‘ g -3 6 -9 3 0 3 0
W.c = gram(sys, c'): 4 -1 -5 -4 -6 0 -6 0 ans =
W.o = gram(sys. 0'): 3 1 -2 -4 -1 1 -1 1
-3 -1 2 4 -1 1 -1 1 -2.0097 + 6.2403i
[U_c.S c.V_c] = svd(¥ c): 6 -2 4 5 2 A 2 1 -2.0097 - 6.2403i
R = sqrtm(S_c)*U_c': C= D= -4.2100 + 4.1231i
[U.S2.V] = svd(R«#_o*R"): -4.2100 - 4.1231i
Signa = sqrtm(S2): 1 2 3 0 -5 - o o -1.0824 + 0.0000i
-1.4782 + 0.0000i
3 1 -2 -4 -1 1 0 0
Step Response nSigma =
" From: In(1) ] From: In(2)
3.9784 0 0 0 0 0
~ 0 1.9285 0 0 0 0
c 5 - 0 0 1.3993 0 0 0
3 0 0 0 0.9521 0 0
e ol e — 0 0 0 0 0.4028 0
0 0 0 0 0 0.1857
8
=
€
< =
1\
s —
\/
-2
0 2 4 6 80 2 4 6 8
Time (seconds)
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