Controllability and Observability

Chen Ch. 6-7 Rugh Ch. 9-11

Dongjun Lee (이동준)

Department of Mechanical & Aerospace Engineering Seoul National University

Dongjun Lee

Some Linear Algebra

- Consider a matrix $L \in \mathbb{R}^{m \times p}$, which may then be thought of as a linear mapping $L : \mathcal{X} \to \mathcal{Y}$ from the domain $\mathcal{X} \approx \mathbb{R}^p$ to the range $\mathcal{Y} \approx \mathbb{R}^m$.
- $\begin{array}{l} \overset{\times}{-} & \text{ Range-space } \mathcal{R}(L) := \{y \in \Re^m \mid y = Lx, \text{ for some } x \in \Re^p\} \in \mathcal{Y}. \\ & \text{ Null-space } \mathcal{N}(L) := \{x \in \Re^p \mid Lx = 0\} \in \mathcal{X}. \end{array}$
 - L is called **surjective** (or onto) if $\mathcal{R}(L) = \mathcal{Y}$ (i.e., column rank of L = m with $\mathcal{Y} = \Re^m$).
 - L is called **injective (or one-to-one)** if $\mathcal{N}(L) = \emptyset$ (i.e., if $x_1 \neq x_2$, $Lx_1 \neq Lx_2$; not many-to-one).
 - -L is called **bijective** if surjective and injective.
 - Fundamental theorem of linear algebra (w.r.t. Euclidean metric $||x||^2 := x^T I x$):
- $-\Re^m = \mathcal{R}(L) \oplus \mathcal{N}(L^T), \text{ i.e., } \forall y \in \Re^m, \exists x \in \Re^p \text{ and } y_n \in \Re^m \text{ s.t.,}$ $y = Lx + y_n \text{ with } L^T y_n = 0 \text{ and } ||y||^2 = ||Lx||^2 + ||y_n||^2.$
 - $-\frac{\Re^p = \mathcal{R}(L^T) \oplus \mathcal{N}(L), \text{ i.e., } \forall x \in \Re^p, \ \exists y \in \Re^m \text{ and } x_n \in \Re^p \text{ s.t.,}}{x = L^T y + u_n} \text{ with } Lu_n = 0 \text{ and } ||x||^2 = ||L^T y||^2 + ||u_n||^2.$
 - $-\mathcal{R}(LL^T) = \mathcal{R}(L) \text{ and } \mathcal{N}(L) = \mathcal{N}(L^TL).$

Dongjun Lee

Controllability

• Consider a dynamical system with state transition map:

$$x(t) = s(t, t_o, x_o, u([t_o; t_1]))$$

We say it is **controllable on** $[t_o, t_1]$, $t_1 > t_o$ if $\forall x_o, x_f$, $\exists u([t_o; t_1])$ s.t., $x_f = s(t_1, t_o, x_o, t([t_o; t_1]))$. We also say it is **controllable at** t_o , if $\forall x_o, x_f$, $\exists t_1 > t_o$ and $u([t_o; t_1])$ s.t., $x_f = s(t_1, t_o, x_o, t([t_o; t_1]))$.

- CTRB at t_o implies the system can be transferred from any initial state x_o at t_o to any finial state t_f in finite time.
- For LTV system, two stat'ts equivalent and CTRB may change w/time (i.e., t_o important). For LTI system, if CTRB at t_o , CTRB $\forall t$.
- CTRB is a fundamental property to check before any control design.
- If some states not CTRB, yet, still AS \Rightarrow stabilizable; if not CTRB and unstable \Rightarrow unstable pz-cancelation.

Effect of State-FB on CTRB

• Consider a dynamical system with state transition map:

$$x(t) = s(t, t_o, x_o, u([t_o; t_1])$$

We say it is controllable on $[t_o, t_1]$, $t_1 > t_o$ if $\forall x_o, x_f$, $\exists u([t_o; t_1])$ s.t., $x_f = s(t_1, t_o, x_o, t([t_o; t_1]))$. We also say it is controllable at t_o , if $\forall x_o, x_f$, $\exists t_1 > t_o$ and $u([t_o; t_1])$ s.t., $x_f = s(t_1, t_o, x_o, t([t_o; t_1]))$.

- A system $\dot{x} = f(x, u, t)$ is CTRB iff CTRB under static state feedback.
 - CTRB of $\dot{x} = f'(x, v, t)$ & $\dot{x} = f(x, u, t)$ equivalent w/ u = v g(x, t).
 - Static state-FB doesn't change original CTRB.
- If $\dot{x} = f(x, u, t)$ with dynamic state-FB is CTRB, original system is CTRB. Even if original CTRB, dynamic state-FB may not CTRB (un-OBSV).
 - $-v=u+g(x,\xi,t):(x_o,\xi_o) o (x_1,\xi_1)\Rightarrow u=v-g(x,\xi,t):x_o o x_1.$
 - $-\,$ Even dynamic state-FB can't make un-CTRB system CTRB.

2

ENGIN

Reachability Map and CT-LTV CTRB

• Consider CT-LTV system $\dot{x} = A(t)x + B(t)u$, $x(t_o) = x_o$ with the state response given by:

$$x(t_1) = \Phi(t_1,t_o)x_o + \int_{t_o}^{t_1} \Phi(t_1, au)B(au)u(au)d au$$

• Define reachability map:

$$L_r(t_o,t_1)(u(\cdot)) := \int_{t_o}^{t_1} \Phi(t_1, au) B(au) u(au) d au$$

which is a linear map w.r.t. the control input $u([t_o; t_1])$.

- Th. 6-11R1: CT-LTV system is CTRB on $[t_o, t_1]$ iff $L_r(t_o, t_1)$ is surjective (i.e., can produce any vector in \Re^n).
- Th. 6-11R2: If CT-LTV system is CTRB on $[t_o, t_1]$, it is also CTRB on $[t_o, t_2] \ \forall t_2 \geq t_1.$
 - (Pf) Since CTRB on $[t_o, t_1]$, can obtain any x_1 at $t_1 \Rightarrow$ given x_2 , choose x_1 s.t., $x_2 = \Phi(t_2, t_1)x_1 \Rightarrow \text{can steer to } x_2 \text{ using } u([t_o, t_1])$: $x_0 \to x_1$ and $u([t_1, t_2]) = 0$ w/ $x_2 = \Phi(t_2, t_1)x_1$.
 - For CT-LTV system, CTRB on $[t_o, t_1]$ doesn't imply CTRB on $[t_o, t_2]$, $t_2 < t_1$. For CT-LTI, CTRB on $[t_o, t_1]$ implies CTRB for any interval.

Reachability Map and DT-LTV CTRB

• Consider DT-LTV system $x_{k+1} = A(k)x_k + B(k)u_k$ $x(k_o) = x_o$ with the state response given by: with $\Phi(k_1, k_o) = \prod_{k=k_o}^{k-1} A(k)$,

$$x(k_1) = \Phi(k_1,k_o)x_o + \sum_{k=k_o}^{k_1-1} \Phi(k_1,k+1)B(k)u(k)$$
 ity map:

• Reachability map:
$$L_r(k_o,k_1)(u_{k_o},...,u_{k_1-1}) := \sum_{k=k_o}^{k_1-1} \Phi(k_1,k+1)B(k)u_k$$

$$= L_r(k_o,k_1)U_{k_o;k_1-1}$$

where
$$L_r(k_o, k_1) := [\Phi_{k_1, k_o + 1} B_{k_o}, \Phi_{k_1, k_o + 2} B_{k_o + 1}, \dots, \Phi_{k_1, k_1 - 1} B_{k_1 - 1}] \in \Re^{n \times p(k_1 - k_o)}$$
 and $U = [u_{k_o}, \dots, u_{k_1 - 1}]^T \in \Re^{p(k_1 - k_o)}$.

- Th. 6-11RD1: DT-LTV system is CTRB on $[k_o, k_1]$ iff $L_r(k_o, k_1)$ is surjective (i.e., column rank of $L_r(k_o, k_1) = n$).
- Th. 6-11RD2: If DT-LTV system is CTRB on $[k_o, k_1]$ and A(k) is non-singular $k_1 \leq k \leq k_2$, it is also CTRB on $[k_0, k_2]$.
 - Non-singular A(k) necessary to pull x_2 to x_1 via invertible Φ_{k_2,k_1} .
 - DT-LTV CTRB on $[k_o, k_1]$ doesn't imply CTRB on $[k_o, k_2], k_2 < k_1$.

DT-LTI CTRB on $[k_0, k_1]$ implies CTRB for any interval.

Reachability Grammian

• Consider CT-LTV system $\dot{x} = A(t)x + B(t)u$, with reachability map:

$$L_r(0,T)(u(\cdot)) := \int_0^T \Phi(T, au) B(au) u(au) d au$$

• If we split [0,T] into N sub-interval, we have:

$$L_r(0,T)(u(\cdot)) \approx \sum_{k=1}^N \Phi(T,\frac{k}{N}T)B(\frac{k}{N}T)u(\frac{k}{N}T)\frac{T}{N} =: \bar{L}_r(0,T)U$$

where $\bar{L}_r(0,T):=[\Phi(T,\frac{1}{N}T)B(\frac{1}{N}T),...,\Phi(\frac{N}{N}T,T)B(\frac{N}{N}T)]\times \frac{T}{N}$ and $U:=[u(\frac{1}{N}T),...,u(\frac{N-1}{N}T),u(T)]^T$.

- Since $\mathcal{R}(L_rL_r^T) = \mathcal{R}(L_r)$ and T > 0, CTRB on [0, T] iff rank $(\bar{L}_r\bar{L}_r^T) = n$.
- With $\frac{T}{N}$ removed and $N \to \infty$, we then achieve reachability grammian:

$$W_r(t_o,t_1) := \int_{t_o}^{t_1} \Phi(t_1, au) B(au) B^T(au) \Phi^T(t_1, au) d au$$

which is sometimes also called **controllability grammian** (Chen).

Reachability Grammian and CTRB • For CT-LTV system $\dot{x} = A(t)x + B(t)u$, reachability grammian is given

 $W_r(t_o,t_1) := \int_{t_1}^{t_1} \Phi(t_1, au) B(au) B^T(au) \Phi^T(t_1, au) d au$

- $-W_r(t_o,t_1)$ is symmetric and PSD (if singular) or PD (if non-singular).
- $-W_r(t_o,t_1)$ captures not only how input u can directly affect x via B(t), but also through the dynamics Φ over $[t_o, t_1]$.
- Controllability (to zero) grammian (Rugh):

$$W_c(t_o,t_1) := \int_{t_o}^{t_1} \Phi(t_o, au) B(au) B^T(au) \Phi^T(t_o, au) d au$$

is related to $W_r(t_o, t_1)$ by $W_r(t_o, t_1) = \Phi(t_1, t_o)W_c(t_o, t_1)\Phi^T(t_1, t_0)$.

- For CT-LTI, $W_r(t_o, t_1) = \int_0^{t_1 t_o} e^{A\tau} B B^T e^{A^T \tau} d\tau$ and $W_c(t_o, t_1) = \int_0^{t_1 t_o} e^{-A\tau} B B^T e^{-A\tau} d\tau$.
- DT-LTV system: $W_r(k_o, k_1) := \sum_{k=k_o}^{k_1-1} \Phi(k_1, k+1) B(k) B^T(k) \Phi^T(k_1, k_1) = L_r(k_o, k_1) L_r^T(k_o, k_1) \in \Re^{n \times n}$
- Th. 6-11R3: CT-LTV system is CTRB on $[t_o, t_1]$ iff its reachability grammian $W_r(t_o, t_1)$ is non-singular.

CTRB of CT-LTV System - I

Th. 6-11: CT-LTV system is CTRB at t_o iff $\exists t_1 > t_o$ s.t., the controllability grammian $W_r(t_o, t_1)$ is non-singular.

• (\Leftarrow): Recall $x(t_1) = \Phi(t_1, t_o)x_o + \int_{t_o}^{t_1} \Phi(t_1, \tau)B(\tau)u(\tau)d\tau$. Then, with $u(t) := -B^T(t)\Phi^T(t_1, t)W_r^{-1}(t_o, t_1)[\Phi(t_1, t_o)x_o - x_1]$

we can steer from any $x_o = x(t_o)$ to any $x_1 = x(t_1) \Rightarrow \text{CTRB}$ on $[t_o, t_1] \Rightarrow \text{CTRB}$ at t_o (u(t) is the min. norm control w.r.t. Euclidean metric).

• (\Rightarrow) Suppose $W_r(t_o, t_1)$ singular for all $t_1 \to \text{should't be CTRB?}$ If $W_r(t_o, t_1)$ singular, $W_r(t_o, t_1)$ only PSD $\Rightarrow \exists v \in \Re^n \text{ s.t.}, \forall t_1 \geq t_o$,

$$0 = v^T W_r(t_o, t_1) v = \int_{t_o}^{t_1} ||B^T(\tau) \Phi^T(t_1, \tau) v|| d\tau$$

v in un-CTRB subspace

i.e., $v^T \Phi(t_1, \tau) B(\tau) \equiv 0$, $\forall \tau \in [t_o, t_1]$, $\forall t_1 \geq t_o$ (from continuity of B, Φ). Now, suppose CTRB at $t_o \Rightarrow \exists u(t)$ to drive x from $x_o := \Phi(t_o, t_1)v$ to $x_1(t_1) = 0$ for some $t_1 \geq t_o$, i.e., $0 = v + \int_{t_o}^{t_1} \Phi(t_1, \tau) B(\tau) u(\tau) d\tau$. Yet,

$$0=v^Tv+v^T\int_{t_o}^{t_1}\Phi(t_1, au)B(au)u(au)d au=v^Tv
eq 0$$

Dongjun Lee

MAN ENGINEERIN

CTRB of CT-LTV System - II

- Th. 6.11 requires $\Phi(t_1, \tau) \Rightarrow$ better if can check CTRB w/o computing Φ .
- Define $M_o(t) := B(t)$ and

effect thru A effect of dB/o

$$M_{m+1}(t) := -A(t)M_m(t) + \frac{d}{dt}M_m(t)$$

• We then have recursive relation: $\frac{\partial}{\partial t}[\Phi(t_2,t)M_m(t)]=\Phi(t_2,t)M_{m+1}(t),$ e.g., from $\Phi(t_2,t)B(t)=\Phi(t_2,t)M_o(t),$

$$\frac{\partial}{\partial t} [\Phi(t_2, t) M_o(t)] = -\Phi(t_2, t) A(t) M_o(t) + \Phi(t_2, t) \frac{d}{dt} M_o(t) = \Phi(t_2, t) M_1(t)$$

Th. 6-12: CT-LTV system with $A(t), B(t) \in \mathcal{C}^{n-1}$ is CTRB on $[t_o, t_1]$ if, $\exists t_1 > t_o \text{ s.t.},$ $\operatorname{rank}[M_o(t_1), M_1(t_1), ..., M_{n-1}(t_1)] = n$

• Suppose not CTRB $\Rightarrow W_r(t_o, t_1)$ singular $\forall t_1 > t_o \Rightarrow \exists v \in \Re^n \text{ s.t.}$

$$0 = v^T W_r(t_o, t_1) v = \int_{t_o}^{t_1} ||B^T(\tau) \Phi^T(t_1, \tau) v||^2 d\tau$$

i.e., $v^T \Phi(t_1, \tau) M_o(\tau) \equiv 0 \Rightarrow v^T \Phi(t_1, \tau) M_1(\tau) \equiv 0... \Rightarrow v^T \Phi(t_1, \tau) M_m(\tau) \equiv 0 \Rightarrow v^T \Phi(t_1, \tau) [M_o(\tau), M_1(\tau), ..., M_m(\tau)] = 0 \ \forall \tau \geq t_o$ implying a contradiction:

 $[M_o(au), M_1(au), ..., M_m(au)] < n, \quad \forall au \ge t_o$

CT-LTV CTRB: Example 6.13

Th. 6-12: For CT-LTV system with $A(t), B(t) \in \mathcal{C}^{n-1}$, define $M_o(t) := B(t)$ and $M_{m+1}(t) := -A(t)M_m(t) + \frac{d}{dt}M_m(t)$. Then, it is CTRB on $[t_o, t_1]$ if, $rank[M_o(t_1), M_1(t_1), ..., M_{n-1}(t_1)] = n$

• This is the CT-LTV version of the well-known CT-LTI CTRB condition:

$$\operatorname{rank}(\mathcal{C}) := \operatorname{rank}[B, AB, A^2B, ..., A^{n-1}B] = n$$

- $A(t)M_m(t)$ and $\frac{d}{dt}M_m(t)$ respectively represents how the m-th propagated input can affect the state thru the dynamics A(t) and thru the timevarying component of B(t).
- (Ex 6.13:) Consider $\dot{x} = \begin{bmatrix} t & -1 & 0 \\ 0 & -t & t \\ 0 & 0 & t \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u$.
 - $-M_o(t) = B(t) = [0; 1; 1].$
 - $-M_1(t) = -A(t)M_o + \frac{d}{dt}M_o = [1;0;-t].$
 - $-M_2(t) = -A(t)M_1 + \frac{d}{dt}M_1 = [-t; t^2; t^2 1].$
 - $ag{rank} [M_o M_1 M_2] = 3$ with determinant $t^2 + 1$ CTRB at every t.

Minimum Norm Control

- Recall $u(t) = -B^T(t)\Phi^T(t_1,t)W_r^{-1}(t_o,t_1)[\Phi(t_1,t_o)x_o-x_1],$ which is **minimum**norm control, i.e., $\min_{u} \int_{t_o}^{t_1} u^T(t) u(t) dt$ with (x_o, x_1) .
- Consider DT-LTV system with

$$x(t_1) = \Phi(k_1, k_o)x_o + L_r(k_o, k_1)U_{k_o:k_1-1}$$

• Minimum-norm control is then given by $\min_{U \in \Re^{p(k_1-k_0)}} \frac{1}{2}U^T U$, subject to $L_r(k_o, k_1)U = x_1 - \Phi(k_1, k_o)x_o =: x_d$, or, using Lagrange-multiplier $\lambda \in \Re^n$,

$$\min_{U\in\Re^{p(k_1-k_o)}}L(U,\lambda):=rac{1}{2}U^TU+\lambda^T[L_r(k_1,k_o)U-x_d]$$

• Necessary conditions for optimality:

$$\frac{\partial L}{\partial U}\Big|_{U^*,\lambda^*} = 0 \quad \Rightarrow \quad U^* + L_r^T(k_o, k_1)\lambda^* = 0$$

$$\frac{\partial L}{\partial \lambda}\big|_{U^*,\lambda^*} = 0 \quad \Rightarrow \quad L_r(k_o,k_1)U^* - x_d = 0$$

i.e.,
$$\lambda^* = -W_r^{-1}(k_o,k_1)L_r(k_o,k_1)U^* = -W_r^{-1}(k_o,k_1)x_d$$
 and

$$U^* = -L_r^T(k_o, k_1)W_r^{-1}(t_o, t_1)[\Phi(k_1, k_o)x_o - x_1]$$

with the optimal cost $L(U^*, \lambda^*) = \frac{1}{2} x_d^T W_r^{-1}(k_o, k_1) x_d$.

ENGIN

Minimum Norm Control

• For DT-LTV system, the minimum-norm control $\min_{U \in \Re^{p(k_1-k_o)}} \frac{1}{2}U^T U$, subject to $L_r(k_o, k_1)U = x_1 - \Phi(k_1, k_o)x_o$ is

$$U^* = -L_r^T(k_o,k_1)W_r^{-1}(t_o,t_1)[\Phi(k_1,k_o)x_o - x_1]$$

with the optimal cost $L^* = \frac{1}{2}x_d^T W_r^{-1}(k_o, k_1)x_d$.

• For CT-LTV system, the minimum-norm control $\min_{u} \int_{t_o}^{t_1} \frac{1}{2} u^T(t) u(t) dt$ subject to $\int_{t_o}^{t_1} \Phi(t_1, \tau) B(\tau) u(\tau) d\tau = x_1 - \Phi(t_1, t_o) x_o$ is

$$u(t) = -B^{T}(t)\Phi^{T}(t_{1}, t)W_{r}^{-1}(t_{o}, t_{1})[\Phi(t_{1}, t_{o})x_{o} - x_{1}]$$

with the optimal cost $L^* = \frac{1}{2}x_d^T W_r^{-1}(t_o, t_1)x_d$.

- The larger λ_i of W_c is, the easier to control x along the direction of its eigenvector; if not CTRB, the cost of control becomes ∞ .
- Longer the final time $t_1 \Rightarrow \text{larger } W_r(t_o, t_1) \Rightarrow \text{easier to attain } x_1 = x(t_1).$
- From $W_r(t_o, t_1) = \int_{t_o}^{t_1} \Phi(t_1, \tau) B(\tau) B^T(\tau) \Phi^T(t_1, \tau) d\tau$,

$$\frac{\partial 2L^*}{\partial t_o} = x_d^T \frac{\partial W_r^{-1}}{\partial t_o} x_d = -x_d^T W_r^{-1} \frac{\partial W_r}{\partial t_o} W_r^{-1} x_d = x_d^T W_r^{-1} \Phi B B^T \Phi W_r^{-1} x_d \geq 0$$

i.e., the later t_o is, the more difficult to control to attain $x_1 = x(t_1)$.

ENGINEERIN

Controllability of CT-LTI System

Th. 6-1: For CT-LTI system, the following statements are equivalent:

- 1. (A, B) is CTRB.
- 2. CTRB gramian $W_r(t) = \int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau$ is non-singular $\forall t > 0$.
- $3. \ \operatorname{rank}(\mathcal{C}) := \operatorname{rank}\left[\begin{array}{cccc} B & AB & A^2B & \dots & A^{n-1}B \end{array}\right] = n, \text{ where } \mathcal{C} \in \Re^{n \times np}.$
- 4. $\begin{bmatrix} A \lambda I & B \end{bmatrix} \in \Re^{n \times (n+p)}$ has full-row rank $\forall \lambda(A)$.
- 5. If A is Hurwitz, $AP + PA^T = -BB^T$ has unique PD solution $P = W_r(\infty)$.
- $(1 \leftrightarrow 2)$: Already shown for CT-LTV system in Th. 6-11.
- $(3 \rightarrow 2)$: Already shown in Th. 6-12.
- $(2 \to 3)$: Suppose rank $(C) < n \Rightarrow \exists v \in \Re^n \text{ s.t.},$

$$v^T \mathcal{C} = 0 \quad \Rightarrow \quad v^T A^k B = 0, \ \forall k = 0, 1, ..., n-1$$

Further, using Cayley-Hamilton theorem (i.e., given CE of A, $\det(\lambda I - A) = \lambda^n + \alpha_1 \lambda^{n-1} + ... + \alpha_n A$, $\Delta(A) = A^n \alpha_1 A^{n-1} + ... + \alpha_n I = 0$),

$$v^T e^{At} B = v^T [I + At + \frac{A^t t^2}{2!} + ...] B = v^T [I + \beta_1(t)A + ... + \beta_{n-1}(t)A^{n-1}] B = 0$$

implying $v^TW_r(t)v=\int_0^t||v^Te^{A au}B||^2d au=0,$ i.e., $W_r(t)$ is singular $orall t \geqslant 0$

CT-LTI System CTRB (cont'd)

Th. 6-1: For CT-LTI system, the following statements are equivalent:

- 1. (A, B) is CTRB.
- 2. CTRB gramian $W_r(t) = \int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau$ is non-singular $\forall t > 0$.
- 4. $\begin{bmatrix} A \lambda I & B \end{bmatrix} \in \Re^{n \times (n+p)}$ has full-row rank $\forall \lambda(A)$.
- 5. If A is Hurwitz, $AP + PA^T = -BB^T$ has unique PD solution $P = W_r(\infty)$.
- $(2 \leftrightarrow 5)$: For this, we need an extened version of Lyapunov theorem

Th. 5-6: if A is Hurwitz, $A^TP + PA = -N$ has a unique solution $P := \int_0^\infty e^{A^T t} N e^{At} dt$ for any N.

(Pf: Th. 5-6) Suppose not $\Rightarrow \exists$ another solution P' s.t., $A^T(P-P') +$ $(P - P')A = 0 \Rightarrow e^{A^T t} [A^T (P - P') + (P - P')A] e^{-A^T t} = 0 \Rightarrow \frac{d}{dt} [e^{A^T t} (P - P') e^{At}] = 0 \Rightarrow e^{A^T t} (P - P') e^{At} \Big|_{0}^{\infty} = -(P - P') = 0.$

- (2 \rightarrow 5): From Th. 5-6, a unique P exists w/ $P = W_r(\infty)$, which is well-defined (from A Hurwitz) and PD (from 2).
- (5 \rightarrow 2): Solution $P = W_r(\infty)$ is PD $\Rightarrow W_r(t)$ is also PD $\forall t > 0$ from continuity of e^{At} .

CT-LTI System CTRB (cont'd)

Th. 6-1: For CT-LTI system, the following statements are equivalent:

- 1. (A, B) is CTRB.
- 2. CTRB gramian $W_r(t) = \int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau$ is non-singular $\forall t > 0$.
- $3. \ \, \mathrm{rank}(\mathcal{C}) := \mathrm{rank} \left[\begin{array}{cccc} B & AB & A^2B & \dots & A^{n-1}B \end{array} \right] = n, \, \mathrm{where} \, \, \mathcal{C} \in \Re^{n \times np}.$
- 4. $\begin{bmatrix} A \lambda I & B \end{bmatrix} \in \Re^{n \times (n+p)}$ has full-row rank $\forall \lambda(A)$.
- 5. If A is Hurwitz, $AP + PA^T = -BB^T$ has unique PD solution $P = W_r(\infty)$.
- $(3 \to 4)$: Suppose not, i.e., $\exists q \in \Re^n$ s.t., for some $\lambda_i(A)$,

$$q^{T}[A - \lambda_{i}I B] = 0 \quad \Rightarrow \quad q^{T}A = \lambda_{i}q^{T}, \ q^{T}B = 0$$

$$q^{T}A^{2} - \lambda^{2}q^{T} \qquad q^{T}A^{k} - \lambda^{k}q^{T}q^{T}B$$

$$q^{T}A^{2} = \lambda_{i}^{2}q^{T}, ..., q^{T}A^{k} = \lambda_{i}^{k}q^{T}, q^{T}B = 0$$

This then implies that

$$q^{T}[B AB ... A^{n-1}B] = [q^{T}B \lambda_{i}q^{T}B ... \lambda_{i}^{n-1}q^{T}B] = 0$$

that is, rank(C) < n.

• $(4 \rightarrow 3)$: For this, we need the following theorems.

(E) ENGI

CTRB Invariance and Decomposition

Th. 6-2, 6.3: CT-LTI system CTRB is invariant under any similarity transform $x = P^{-1}\bar{x}$ with

$$\operatorname{rank}(\mathcal{C}) = \operatorname{rank}[B \ AB \ \dots \ A^{n-1}B] = \operatorname{rank}(\bar{\mathcal{C}}) = \operatorname{rank}[\bar{B} \ \bar{A}\bar{B} \ \dots \ \bar{A}^{n-1}\bar{B}]$$

(Pf) This is a direct consequence of: from $\bar{A} = PAP^{-1}$ and $\bar{B} = PB$ with full-rank $P \in \Re^{n \times n}$,

$$\operatorname{rank}[\bar{B}\ \bar{A}\bar{B}\ ...\ \bar{A}^{n-1}\bar{B}] = \operatorname{rank}(P[B\ AB\ ...A^{n-1}B]) = \operatorname{rank}[B\ AB\ ...A^{n-1}B]$$

Th. 6-6: Consider CT-LTI system $\dot{x} = Ax + Bu$, y = Cx + Du, with rank(\mathcal{C}) = $n_1 \leq n$. Then, \exists similarity-TF $x = P^{-1}\bar{x}$ s.t., the transformed system is given by

$$\begin{pmatrix} \dot{\bar{x}}_c \\ \dot{\bar{x}}_{\bar{c}} \end{pmatrix} = \begin{bmatrix} \begin{array}{cc} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{c}} \end{array} \end{bmatrix} \begin{pmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{pmatrix} + \begin{bmatrix} \begin{array}{cc} \bar{B}_c \\ 0 \end{array} \end{bmatrix} u, \quad y = \begin{bmatrix} \begin{array}{cc} \bar{C}_c & \bar{C}_{\bar{c}} \end{array} \end{bmatrix} \begin{pmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{pmatrix} + Du$$

where $\bar{x}_c \in \Re^{n_1}$ and $\bar{x}_{\bar{c}} \in \Re^{n-n_1}$. Further, the CTRB reduced system

$$\dot{\bar{x}}_c = \bar{A}_c \bar{x}_c + \bar{B}_c u, \quad \bar{y} = \bar{C}_c \bar{x}_c + Du$$

is CTRB and has the same TF as the original system.

Dongjun Lee

MIX ENGINEER

Canonical Decomposition - I

Th. 6-6: For CT-LTI system with rank(\mathcal{C}) = $n_1 \leq n$, $\exists x = P^{-1}\bar{x}$ s.t.,

$$\begin{pmatrix} \dot{\bar{x}}_c \\ \dot{\bar{x}}_{\bar{c}} \end{pmatrix} = \left[\begin{array}{cc} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{c}} \end{array} \right] \begin{pmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{pmatrix} + \left[\begin{array}{cc} \bar{B}_c \\ 0 \end{array} \right] u, \quad y = \left[\begin{array}{cc} \bar{C}_c & \bar{C}_{\bar{c}} \end{array} \right] \begin{pmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{pmatrix} + Du$$

where $\dot{\bar{x}}_c = \bar{A}_c \bar{x}_c + \bar{B}_c u$, $\bar{y} = \bar{C}_c \bar{x}_c + Du$ is CTRB has the same original TF.

- $\operatorname{rank}(\mathcal{C}) = n_1 \Rightarrow \operatorname{define} q_i \text{ s.t., } \operatorname{span}[B \ AB \ ... \ A^{n-1}B] \approx \operatorname{span}[q_1 \ q_2 \ ... \ q_{n_1}].$
- Construct $P^{-1} = [q_1 \ q_2 \ ... q_{n_1} \ | \ q_{n_1+1} \ ... q_n] =: [Q_c \ | \ Q_{\bar{c}}], \text{ where } Q_c \in \Re^{n \times n_1} \text{ and } Q_{\bar{c}} \in \Re^{n \times (n-n_1)} \text{ s.t., } \operatorname{rank}[Q_c \ | \ Q_{\bar{c}}] = n.$
- Q_c is then A-invariant, i.e., $\operatorname{span}\{AQ_c\} \in \operatorname{span}\{Q_c\}$ (from CH-theorem).
- Define $P=\left[\begin{array}{c}P_c\\P_{\bar{c}}\end{array}\right]$ s.t., $P_cQ_c=I, P_CQ_{\bar{c}}=0,\, P_{\bar{c}}Q_c=0,\, P_{\bar{c}}Q_{\bar{c}}=I.$
- Then, the transformed matrices are given by

$$PAP^{-1} = \left[\begin{array}{cc} P_cAQ_c & P_cAQ_{\bar{c}} \\ P_{\bar{c}}AQ_c & P_{\bar{c}}AQ_{\bar{c}} \end{array} \right], \quad PB = \left[\begin{array}{c} P_cB \\ P_{\bar{c}}B \end{array} \right], \quad CP^{-1} = \left[CQ_c \mid CQ_{\bar{c}} \right]$$

where $P_{\bar{c}}AQ_c = 0$ (from A-invariance of Q_c) and $P_{\bar{c}}B = 0$ (from $P_{\bar{c}}Q_c = 0$) \Rightarrow transformed dynamics structure proved.

©Dongjun Le

Canonical Decomposition - II

Th. 6-6: For CT-LTI system with rank(\mathcal{C}) = $n_1 \le n$, $\exists x = P^{-1}\bar{x}$ s.t.,

$$\begin{pmatrix} \dot{\bar{x}}_c \\ \dot{\bar{x}}_{\bar{c}} \end{pmatrix} = \begin{bmatrix} \begin{array}{cc} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{c}} \end{array} \end{bmatrix} \begin{pmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{pmatrix} + \begin{bmatrix} \begin{array}{cc} \bar{B}_c \\ 0 \end{array} \end{bmatrix} u, \quad y = \begin{bmatrix} \begin{array}{cc} \bar{C}_c & \bar{C}_{\bar{c}} \end{array} \end{bmatrix} \begin{pmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{pmatrix} + Du$$

where $\dot{\bar{x}}_c = \bar{A}_c \bar{x}_c + \bar{B}_c u$, $\bar{y} = \bar{C}_c \bar{x}_c + Du$ is CTRB has the same original TF.

- $\bar{A}=PAP^{-1}, \ \bar{B}=PB, \ \text{with} \ \bar{A}_c=P_cAQ_c, \ \bar{B}_c=P_cB \ \text{and} \ \bar{C}_c=CQ_c.$
- CTRB of (\bar{A}, \bar{B}) : using the structures of \bar{A}, \bar{B} ,

$$\bar{\mathcal{C}} = \begin{bmatrix} \bar{B}_c & \bar{A}_c \bar{B}_c & \dots & \bar{A}^{n_1-1} \bar{B}_c \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

with $\operatorname{rank}(\bar{\mathcal{C}}) = \operatorname{rank}(\bar{\mathcal{C}}_c) = n_1$ (due to CH-therorem).

• From $H(s) = C(sI - A)^{-1}B + D = CP^{-1}(sI - \bar{A})^{-1}PB = D$ and the structure of the transformed dynamics:

$$H(s) = \left[egin{array}{cc} ar{C}_c & ar{C}_{ar{c}} \end{array}
ight] \left[egin{array}{cc} (sI - ar{A}_c)^{-1} & \star \\ 0 & (sI - ar{A}_{ar{c}})^{-1} \end{array}
ight] \left[egin{array}{cc} ar{B}_c \\ 0 \end{array}
ight] + D$$

$$= ar{C}_c (sI - ar{A}_c)^{-1} ar{B}_c + D$$

Dongjun Lee

MPR ENGINEERIN

CT-LTI System CTRB (cont'd)

Th. 6-1: For CT-LTI system, the following statements are equivalent:

- 1. (A, B) is CTRB.
- 2. CTRB gramian $W_r(t) = \int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau$ is non-singular $\forall t > 0$.
- 4. $\begin{bmatrix} A \lambda I & B \end{bmatrix} \in \Re^{n \times (n+p)}$ has full-row rank $\forall \lambda(A)$.
- 5. If A is Hurwitz, $AP + PA^T = -BB^T$ has unique PD solution $P = W_r(\infty)$.
- $(4 \rightarrow 3)$: Suppose rank $(C) < n \Rightarrow$ from Th. 6-6, can transform with

$$ar{A} = \left[egin{array}{cc} ar{A}_c & ar{A}_{12} \ 0 & ar{A}_{ar{c}} \end{array}
ight], \;\; ar{B} = \left[egin{array}{cc} ar{B}_c \ 0 \end{array}
ight]$$

Denote an eigenvalue of $\bar{A}_{\bar{c}}$ by λ_i w/ $q_i^T \bar{A}_{\bar{c}} = \lambda_i q_i^T \Rightarrow q_i^T (\bar{A}_{\bar{c}} - \lambda_i I) = 0$. Define $q := [0; q_i]$ (i.e., (λ_i, q_i) is an **un-CTRB mode**). Then,

$$q^T \left[\bar{A} - \lambda_i I \ \bar{B} \right] = \begin{pmatrix} 0 \\ q_i \end{pmatrix}^T \left[\begin{array}{ccc} \bar{A}_c - \lambda_i I & \bar{A}_{12} & \bar{B}_c \\ 0 & \bar{A}_{\bar{c}} - \lambda_i I & 0 \end{array} \right] = 0$$

i.e., item 4 violated for (A,B) w/ CTRB invariance btw (A,B) and (\bar{A},\bar{B})

Example: Cart-Pendulum

$$M\ddot{y}=u-mg heta,~~ML\ddot{ heta}=(m+M)g heta-u$$

with 4 states $x = [y, \dot{y}, \theta, \dot{\theta}]$ and or 2-DOF with 1 control 1 input $u \Rightarrow$ under-actuated unstable system ⇒ can control all 4 states by one control?

- State-space representation: $\dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{m}{M}g & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{m+N}{ML}g & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ -\frac{1}{ML} \end{bmatrix}$
- CTRB space: $\mathcal{C} = \mathrm{span} \left[egin{array}{cccc} 0 & L & 0 & -mLg \\ L & 0 & -mLg & 0 \\ 0 & -1 & 0 & (m+M)g \\ -1 & 0 & (m+M)g & 0 \end{array} \right]$

- Gravity is necessary for CTRB by breaking symmetry
- If not gravity ⇒ not CTRB (pendubot, acrobot)

Example: CTRB Decomposition

- CT-LTI system: $\dot{x} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x.$
- Define CTRB transformation: $x = P^{-1}\bar{x} = [Q_c \ Q_{\bar{c}}]\bar{x}$. -0.7071 0.2016
- CTRB space: $Q_c = \text{orth}(\text{ctrb}(A, B))$ (2-dim)
- unCTRB space: $Q_{nc} = \text{null}(Q'_c)$ (1-dim)
- $\bullet \ \, \bar{A} = PAP^{-1}, \, \bar{B} = PB, \, \bar{C} = CP^{-1}, \, \bar{D} = D.$
- Not CTRB and not stabilizable

•
$$H(s) = \begin{bmatrix} \frac{s^2 - 1}{s^3 - 3s^2 + 3s - 1} \\ \frac{2s - 2}{s^2 - 2s - 1} \end{bmatrix} = \begin{bmatrix} \frac{s + 1}{s^2 - 2s + 1} \\ \frac{2}{s - 1} \end{bmatrix} = H_c(s)$$

- Canceled unstable pole s=1 constitutes the unCTRB/unstable state, whereas other two states can be controlled by u.
- Minimal realization with 2 states and OBSV $H_c = (A_c, B_c, C_c, D)$

ENGINEE

0.7071

-0.2851

-1.6406 -0.5553 -0.0000

Observability

Def 6.01: A state-space dynamical system is said to be **observable** on $[t_o, t_1]$, if, for any initial condition $x(t_0)$, given the output y(t) and the input u(t) $\forall t \in [t_0, t_1], \text{ we can uniquely determine } x(t_0).$

- * Equivalent to say estimate x(t) from u(t), y(t), even if $x(t_o)$ unknown.
 - Consider CT-LTV system:

$$\dot{x} = A(t)x + B(t)u, \quad y = C(t)x + D(t)u$$

with the output response given by:

$$y(t) = C(t)\Phi(t,t_o)x_o + C(t)\int_{t_o}^t \Phi(t, au)B(au)u(au)d au + D(t)u(t)$$
 known

- Since y(t), u(t) known $\forall t \in [t_o, t_1]$, OBSV condition boils simply down to: given $\bar{y}(t) = y(t) - C(t) \int_{t_o}^t \Phi(t,\tau) B(\tau) u(\tau) d\tau + D(t) u(t), t \in [t_o,t_1],$ can we estimate x_o by observing $\bar{y}(t) = C(t) \Phi(t,t_o) x_o$?
- That is, equivalently, OBSV of the following simple system:

$$\dot{\bar{x}} = A(t)\bar{x}, \quad \bar{y}(t) = C(t)\Phi(t, t_o)\bar{x}(t_o)$$

ENGINE

Observability Map and Grammian • Now, for CT-LTV system OBSV on $[t_o, t_1]$, we can consider OBSV of

$$\dot{x}(t) = A(t)x(t), \quad y(t) = C(t)x(t) = C(t)\Phi(t, t_o)x(t_o)$$

• Observability map:

$$L_o(t_o, t)(\cdot): x_o \mapsto y(t) = C(t)\Phi(t, t_o)x_o, \quad t \in [t_o, t_1]$$

which is a linear map w.r.t. the argument x_0 .

• For OBSV, this obserability map $L_o(t_o, t)$ should not possess an invariant **null-space**, since, if not, $\exists x_{\bar{o}} \in \Re^n$ s.t.,

$$y(t) = L_o(t_o, t)(x_o + \alpha x_{\bar{o}}) = C(t)\Phi(t, t_o)(x_o + \alpha x_{\bar{o}}), \quad \forall t \in [t_o, t_1]$$

where $x_{\bar{o}}$ at a certain t' could be ok with time-varying information gathering (e.g., rotating $C(t)\Phi(t,t_o)$: cf. persistency of excitation).

• Recall $\mathcal{N}(L_o) = \mathcal{N}(L_o^T L_o)$ and, similarly for $W_r(t_o, t_1)$, we define **observ**ability grammian:

$$W_o(t_o,t_1) := \int_{t_-}^{t_1} \Phi^T(au,t_o) C^T(au) C(au) \Phi(au,t_o) d au$$

ENGIN

Observability of CT-LTV Systems

• Th. 6-O11: CT-LTV system $\dot{x} = A(t)x$, y = C(t)x is observable at t_o , iff $\exists t_1 > t_o$ s.t., the following OBSV grammian $W_o(t_o, t_1)$ is non-singular:

$$W_o(t_o,t_1) = \int_{t_o}^{t_1} \Phi(au,t_o) C^T(au) C(au) \Phi(au,t_o) d au$$

• (Proof) From $y = C(t)x = C(t)\Phi(t, t_o)x_o$, we have

$$\int_{t_o}^{t_1} \Phi^T(au, t_o) C^T(au) y(au) d au = \int_{t_o}^{t_1} \Phi^T(au, t_o) C^T(au) C(t) \Phi(au, t_o) d au \cdot x_o$$

thus, if the above condition holds, x_o is uniquely determined by

$$x_o = W_o^{-1}(t_o,t_1) \int_{t_o}^{t_1} \Phi^T(au,t_o) C^T(au) y(au) d au$$

• Th. 6-O12: Define $N_{m+1}(t) := N_m(t)A(t) + \frac{d}{dt}N_m(t)$ with $N_o(t) := C(t)$. Then, CT-LTV system with $A(t), C(t) \in \mathcal{C}^{n-1}$ is OBSV at t_o if, $\exists t_1 > t_o$ s.t.,

$$rank[N_o(t_1); N_1(t_1); ..., N_{n-1}(t_1)] = n$$

Dongjun Lee

ENGINEERI

Observability of CT-LTI System

Th. 6-1: For CT-LTI system, the following statements are equivalent:

- 1. (A.C) is OBSV.
- 2. OBSV grammian $W_o(t) = \int_0^t e^{A^T \tau} C^T C e^{A \tau} d\tau$ is non-singular $\forall t > 0$.

$$Solution 3. \; \mathrm{rank}(\mathcal{O}) := \mathrm{rank} \left[egin{array}{c} C \ CA \ dots \ CA^{n-1} \end{array}
ight] = n, \; \mathrm{where} \; \mathcal{O} \in \Re^{nm imes n}.$$

- 4. $\begin{bmatrix} A \lambda I \\ C \end{bmatrix} \in \Re^{(n+m) \times n} \text{ has full-column rank } \forall \lambda(A).$
- 5. If A is Hurwitz, $A^TP + PA = -C^TC$ has unique PD solution $P = W_o(\infty)$.

Th. 6-5 (Duality of CTRB & OBSV): For the CT-LTI system,

$$(A, B)$$
 CTRB \Leftrightarrow (A^T, B^T) OBSV; (A, C) OBSV \Leftrightarrow (A^T, C^T) CTRB

- A direct consequence of

$$W_r(0,t) = \int_0^t e^{A au} B B^T e^{A^T au} d au, \ \ W_o(0,t) = \int_0^t e^{A^T au} C^T C e^{A au} d au$$

Dongjun Le

Geometry of CTRB and OBSV

i.e., control successively generated by $e^{At}B$ always orthogonal to $x_{\bar{c}}$.

• If not OBSV, $\exists x_{\bar{o}} \in \Re^n \text{ s.t.}$,

$$x_{\bar{o}}^TW_o(t)x_{\bar{o}}=\int_0^t x_{\bar{o}}^Te^{A^T\tau}C^TCe^{A\tau}x_{\bar{o}}d\tau=\int_0^t ||Ce^{A\tau}x_{\bar{o}}||^2d\tau=0$$

i.e., null-space successively eliminated by Ce^{At} always contains $x_{\bar{o}}$.

OBSV Decomposition - I

Th. 6-O6: For CT-LTI system with rank(\mathcal{O}) = $n_2 \le n$, $\exists x = T^{-1}\bar{x}$ s.t.,

$$\begin{pmatrix} \dot{\bar{x}}_o \\ \dot{\bar{x}}_{\bar{o}} \end{pmatrix} = \left[\begin{array}{cc} \bar{A}_o & 0 \\ \bar{A}_{21} & \bar{A}_{\bar{o}} \end{array} \right] \begin{pmatrix} \bar{x}_o \\ \bar{x}_{\bar{o}} \end{pmatrix} + \left[\begin{array}{cc} \bar{B}_o \\ \bar{B}_{\bar{o}} \end{array} \right] u, \quad y = \left[\begin{array}{cc} \bar{C}_o & 0 \end{array} \right] \begin{pmatrix} \bar{x}_o \\ \bar{x}_{\bar{o}} \end{pmatrix} + Du$$

where $\dot{\bar{x}}_o = \bar{A}_o \bar{x}_o + \bar{B}_o u$, $\bar{y} = \bar{C}_o \bar{x}_o + Du$ is OBSV, has the same original TF.

$$ullet ext{rank}(\mathcal{O}) = ext{rank} \left[egin{array}{c} C \ CA \ dots \ CA^{n-1} \end{array}
ight] = n_2 \Rightarrow ext{construct } Q_{ar{o}} = ext{null}(\mathcal{O}) \in \Re^{n imes (n-n_2)}.$$

- Construct $T^{-1} = [Q_{\bar{o}} \mid Q_o]$, where $Q_o \in \Re^{n \times n_2}$ s.t., rank $[Q_{\bar{o}} \mid Q_o] = n$.
- Null-space of \mathcal{O} is A-invariant, e.g., $Q_{\bar{o}} \in \text{null}(\mathcal{O}) \Rightarrow AQ_{\bar{o}} \in \text{null}(\mathcal{O})$.
- Define $T = \begin{bmatrix} P_{\bar{o}} \\ P_o \end{bmatrix}$ s.t., $P_{\bar{o}}Q_{\bar{o}} = I$, $P_{\bar{o}}Q_o = 0$, $P_oQ_{\bar{o}} = 0$, $P_oQ_o = I$.
- Then, the transformed matrices are given by

$$TAT^{-1} = \left[\begin{array}{cc} P_{\bar{o}}AQ_{\bar{o}} & P_{\bar{o}}AQ_{o} \\ P_{o}AQ_{\bar{o}} & P_{o}AQ_{o} \end{array} \right], \quad TB = \left[\begin{array}{c} P_{\bar{o}}B \\ P_{o}B \end{array} \right], \quad CT^{-1} = \left[CQ_{\bar{o}} \mid CQ_{o} \right]$$

OBSV Decomposition - II

Th. 6-O6: For CT-LTI system with rank(\mathcal{O}) = $n_2 \le n$, $\exists x = T^{-1}\bar{x}$ s.t.,

$$\begin{pmatrix} \dot{\bar{x}}_o \\ \dot{\bar{x}}_{\bar{o}} \end{pmatrix} = \left[\begin{array}{cc} \bar{A}_o & 0 \\ \bar{A}_{21} & \bar{A}_{\bar{o}} \end{array} \right] \begin{pmatrix} \bar{x}_o \\ \bar{x}_{\bar{o}} \end{pmatrix} + \left[\begin{array}{cc} \bar{B}_o \\ \bar{B}_{\bar{o}} \end{array} \right] u, \quad y = \left[\begin{array}{cc} \bar{C}_o & 0 \end{array} \right] \begin{pmatrix} \bar{x}_o \\ \bar{x}_{\bar{o}} \end{pmatrix} + Du$$

where $\dot{\bar{x}}_o = \bar{A}_o \bar{x}_o + \bar{B}_o u$, $\bar{y} = \bar{C}_o \bar{x}_o + Du$ is OBSV, has the same original TF.

• OBSV of (\bar{A}, \bar{C}) : using the structures of \bar{A}, \bar{C} ,

$$ar{\mathcal{O}} = egin{bmatrix} ar{\mathcal{C}}_o & 0 \ dots \ ar{\mathcal{C}}_oar{A}_o^{n_2-1} & 0 \ dots \ ar{\mathcal{C}}_oar{A}_o^{n_2-1} & 0 \ \end{pmatrix} \quad \Rightarrow \quad \mathrm{rank}(ar{\mathcal{O}}) = \mathrm{rank}(ar{\mathcal{O}}_c) = \mathrm{rank}(\mathcal{O}) = n_2$$

• From $H(s)=C(sI-A)^{-1}B+D=CT^{-1}(sI-\bar{A})^{-1}TB+D$ and the structure of the transformed dynamics:

$$H(s) = \begin{bmatrix} \bar{C}_o & 0 \end{bmatrix} \begin{bmatrix} (sI - \bar{A}_o)^{-1} & 0 \\ \star & (sI - \bar{A}_{\bar{o}})^{-1} \end{bmatrix} \begin{bmatrix} \bar{B}_o \\ \bar{B}_{\bar{o}} \end{bmatrix} + D$$
$$= \bar{C}_o (sI - \bar{A}_o)^{-1} \bar{B}_o + D$$

-0.7071

0.0000 0.707

- CT-LTI system: $\dot{x} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x.$
- Check OBSV: rank(obsv((A,C)) = 2.
- ullet OBSV sub-space: $Q_o = \operatorname{orth}(\operatorname{obsv}((\mathtt{A},\mathtt{C}))' = \operatorname{span}(\mathcal{O}^T).$ 0.2016
- non-OBSV sub-space: $Q_{no} = \text{null}(\mathbb{Q}'_o)$ (1-dim). 0.0000 0.7071
- $\bullet \ \, \bar{A} = TAT^{-1}, \, \bar{B} = TB, \, \bar{C} = CT^{-1}, \, \bar{D} = D.$

• Not OBSVB and not detectable

- $H(s) = \begin{bmatrix} \frac{s^2 1}{s^3 3s^2 + 3s 1} \\ \frac{2s 2}{s^2 2s 1} \end{bmatrix} = \begin{bmatrix} \frac{s + 1}{s^2 2s + 1} \\ \frac{2}{s 1} \end{bmatrix} = H_c(s)$ -1.4343 0.9710 0.0000
- Canceled unstable pole s = 1 constitutes the unstable/unOBSV mode,
- Minimal realization with 2 states and CTRB $H_o = (A_o, B_o, C_o, D)$

whereas other two states can be observed from y, u.

• Note that $Q_o=Q_c$ and $Q_{\bar{o}}=Q_{\bar{c}},$ i.e., CTRB/OBSV subspaces concident.

Kalman Decomposition

Th. 6-7: For CT-LTI system $\dot{x} = Ax + Bu$, y = Cx + Du, $\exists P \in \Re^{n \times n}$ s.t., with $x = P^{-1}\bar{x}$, it can be transformed to:

$$\begin{pmatrix} \dot{\bar{x}}_{co} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \end{pmatrix} = \begin{bmatrix} \bar{A}_{co} & 0 & \bar{A}_{13} & 0 \\ \bar{A}_{21} & \bar{A}_{c\bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\ 0 & 0 & \bar{A}_{\bar{c}o} & 0 \\ 0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{c}\bar{o}} \end{bmatrix} \begin{pmatrix} \bar{x}_{co} \\ \bar{x}_{c\bar{o}} \\ \bar{x}_{\bar{c}o} \\ \bar{x}_{\bar{c}\bar{o}} \end{pmatrix} + \begin{bmatrix} \bar{B}_{co} \\ \bar{B}_{c\bar{o}} \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_{co} & 0 & \bar{C}_{\bar{c}o} & 0 \end{bmatrix} \begin{pmatrix} \bar{x}_{o} \\ \bar{x}_{\bar{c}\bar{o}} \end{pmatrix} + Du$$

• Given $\mathcal{R}(\mathcal{C})$ and $\mathcal{N}(\mathcal{O})$,

$$P^{-1} = \left[egin{array}{c|c} Q_{co} & Q_{ar{c}ar{o}} \end{array}
ight] Q_{ar{c}o} & Q_{ar{c}ar{o}} \end{array}$$

- $-Q_{c\bar{o}} = \mathcal{R}(\mathcal{C}) \cap \mathcal{N}(\mathcal{O}) \rightarrow \text{CTRB/unOBSV mode}$
- $Q_{co} = \mathcal{R}(\mathcal{C}) \setminus Q_{c\bar{o}} \to \text{CTRB/OBSV mode}$
- $-Q_{\bar{c}\bar{o}} = \mathcal{N}(\mathcal{O}) \setminus Q_{c\bar{o}} \to \text{unOBSV/CTRB mode}$
- $-Q_{\bar{c}o} = \Re^n \setminus (Q_{co} \cup Q_{c\bar{o}} \cup Q_{\bar{c}\bar{o}}) \to \text{unCTRB/OBSV mode.}$
- $\bar{x}_{co}, \bar{x}_{c\bar{o}}, \bar{x}_{\bar{c}o}, \bar{x}_{\bar{c}\bar{o}}$ respectively specify dynamics of their corresponding modes.

Donaiun Le

Kalman Decomposition

Th. 6-7: For CT-LTI system $\dot{x} = Ax + Bu$, y = Cx + Du, $\exists P \in \Re^{n \times n}$ s.t., with $x = P^{-1}\bar{x}$, it can be transformed to:

$$\begin{pmatrix} \dot{\bar{x}}_{co} \\ \dot{\bar{x}}_{c\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \end{pmatrix} = \begin{bmatrix} \bar{A}_{co} & 0 & \bar{A}_{13} & 0 \\ \bar{A}_{21} & \bar{A}_{c\bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\ 0 & 0 & \bar{A}_{\bar{c}\bar{o}} & 0 \\ 0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{c}\bar{o}} \end{bmatrix} \begin{pmatrix} \bar{x}_{co} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{pmatrix} + \begin{bmatrix} \bar{B}_{co} \\ \bar{B}_{c\bar{o}} \\ \bar{0} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_{co} & 0 & \bar{C}_{\bar{c}o} & 0 \end{bmatrix} \begin{pmatrix} \bar{x}_{o} \\ \bar{x}_{\bar{c}\bar{o}} \end{pmatrix} + Du$$

- $\bullet \ \, \text{Given } \mathcal{R}(\mathcal{C}) \text{ and } \mathcal{N}(\mathcal{O}),\, P^{-1} = \left[\begin{array}{ccc} Q_{co} & Q_{c\bar{o}} & Q_{\bar{c}o} \end{array} \right. \, Q_{\bar{c}\bar{o}}$
- $\bar{x}_{co}, \bar{x}_{c\bar{o}}, \bar{x}_{\bar{c}o}, \bar{x}_{\bar{c}\bar{o}}$ respectively specify dynamics of these modes.
- CTRB/OBSV $(\bar{A}_{co}, \bar{B}_{co}, \bar{C}_{co}, D)$ produces the same TF matrix, i.e.,

$$H(s) = C(sI - A)^{-1}B + D = \bar{C}_{co}(sI - \bar{A}_{co})^{-1}\bar{B}_{co} + D$$

i.e., minimal realization of H(s).

If unCTRB or unOBSV modes are unstable, need to change system stucture itself (e.g., change or add actuators and sensors).

Kalman Decomposition: Example

$$\dot{x} = \left[egin{array}{cccc} 0 & -1 & -1 & -3 \ -9 & 2 & 6 & 9 \ 4 & -2 & -5 & -4 \ 3 & -1 & -2 & -4 \end{array}
ight] \left(egin{array}{c} -1 \ 6 \ -3 \ -2 \end{array}
ight) + \left[egin{array}{c} ar{B}_{car{o}} \ 0 \ 0 \end{array}
ight] u, \quad y = \left[egin{array}{c} 1 & 0 & 0 & -1 \end{array}
ight] \left(ar{x}_o \ ar{x}_{ar{o}}
ight)$$

• $\lambda(A) = \{-1, -2, -2 \pm j\}.$

- $H(s) = \frac{s^3 + 5s^2 + 8s + 4}{s^4 + 7s^3 + 19s^2 + 23s + 10}$, $p = \{-1, -2, -2 \pm j\}$, $z = \{-1, -2, -2\}$.
- rank(ctrb(A,B)) = 2 and rank(obsv(A,C)) = 2.
- $\mathcal{R}(\mathcal{C}) = \text{orth}(\text{ctrb}(\mathtt{A},\mathtt{B}) \text{ and } \mathcal{N}(\mathcal{O}) = \text{orth}(\text{null}(\text{obsv}(\mathtt{A},\mathtt{C})')).$
- $\bullet \ P^{-1} = \left[\begin{array}{ccc} Q_{co} & Q_{c\bar{o}} & Q_{\bar{c}o} & Q_{\bar{c}\bar{o}} \end{array} \right]$
- $Q_{c\bar{o}} = \mathcal{R}(\mathcal{C}) \cap \mathcal{N}(\mathcal{O}) \Rightarrow Q_{c\bar{o}} = \mathcal{R}(\mathcal{C})[a;b] = \mathcal{N}(\mathcal{O})[c;d]$, i.e.,

Kalman Decomposition: Example

$$\dot{x} = \begin{bmatrix} 0 & -1 & -1 & -3 \\ -9 & 2 & 6 & 9 \\ 4 & -2 & -5 & -4 \\ 3 & -1 & -2 & -4 \end{bmatrix} \begin{pmatrix} -1 \\ 6 \\ -3 \\ -2 \end{pmatrix} + \begin{bmatrix} \bar{B}_{co} \\ \bar{B}_{c\bar{o}} \\ 0 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix} \begin{pmatrix} \bar{x}_o \\ \bar{x}_{\bar{o}} \end{pmatrix}$$

- $\bullet \ P^{-1} = \left[\begin{array}{ccc} Q_{co} & Q_{c\bar{o}} & Q_{\bar{c}o} & Q_{\bar{c}\bar{o}} \end{array} \right]$
- $Q_{c\bar{o}} = \emptyset \Rightarrow Q_{co} = \mathcal{R}(\mathcal{C}).$
- $\mathcal{N}(\mathcal{O}) = Q_{c\bar{o}} \cup Q_{\bar{c}\bar{o}} \Rightarrow Q_{\bar{c}\bar{o}} = \mathcal{N}(\mathcal{O}).$

 $- \lambda(A) = \{-1, -2, -2 \pm j\}.$

- $\operatorname{null}[\mathcal{R}(\mathcal{C}) \ \mathcal{N}(\mathcal{O})] = \emptyset \Rightarrow \operatorname{span}[\mathcal{R}(\mathcal{C}) \ \mathcal{N}(\mathcal{O})] = \Re^4 \Rightarrow Q_{\bar{c}o} = \emptyset.$
- ullet $P^{-1} = \left[egin{array}{cc} Q_{co} & Q_{ar{c}ar{o}} \end{array}
 ight] = \left[egin{array}{cc} \mathcal{R}(\mathcal{C}) & \mathcal{N}(\mathcal{O}) \end{array}
 ight]$

• $H(s) = \bar{C}_{co}[sI - \bar{A}_{co}]^{-1}\bar{B}_{co} + D = \frac{-17.5s - 35.11}{s^2 + 4s + 5}$ • Recall

CTRB/OBSV Canonical Forms

- So far, we have witnessed that coprimness of $H(s) = \frac{N(s)}{D(s)}$ should have something with its minimal CTRB/OBSV state-space realization (A, B, C, D).
- Consider $H(s) = \frac{s^2 1}{s^3 3s^2 + 3s 1} (= \frac{s + 1}{s^2 2s + 1}).$
- CTRB canonical form of H(s):

$$\dot{x} = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & -3 & 3 \end{array}
ight] x + \left[egin{array}{ccc} 0 \ 0 \ 1 \end{array}
ight] u, \;\; y = \left[egin{array}{ccc} -1 & 0 & 1 \end{array}
ight] x$$

which is CTRB, yet, not OBSV. However, CTRB canonical form of coprime form is both CTRB and OBSV with $H(s) = \frac{s+1}{s^2-2s+1}$.

• OBSV canonical form of H(s):

$$\dot{x} = \left[egin{array}{ccc} 0 & 0 & 1 \ 1 & 0 & -3 \ 0 & 1 & 3 \end{array}
ight] x + \left[egin{array}{ccc} -1 \ 0 \ 1 \end{array}
ight] u, \quad y = \left[egin{array}{ccc} 0 & 0 & 1 \end{array}
ight] x$$

which is OBSV, yet, not CTRB. However, CTRB canonical form of coprime form is both CTRB and OBSV with $H(s) = \frac{s+1}{s^2-2s+1}$.

MA ENGINEERI

Coprime Fraction and Minimal Realization

- Th. 7-1: Consider $H(s) = \frac{N(s)}{D(s)}$. Then, its CTRB (or OBSV) canonical form is also OBSV (or CTRB) iff N(s) and D(s) are coprime polynomials.
 - Now, define deg(H(s)) to be the order of the denomenator of H(s) after removing common factor among N(s) and D(s) (i.e., order of coprime H(s)).
- Th. 7-2: The following statements are equivalent:
 - -(A, B, C, D) is a minimal realization of H(s).
 - -(A, B, C, D) is CTRB and OBSV.
 - $-\dim(A) = \deg(H(s)).$
 - Consider $H(s) = \frac{s^2-1}{4(s^3-1)} = \frac{s+1}{4(s^2+s+1)}$ with $\deg(H(s)) = 2$, Then, any 2-dimensional realization (A, B, C, D) is a minimal realization, which will also be CTRB and OBSV.
 - If (A,B,C,D) is CTRB and OBSV, poles of H(s)= eigenvalues of A, implying that

internal stability \Leftrightarrow BIBO stability

Recall that, in general, internal stability \Rightarrow BIBO stability.

Equivalence of Minimal Realizations

Th. 7-3M: Any minimal realizations of H(s) are equivalent.

• Recall that, with $\bar{A}=PAP^{-1}, \; \bar{B}=PB \; \text{and} \; \bar{C}=CP^{-1}, \; \bar{D}=D,$

$$\bar{C} = PC$$
, $\bar{C} = CP^{-1}$

- Note also that $\mathcal{O}A\mathcal{C} = \bar{\mathcal{O}}PAP^{-1}\bar{\mathcal{C}} = \bar{\mathcal{O}}\bar{A}\bar{\mathcal{C}}$.
- We then have

$$\bar{A} = \bar{\mathcal{O}}^{-1}\mathcal{O} \cdot A \cdot \mathcal{C}\bar{\mathcal{C}}^{-1}$$

where, with all the matrices full-rank,

$$\mathcal{C}\bar{\mathcal{C}}^{-1}\cdot\bar{\mathcal{O}}^{-1}\mathcal{O}=\mathcal{C}\mathcal{C}^{-1}P^{-1}\cdot P\mathcal{O}^{-1}\mathcal{O}=I$$

implying that we can choose the similarity transform

$$P = \bar{\mathcal{O}}^{-1}\mathcal{O}$$
, with $P^{-1} = \mathcal{C}\bar{\mathcal{C}}^{-1}$

$$(\text{Ex}) \ H(s) = \frac{s+1}{s^2 - 2s + 1}. \ \text{CTRB form: } \left(\begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, [1 \ 1], 0 \right); \text{OBSV form:}$$

$$\left(\begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, [0 \ 1], 0 \right) \Rightarrow P = \mathcal{O}_o^{-1} \mathcal{O}_c = \begin{bmatrix} -3 & 1 \\ 1 & 1 \end{bmatrix} \text{ w/ } PA_cP^{-1} = A_o.$$

Minimal and Characteristic Polynomials

• Consider two matrices with Jordan form:

$$A_1 = T_1 \left[egin{array}{cccc} \lambda_1 & 0 & 0 & 0 \ 0 & \lambda_2 & 1 & 0 \ 0 & 0 & \lambda_2 & 0 \ 0 & 0 & 0 & \lambda_3 \end{array}
ight] T_1^{-1}, \quad A_2 = T_2 \left[egin{array}{cccc} \lambda_1 & 0 & 0 & 0 \ 0 & \lambda_2 & 0 & 0 \ 0 & 0 & \lambda_2 & 0 \ 0 & 0 & 0 & \lambda_3 \end{array}
ight] T_2^{-1}$$

• Characteristic polynomial: with the multiplicity of λ_i ,

$$\Delta_1(\lambda) = \Delta_2(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)^2(\lambda - \lambda_3)$$

which specifies the dimension of state vector, yet, can't tell stability of A.

• Minimal polynomial: with the index of λ_i ,

$$\psi_1(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)^2(\lambda - \lambda_3) \neq \psi_2(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$$

which specifies stability of A, but not dimension of A.

- Th. 7-M1: Suppose (A, B, C, D) is minimal realization of H(s). Then,
 - Monic least common denominator of all entries of $H(s) = \psi_A(s)$.
 - Monic least common denominator of all minors of $H(s) = \Delta_A(s)$

ENGINE

MIMO Minimal Realization

- Th. 7-M1: Suppose (A, B, C, D) is minimal realization of H(s). Then,
 - Monic least common denominator of all entries of $H(s) = \psi_A(s)$.
 - Monic least common denominator of all minors of $H(s) = \Delta_A(s)$
- (Ex 7.5) $H(s) = \begin{bmatrix} \frac{s}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s+3} \\ \frac{-1}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s} \end{bmatrix} \Rightarrow \psi_A(s) = s(s+1)(s+2)(s+3)$ 3). Also, $m_1(s) = \frac{1}{(s+1)(s+2)}, m_2(s) = \frac{s+4}{(s+1)(s+3)}, m_3(s) = \frac{3}{s(s+1)(s+2)(s+3)}$ $\Rightarrow \Delta(s) = s(s+1)(s+2)(s+3) \Rightarrow \text{ four states necessary with } A \in \Re^{4\times 4}$ having all distinct eigenvalues $\{0, -1, -2, -3\}.$
- (Ex 7.4) $H_1(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{1}{s+1} \\ \frac{1}{s+1} & \frac{1}{s+1} \end{bmatrix} \Rightarrow \psi(s) = s+1 = \Delta(s) \Rightarrow \text{ only one}$ state is necessary with A = -1 ($y = y_1 = y_2 = \frac{1}{s+1}(u_1 + u_2)$). $H_2(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{1}{s+1} \\ \frac{1}{s+1} & \frac{1}{s+1} \end{bmatrix} \Rightarrow \psi(s) = s+1, \Delta(s) = (s+1)^2 \Rightarrow A \in \Re^{2\times 2}$ with repeated yet non-deficient $\lambda_1 = \lambda_2 = -1$.
- Th. 7-M2: (A, B, C, D) is a minimal realization of proper rational $H(s) \in \mathcal{C}^{m \times p}$ iff $\dim A = \deg(H(s))$

where deg(H(s)) = order of LCD of all minors of <math>H(s).

MIN ENGINEERIN

Minimal Realization: Example

• Th. 7-M2: (A, B, C, D) is a minimal realization of proper rational $H(s) \in \mathcal{C}^{m \times p}$ iff $\dim A = \deg(H(s))$

where deg(H(s)) = order of LCD of all minors of <math>H(s).

• (Ex 7.6):

$$H(s) = \begin{bmatrix} \frac{4s-10}{2s+1} & \frac{3}{s+2} \\ \frac{1}{(2s+1)(s+2)} & \frac{1}{(s+2)^2} \end{bmatrix}$$

• Using $(A, B, C, D) = \mathtt{ssdata}(H)$: ^=

• Using $(A_r, B_r, C_r, D_r) = minreal(sys_{org})$:

Dongjun Lee

Balanced Model Reduction

- Now, suppose that all modes are stablizable and detectable. Then, it would be possible to use only the CTRB/OBSV part of Kalman decomposition to describe the system IO-behavior.
- Even among these CTRB/OBSV modes, some may be easy to control/observe (i.e., large x^TW_cx and x^TW_ox), yet, others may be very difficult to do so (i.e., non-zero, yet, very small x^TW_cx and x^TW_ox).
- If some stabilizable/detectable modes are very difficult to control/observe (i.e., almost unCTRB/unOBSV), their omission will not affect the system's IO-behavior that much ⇒ model reduction.
- Model reduction is particularly useful/necessary to reduce the model obtained by spatial discretization of PDE systems (e.g., deformable object).
- It would then nice if we can "realign" the state vectors so that some modes are easy to control/observe while other modes are difficult to control/observe, i.e., define similarity-TF s.t.,

$$ar{W}_c = ar{W}_o = \Sigma = \mathrm{diag}[\sigma_1, \sigma_2, ... \sigma_n]$$

and retain only modes with large enough σ_i . In this case, realization has "balanced" $\bar{W}_c, \bar{W}_o \Rightarrow$ balanced model reduction.

Dongjun Lee

MAN ENGINEER

Equivalence of WcWo

Th. 7-5: (A,B,C) and $(\bar{A},\bar{B},\bar{C})$ are minimal realization (i.e., also equivalent w/ $x=P^{-1}\bar{x}$). Then, $W_c\cdot W_o$ and $\bar{W}_c\cdot \bar{W}_o$ have the same eigenvalues and futher all of them are real and non-negative.

- For (\bar{A}, \bar{C}) , we can compute \bar{W}_c from $\bar{A}\bar{W}_c + \bar{W}_c\bar{A}^T = -\bar{B}\bar{B}^T$.
- Using $\bar{A} = PAP^{-1}$ and $\bar{B} = PB$, we can then obtain:

$$AP^{-1}\bar{W}_{c}P^{-T} + P^{-1}\bar{W}_{c}P^{-T}A^{T} = -BB^{T}$$

implying that $W_c = P^{-1}\bar{W}_c P^{-T}$. Similarly, $W_o = P^T \bar{W}_o P$.

- Thus, $W_cW_o = P^{-1}\bar{W}_c\bar{W}_oP \Rightarrow W_cW_o$ and $\bar{W}_c\bar{W}_o$ share same eigenvalues (rather not suprising...).
- $W_c \succ 0 \Rightarrow W_c = Q^T \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q = R^T R$ with $\Lambda = \text{diag}[\lambda_1, ..., \lambda_n], \lambda_i > 0$.
- Further, using $\det(AB) = \det(A) \det(B)$ with $\det(A^{-1}) = 1/\det(A)$,

$$\det(\lambda I - W_c W_o) = \det(\lambda R^T R^{-T} - R^T R W_o)$$
$$= \det(R^T)(\lambda I - R W_o R^T) \det(R^{-T}) = \det(\lambda I - R W_o R^T)$$

implying that $\lambda_i(W_cW_o) > 0$ (rather suprising!).

Balanced Realization

Th. 7-6: For any minimal realization (A, B, C), there exists an equivalent realization $(\bar{A}, \bar{B}, \bar{C})$ s.t.,

$$\bar{W}_c = \bar{W}_o = \Sigma = \text{diag}[\sigma_1, \sigma_2, ... \sigma_n]$$

- From Th. 7-5, since $\{\lambda_i(RW_oR^T)\}=\{\lambda_i(\bar{W}_c\bar{W}_o)\}$, if $\bar{W}_c=\bar{W}_o=\Sigma$, $RW_oR^T=U\Sigma^2U^T,\quad U^TU=I$
- Further, using $W_c = R^T R$ and $\bar{W}_c \bar{W}_o = P W_c W_o P^{-1}$,

$$\Sigma^{2} = \bar{W}_{c}\bar{W}_{o} = PW_{c}W_{o}P^{-1} = PR^{T}U \cdot \Sigma^{2} \cdot U^{T}R^{-T}P^{-1}$$

- Choose $P^{-1} = R^T U \Sigma^{-\frac{1}{2}}$ with $P = \Sigma^{\frac{1}{2}} U^T R^{-T}$ $\Rightarrow \bar{W}_c = P W_c P^{-1} = \Sigma$ and $\bar{W}_c = P W_c P^{-1} = \Sigma$.
- We can also decompose the system s.t.,

$$\begin{pmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{pmatrix} = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right] \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix} + \left[\begin{array}{cc} B_1 \\ B_2 \end{array} \right] u, \quad y = \left[\begin{array}{cc} C_1 & C_2 \end{array} \right] \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix} + Du$$

- Reduced system: $\dot{\bar{x}}_1 = A_{11}\bar{x}_1 + B_1u$, $y = C_1\bar{x}_1 + Du$, whose steady-state behavior may be altered (e.g., different dc-gain).
- Inject original steady-state behavior: $\bar{x}_2 = -A_{22}^{-1}(A_{21}\bar{x}_1 + B_2u) \Rightarrow$

Dongjun Lee

ENGINEERI

Balanced Reduction

Th. 7-6: For any minimal realization (A, B, C), there exists an equivalent realization $(\bar{A}, \bar{B}, \bar{C})$ s.t.,

$$\bar{W}_c = \bar{W}_o = \Sigma = \text{diag}[\sigma_1, \sigma_2, ... \sigma_n]$$

• $P^{-1} = R^T U \Sigma^{-\frac{1}{2}}$ with $\bar{W}_c = \bar{W}_o = \Sigma$ and

$$\begin{pmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{pmatrix} = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right] \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix} + \left[\begin{array}{cc} B_1 \\ B_2 \end{array} \right] u, \quad y = \left[\begin{array}{cc} C_1 & C_2 \end{array} \right] \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix} + Du$$

• Reduced system with steady-state behavior possibly altered:

$$\dot{\bar{x}}_1 = A_{11}\bar{x}_1 + B_1u, \quad y = C_1\bar{x}_1 + Du$$

• To retain original steady-state behavior, using $\bar{x}_2 = -A_{22}^{-1}(A_{21}\bar{x}_1 + B_2u)$,

$$egin{aligned} \dot{ar{x}}_1 &= (A_{11} - A_{12}A_{22}^{-1}A_{21})ar{x}_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u \ y &= (C_1 - C_2A_{22}^{-1}A_{21})ar{x}_1 + (D - C_2A_{22}^{-1}B_2)u \end{aligned}$$

Dongjun Lee

ENGINEERING
COLLEGE OF INCIDENTS
SOOT ANTIONAL ESSENCIA

