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Overview

• The Problem – Why do we need Kalman 
Filters?

• What is a Kalman Filter?
• Conceptual Overview
• The Theory of Kalman Filter
• Simple Example
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The Problem

• System state cannot be measured directly
• Need to estimate “optimally” from 

measurements

Measuring 
Devices Estimator

Measurement
Error Sources

System State 
(desired but 
not known)

External 
Controls

Observed 
Measurements

Optimal 
Estimate of 

System State

System
Error Sources

System

Black Box
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What is a Kalman Filter?
• Recursive data processing algorithm
• Generates optimal estimate of desired 

quantities given the set of measurements
• Optimal?

– For linear system and white Gaussian errors, Kalman 
filter is “best” estimate based on all previous 
measurements

– For non-linear system optimality is ‘qualified’

• Recursive?
– Doesn’t need to store all previous measurements 

and reprocess all data each time step
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Conceptual Overview

• Simple example to motivate the 
workings of the Kalman Filter

• Theoretical Justification to come later –
for now just focus on the concept

• Important: Prediction and Correction
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Conceptual Overview

• Lost on the 1-dimensional line
• Position – y(t)
• Assume Gaussian distributed measurements

y
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Conceptual Overview
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• Sextant Measurement at t1: Mean = z1 and Variance = sz1

• Optimal estimate of position is: ŷ(t1) = z1

• Variance of error in estimate: s2
x (t1) = s2

z1

• Boat in same position at time t2 - Predicted position is z1
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Conceptual Overview

• So we have the prediction ŷ-(t2)
• GPS Measurement at t2: Mean = z2 and Variance = sz2

• Need to correct the prediction due to measurement to get ŷ(t2)
• Closer to more trusted measurement – linear interpolation?

prediction ŷ-(t2)
measurement z(t
2)
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Conceptual Overview

• Corrected mean is the new optimal estimate of position
• New variance is smaller than either of the previous two 

variances

measurement z(t
2)

corrected 
optimal estimate 
ŷ(t2)

prediction ŷ-(t2)
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Conceptual Overview

• Lessons so far:
Make prediction based on previous data - ŷ-, s-

Take measurement – zk, sz

Optimal estimate (ŷ) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1  – Kalman Gain)
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Conceptual Overview

• At time t3, boat moves with velocity dy/dt=u
• Naïve approach: Shift probability to the right to predict
• This would work if we knew the velocity exactly (perfect model)

ŷ(t2)
Naïve Prediction 
ŷ-(t3)
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Conceptual Overview

• Better to assume imperfect model by adding Gaussian noise
• dy/dt = u + w
• Distribution for prediction moves and spreads out

ŷ(t2)

Naïve Prediction 
ŷ-(t3)

Prediction ŷ-(t3)
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Conceptual Overview

• Now we take a measurement at t3
• Need to once again correct the prediction
• Same as before

Prediction ŷ-(t3)

Measurement z(t3)

Corrected optimal estimate ŷ(t3)
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Conceptual Overview

• Lessons learnt from conceptual overview:
– Initial conditions (ŷk-1 and sk-1)
– Prediction (ŷ-

k , s-
k)

• Use initial conditions and model (eg. constant velocity) to 
make prediction

– Measurement (zk)
• Take measurement

– Correction (ŷk , sk)
• Use measurement to correct prediction by ‘blending’ 

prediction and residual – always a case of merging only 
two Gaussians

• Optimal estimate with smaller variance
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Theoretical Basis
• Process to be estimated:

yk = Ayk-1 + Buk + wk-1

zk = Hyk + vk

Process Noise (w) with covariance Q

Measurement Noise (v) with covariance R

• Kalman Filter
Predicted: ŷ-

k is estimate based on measurements at previous time-steps

ŷk = ŷ-
k + K(zk - H ŷ-

k )

Corrected: ŷk has additional information – the measurement at time k

K = P-
kHT(HP-

kHT + R)-1

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Pk = (I - KH)P-
k
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Blending Factor

• If we are sure about measurements:
– Measurement error covariance (R) decreases to zero
– K decreases and weights residual more heavily than prediction

• If we are sure about prediction
– Prediction error covariance P-

k decreases to zero
– K increases and weights prediction more heavily than residual
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Theoretical Basis

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ŷk = ŷ-
k + K(zk - H ŷ-

k )

K = P-
kHT(HP-

kHT + R)-1

Pk = (I - KH)P-
k
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Quick Example – Constant Model

Measuring 
Devices Estimator

Measurement
Error Sources

System State

External 
Controls
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System
Error Sources

System

Black Box
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Quick Example – Constant Model

Prediction

ŷk = ŷ-
k + K(zk - H ŷ-

k )

Correction

K = P-
k(P-

k + R)-1

ŷ-
k = yk-1

P-
k = Pk-1

Pk = (I - K)P-
k
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Quick Example – Constant Model
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Quick Example – Constant Model
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Quick Example – Constant Model
Larger value of R – the measurement 
error covariance (indicates poorer 
quality of measurements)

Filter slower to ‘believe’ measurements 
– slower convergence
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Sequential Monte Carlo



Monte Carlo (MC) Approximation
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• Monte Carlo approach
1. Simulate N random variables from p(x), e.g. Normal 
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MC with Importance Sampling
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Importance Sampling (IS)
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Importance Sampling: Procedure

1. Draw N samples       from proposal distribution q(.). 

2. Compute importance weight

3. Estimate an arbitrary function f(.):
( )

( ) ( ) ( ) 0:
0: 1: 0:

( )1
0:

1

( )[ ( | )] ( ) ,      
( )

iN
i i i t

t t t t t N
ji
t

j

w xE f x y f x w w
w x=

=

» =å
å

! !

( )
0:
i
tx( )

0: 0: 1:( | )i
t t tx q x y!

( )
( ) 0: 1:
0: ( )

0: 1:

( | )( )            
( | )

i
i t t
t i

t t

p x yw x
q x y

=



Sequential Importance Sampling (SIS):
Recursive Estimation
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Sequential Importance Sampling: Idea

• Update filtering density using Bayesian filtering
• Compute integrals using importance sampling

• The filtering density              is represented 
using particles and their weights 

• Compute weights using:
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Sequential Importance Sampling: 
Procedure
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Resampling

• SIS suffers from degeneracy problems, i.e. a small 
number of particles have big weights and the rest 
have extremely small values. 

• Remedy: SIR introduces a selection (resampling) step 
to eliminate samples with low importance ratios 
(weights) and multiply samples with high importance 
ratios.

• Resampling maps the weighted random measure 
on to the equally weighted random measure
by sampling uniformly with replacement from 
with probabilities          :
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Sampling Importance Resampling (SIR) = 
Sequential Monte Carlo = Particle Filter
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Particle Filters



Motivating Applications

l Hand tracking using particle filters: 
http://www.youtube.com/watch?v=J3ioMxRI174

l Robotics - SLAM and localization with a stereo camera:
http://www.youtube.com/watch?v=m3L8OfbTXH0&feat
ure=related

l Kalman filter result on real aircraft: 
http://www.youtube.com/watch?v=0GSIKwfkFCA&feat
ure=related

(c) 2008 SNU Biointelligence Laboratory, http://bi.snu.ac.kr/
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Problem Statement

l Tracking the state of a system as it evolves over time

l We have: Sequentially arriving (noisy or ambiguous) 
observations

l We want to know: Best possible estimate of the hidden 
variables



Bayesian Filtering / Tracking Problem

l Unknown state vector  x0:t = (x0, …, xt)
l Observation vector z1:t
l Find PDF p(x0:t | z1:t)     … posterior distribution
l or p(xt | z1:t) … filtering distribution

l Prior information given:
¨ p(x0)  … prior on state distribution
¨ p(zt | xt)   … sensor model
¨ p(xt | xt-1) … Markovian state-space model



Sequential Update

l Storing all incoming measurements is inconvenient
l Recursive filtering:

¨ Predict next state pdf from current estimate
¨Update the prediction using sequentially arriving new 

measurements

l Optimal Bayesian solution: recursively calculating 
exact posterior density



Bayesian Update and Prediction

l Prediction

l Update
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Kalman Filter

l Optimal solution for linear-Gaussian case
l Assumptions:

¨ State model is known linear function of last state and 
Gaussian noise signal

¨ Sensory model is known linear function of state and 
Gaussian noise signal

¨ Posterior density is Gaussian 



Kalman Filter: Update Equations
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Limitations of Kalman Filtering

l Assumptions are too strong. We often find:
¨Non-linear models
¨Non-Gaussian noise or posterior
¨Multi-modal distributions
¨ Skewed distributions

l Extended Kalman Filter:
¨ Local linearization of non-linear models 
¨ Still limited to Gaussian posterior



Grid-based Methods

l Optimal for discrete and finite state space
l Keep and update an estimate of posterior pdf for 

every single state
l No constraints on posterior (discrete) density



Limitations of Grid-based Methods

l Computationally expensive
l Only for finite state sets
l Approximate grid-based filter

¨Divide continuous state space into finite number 
of cells

¨Hidden Markov model filter
¨Dimensionality increases computational costs 

dramatically



Many different names…

l (Sequential) Monte 
Carlo filters

l Bootstrap filters
l Condensation

l Interacting particle 
approximations

l Survival of the fittest
l …

Particle Filters



Sample-Based PDF Representation

l Monte Carlo characterization of pdf:
¨Represent posterior density by a set of random i.i.d. 

samples (particles) from the pdf p(x0:t|z1:t)

¨ For larger number N of particles equivalent to functional 
description of pdf

¨ For N®¥ approaches optimal Bayesian estimate



Sample-based PDF Representation

l Regions of high 
density
¨Many particles
¨ Large weight of 

particles
l Uneven partitioning

l Discrete 
approximation for 
continuous pdf
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Importance Sampling

l Draw N samples x0:t
(i) from importance sampling 

distribution p(x0:t|z1:t)

l Importance weight

l Estimation of arbitrary functions ft:
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Sequential Importance Sampling (SIS)

l Augmenting the samples

l Weight update
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Degeneracy Problem

l After a few iterations, all but one particle will have 
negligible weight

l Measure for degeneracy: effective sample size

l Small Neff indicates severe degeneracy
l Brute force solution: Use very large N
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Choosing Importance Density

l Choose p to minimize variance of weights
l Optimal solution: 

l Practical solution
¨ Importance density = prior
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Resampling

l Eliminate particles with small importance weights
l Concentrate on particles with large weights

l Sample N times with replacement from the set of 
particles xt

(i) according to importance weights wt
(i)

l „Survival of the fittest“



Sampling Importance Resample Filter: 
Basic Algorithm

l 1. INIT, t=0
¨ for i=1,..., N: sample x0

(i)~p(x0);  t:=1;

l 2. IMPORTANCE SAMPLING
¨ for i=1,..., N: sample xt

(i) ~ p(xt|xt-1
(i))

< x0:t
(i) := (x0:t-1

(i), xt
(i))

¨ for i=1,..., N: evaluate importance weights wt
(i)=p(zt|xt

(i))
¨ Normalize the importance weights

l 3. SELECTION / RESAMPLING
¨ resample with replacement N particles x0:t

(i) according to the 
importance weights

¨ Set t:=t+1 and go to step 2



Variations

l Auxiliary Particle Filter:
¨ Resample at time t-1 with one-step lookahead (re-evaluate with 

new sensory information)

l Regularisation:
¨ Resample from continuous approximation of posterior p(xt|z1:t)



Visualization of Particle Filter

unweighted measure

compute importance 
weights Þ p(xt-1|z1:t-1)

resampling

move particles

predict p(xt|z1:t-1)



Particle Filter Demo 1

moving Gaussian + uniform, N=100 particles



Particle Filter Demo 2

moving Gaussian + uniform, N=1000 particles



Particle Filter Demo 3

moving (sharp) Gaussian + uniform, N=100 particles



Particle Filter Demo 4

moving (sharp) Gaussian + uniform, N=1000 particles



Particle Filter Demo 5

mixture of two 
Gaussians,

filter loses track of 
smaller and less 

pronounced peaks



Obtaining state estimates from particles

l Any estimate of a function f(xt) can be calculated by 
discrete PDF-approximation

l Mean:
l MAP-estimate: particle with largest weight
l Robust mean: mean within window around MAP-

estimate
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Pros and Cons of Particle Filters

+ Estimation of full PDFs
+ Non-Gaussian 

distributions
+ e.g. multi-modal

+ Non-linear state and 
observation model

+ Parallelizable

- Degeneracy problem
- High number of 

particles needed
- Computationally 

expensive
- Linear-Gaussian 

assumption is often 
sufficient



Mobile Robot Localization

l Animation by 
Sebastian 
Thrun, 
Stanford

l http://robots.sta
nford.edu



Model Estimation

l Tracking with multiple motion-models
¨Discrete hidden variable indicates active model (manoever)

l Recovery of signal from noisy measurements
¨ Even if signal may be absent (e.g. synaptic currents)
¨Mixture model of several hypotheses

l Neural Network model selection [de Freitas]1

¨ Estimate parameters and architecture of RBF network 
from input-output pairs

¨On-line classification (time-varying classes)

1: de Freitas, et.al.: Sequential Monte Carlo Methods for Neural Networks. in: Doucet, et.al.: Sequential Monte 
Carlo Methods in Practice, Springer Verlag, 2001



Other Applications

l Visual Tracking
¨ e.g. human motion (body parts)

l Prediction of (financial) time series
¨ e.g. mapping gold price à stock price

l Quality control in semiconductor industry
l Military applications

¨ Target recognition from single or multiple images
¨Guidance of missiles


