Chapter 14. (Supplementary)
Bayesian Filtering for State Estimation of

Dynamic Systems

Neural Networks and Learning Machines (Haykin)

Lecture Notes on

Byoung-Tak Zhang
School of Computer Science and Engineering
Seoul National University

Version 20171115

Supplementary Material
to Ch 14

- Kalman Filter
- Sequential Monte Carlo

- Particle Filters

Overview

The Problem — Why do we need Kalman
Filters?

What is a Kalman Filter?
Conceptual Overview

The Theory of Kalman Filter
Simple Example

The Problem

i Black Box
System :

Error Sources

)

External ————» System
Controls

System State
(desired but
not known)

Observed Optimal

: Measurements Estimate of

A 4

v

Measuring - System State
Devices ! Estimator

I

Measurement
Error Sources

« System state cannot be measured directly

« Need to estimate “optimally” from
measurements

What is a Kalman Filter?

Recursive data processing algorithm

Generates optimal estimate of desired
quantities given the set of measurements
Optimal?

— For linear system and white Gaussian errors, Kalman

filter is "best” estimate based on all previous
measurements

— For non-linear system optimality is ‘qualified’
Recursive?

— Doesn't need to store all previous measurements
and reprocess all data each time step

Conceptual Overview

« Simple example to motivate the
workings of the Kalman Filter

* Theoretical Justification to come later —
for now just focus on the concept

 Important: Prediction and Correction

Conceptual Overview

 Lost on the 1-dimensional line
* Position — y(t)
« Assume Gaussian distributed measurements

Conceptual Overview

0.16

0.14}

0.12

0.1}

0.08 |-

0.06 |-

0.04

0.02

0 r r r L L L r r r
0 10 20 30 40 50 60 70 80 90 100

Sextant Measurement at t;: Mean = z, and Variance = o,
Optimal estimate of position is: y(t;) = z,

Variance of error in estimate: 62, (t) = ¢°,,

Boat in same position at time t, - Predicted position is z,

Conceptual Overview

0.16 . i

0.14 |

prediction ¥°(t;)) o2}
measurement z(t

014 b - 5)

0.06 |-

0.04 |-

0.02 |

0

0 10 20 30 40 50 60 70 80 90 100

So we have the prediction y(t,)

GPS Measurement at t,: Mean = z, and Variance = o,,

Need to correct the prediction due to measurement to get y(t,)
Closer to more trusted measurement — linear interpolation?

Conceptual Overview

prediction y(t,)

0.16

0.14

0.121

0.1+

0.08 |

0.06 |-

0.04 |

0.02 -

corrected |
optimal estimate

y(t,) .

measurement z(t T

————
2)

~10 20 30 40 50 60 70 80 90 100

Corrected mean is the new optimal estimate of position

New variance is smaller than either of the previous two
variances

Conceptual Overview

e Lessons so far:

Make prediction based on previous data - ¥, o

v

Take measurement — z,, o,

v

Optimal estimate (y) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 — Kalman Gain)

Conceptual Overview

0.16 -

0.14 L 1 y(to) . o
Naive Prediction

¥ (ts)

/

0.12L

0.1

0.08 |-

0.06 |-

0.04 |-

0.02 1

0546 20 30 40 80 60 70 80 9 100
« At time t;, boat moves with velocity dy/dt=u
« Naive approach: Shift probability to the right to predict

« This would work if we knew the velocity exactly (perfect model)

Conceptual Overview

0.16 - Naive Prediction
0.14]. /| y(ta) T [l

:' \
0.12}- | / “
0.1}

0.08 |-

0.06 |- ~ Prediction y(t,)

0.04 |-

0.02 |

« Better to assume imperfect model by adding Gaussian noise
e dy/dt=u+w
 Distribution for prediction moves and spreads out

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Conceptual Overview

Corrected optimal estimate y(t;)

Measurement z(t;)

Prediction y7(t;)

10 20 30 40 50 60 70 100

Now we take a measurement at t;
Need to once again correct the prediction
Same as before

Conceptual Overview

 Lessons learnt from conceptual overview:
— Initial conditions (y,.; and o _4)
— Prediction (y7, o7)

« Use initial conditions and model (eg. constant velocity) to
make prediction

— Measurement (z,)
« Take measurement
— Correction (y,, o)

« Use measurement to correct prediction by ‘blending’
prediction and residual — always a case of merging only
two Gaussians

« Optimal estimate with smaller variance

Theoretical Basis
* Process to be estimated:

Y = Ay, + Bu, + w4 Process Noise (w) with covariance Q

z, = Hy, + v, Measurement Noise (v) with covariance R

e Kalman Filter

Predicted: y- is estimate based on measurements at previous time-steps
¥ = Ay + Buy
P-k = APk_1AT + Q

Corrected: y, has additional information — the measurement at time k

V=V + Kz - Hyy)
K =P H(HP H" + R)"

P, = (I - KH)P,

Blending Factor

e |f we are sure about measurements:
— Measurement error covariance (R) decreases to zero
— K decreases and weights residual more heavily than prediction

 If we are sure about prediction
— Prediction error covariance P~ decreases to zero
— K increases and weights prediction more heavily than residual

Theoretical Basis

& @

Correction (Measurement Update)
Prediction (Time Update)

(1) Compute the Kalman Gain

(1) Project the state ahead K = P HT(HP- HT + R)"

V= Ay, + Buy

(2) Update estimate with measurement z,
(2) Project the error covariance ahead

V=9 + Kize - H ¥y)
P_k = APk_1AT + Q
(3) Update Error Covariance

P, = (I - KH)P,

—_

Quick Example — Constant Model

. Black Box
System

Error Sources

)

External ————» System
Controls

System State

Observed Optimal

Measurements Estimate of
System State

A 4

A 4

Estimator

Devices

]

Measurement
Error Sources

; Measuring

v

Quick Example — Constant Model

Prediction
Y= Y
P = Py
Correction
K=P(P,+ R)’

V=9 + Kize - Hy)

P, = (I - K)P,

Quick Example — Constant Model

O [L L L L L L L L L

0 10 20 30 40 50 60 70 80 90 100

Quick Example — Constant Model

1

0.9H

0.8H

0.7H

0.6

0.5}

04}

0.3}

0.2}

0.1}

0

0 10 20 30 40 50 60 70 80 9'O 100

Convergence of Error Covariance - P,

Quick Example — Constant Model

Larger value of R — the measurement
error covariance (indicates poorer
quality of measurements)

l

Filter slower to 'believe’ measurements
— slower convergence

0 10 20 30 40 50 60 70 80 90 100

References

Kalman, R. E. 1960. "A New Approach to Linear Filtering and Prediction
Problems”, Transaction of the ASME--Journal of Basic Engineering, pp. 35-45

(March 1960).

Maybeck, P. S. 1979. “Stochastic Models, Estimation, and Control, Volume 17,
Academic Press, Inc.

Welch, G and Bishop, G. 2001. “An introduction to the Kalman Filter”,
http://www.cs.unc.edu/~welch/kalman/

Sequential Monte Carlo

Monte Carlo (MC) Approximation

E,Lf(0)]= [p(x)f(x)dx
<D, A= p) = N0

« Monte Carlo approach
1. Simulate N random variables from p(x), e.g. Normal
distribution

Y~ p(x)=N(0,0")

2. Compute the average

E,Lf(x)]= Zf(x())

MC with Importance Sampling

E,Lf()]= | p(x)f (x)dx

[P) £ ()
- q(x)

~ ZN: Wif(x(i))

X~ g(x) g(x): proposal distribution

p(x")
g(x")
Note: g(x) 1s easier to sample from than p(x).

W, = w;: importance weight

Importance Sampling (IS)

ELS (o)1= [£ (50, P (%o, | 3)b,

~ ZW f(x(l)

X ~q(x,, | v,,) g(x): proposal distribution
(1)

w, = Py | V1) w.: importance weight

Q(x(l) | Vi)

Importance Sampling: Procedure

1. Draw N samples x() from proposal distribution g(.).
(l)
- Q(XOt | ylt)

2. Compute importance weight

(1)
W(x(z)) p(x(l) | ylt)
q(xo; | Vi)

3. Estimate an arbitrary function f(.):

(g,)

E[f(xy, | Y,)] = Zf(x(l) v, ﬂ/t(i) — N
> w(x)

Sequential Importance Sampling (SIS):
Recursive Estimation

Augmenting the samples
q(Xo, | Y1) = 4 (Xt | V2 (X, | X005 1)
= 4oy | Y)q (% 1%, 0,)
x ~q(x [x,)
(cf. non-sequential IS: x” ~ g(x,, | v,,))
Weight update

(1) (i) (i)
(i) (i) p(y |x)p(x |x
W, ocw t D

g(x" | x9, v

Sequential Importance Sampling: Idea

Update filtering density using Bayesian filtering
« Compute integrals using importance sampling

The filtering density p(x, | ¥,,)is represented
using particles and their weights

AR
7w

Compute weights using:
() _ p(xt(l)ﬂylzt)

w .
(")

Sequential Importance Sampling:

Procedure
1. Particle generation x" ~g(x, | x",)= p(x, | x*,
2. Weight computation w'” =w p(y, | x”)
WG
Weight normalization w” = ——
ZWI(J)
=1

N
3. Estimation computation E[f(x, | v,,)] :Z f(xt(i))wt(i)

Note: Step 1 above assumes the proposal density to be the prior.
This does not use the information from observations. Alternatively,

the proposal density could be

Y~ q(x X, = plx x5,)

that minizes the variance of w, (Doucet el al., 1999).

Resampling

« SIS suffers from degeneracy problems, i.e. a small
number of particles have big weights and the rest
have extremely small values.

« Remedy: SIR introduces a selection (resampling) step
to eliminate samples with low importance ratios
(weights) and multiply samples with high importance
ratios.

« Resampling maps the weighted random measure
on to the equally weighted random measure
by sampling uniformly with replacement from {x{"1"
with probabilities {w"}¥

R, o
o0 N 7L~ {ag o wl G)L

Sampling Importance Resampling (SIR) =
Sequential Monte Carlo = Particle Filter

1. Initialize t < O

-Fori=1,...,N: sample x'” ~ p(x,), t<1.

t
2. Importance sampling
-Fori=1,..,N:sample x'" ~ g(x, | x”,) = p(x, | x*)

(1) A 1) (2)
Let Xoy = (xO:l—l’ X

- For i =1,..., N: compute weights wfi) =p(y, | xt(i))

t

N
- Normalize the weights: W = w(’)/Z w/)
=1
3. Resampling
- Resample with replacement N particles x| according to
the importance weights w'”, resulting in {X\), N~'}." .
- New particle population {x{/}" « {x{)1" .

- Set ¢t <—t+1 and go to step 2.

Particle

Motivating Applications
e Hand tracking using particle filters:

e Robotics - SLAM and localization with a stereo camera:

e Kalman filter result on real aircraft:

36

Problem Statement

e Tracking the state of a system as it evolves over time

® We have: Sequentially arriving (noisy or ambiguous)
observations

e We want to know: Best possible estimate of the hidden
variables

Bayesian Filtering / Tracking Problem

® Unknown state vector X,.,= (Xg, ..., X;)

e Observation vector z,,

e Find PDF p(xy.|z,,) ... posterior distribution
® or p(x,| z;.) ... filtering distribution

® Prior information given:
¢ p(x¢) ... prior on state distribution
¢ p(z | X)) ... sensor model
¢ p(x, | X¢.p) ... Markovian state-space model

Sequential Update

e Storing all incoming measurements 1s inconvenient

® Recursive filtering:
¢ Predict next state pdf from current estimate

¢ Update the prediction using sequentially arriving new
measurements

e Optimal Bayesian solution: recursively calculating
exact posterior density

Bayesian Update and Prediction

® Prediction

Px, |z,) = | PO 1%, Py | 2,) d,
e Update

p(Zt | Zl:t—l)

PGz 2,0) = | PG %) p(x, | 2, 1),

p(xt | Zl:t

Kalman Filter

e Optimal solution for linear-Gaussian case

® Assumptions:

¢ State model 1s known linear function of last state and
Gaussian noise signal

¢ Sensory model 1s known linear function of state and
Gaussian noise signal

¢ Posterior density 1s Gaussian

Kalman Filter: Update Equations

X, =FX_ +Vv V.~ N (0, Qt—l)
z, =Hx +n, n,~N(O,R))
F,,H, :known matrices

m =Fmt1|t1

tlt—1

p(x,|z,)=N(x_, |mt—1|t—1>Pt—1|t—1) P =0, +FF (11— 1F ‘
p(x,|z,,)=N(x |mt|t 1»Pz|z) My, = my,_ LK (z, - t|t—1)

=P, —-KHP

tt—1 t* -1

p(x, | z,)=N(x |m,,F,) §

1t

S =HP, H'+R

t* -1
Kt Pt|t II_ITS_1

LLimitations of Kalman Filtering

® Assumptions are too strong. We often find:
¢ Non-linear models
¢ Non-Gaussian noise or posterior
¢ Multi-modal distributions
¢ Skewed distributions

e Extended Kalman Filter:

¢ L ocal linearization of non-linear models

¢ Still limited to Gaussian posterior

Grid-based Methods

e Optimal for discrete and finite state space

e Keep and update an estimate of posterior pdf for
every single state

® No constraints on posterior (discrete) density

Limitations of Grid-based Methods

e Computationally expensive
® Only for finite state sets
e Approximate grid-based filter

¢ Divide continuous state space into finite number
of cells

¢ Hidden Markov model filter

¢ Dimensionality increases computational costs
dramatically

Many ditferent names...

Particle Filters

® (Sequential) Monte ® Interacting particle
Carlo filters approximations
® Bootstrap filters e Survival of the fittest

® Condensation o ...

Sample-Based PDF Representation

® Monte Carlo characterization of pdf:

¢ Represent posterior density by a set of random 1.1.d.
samples (particles) from the pdf p(x,./z;.)

¢ For larger number N of particles equivalent to functional
description of pdf

¢ For N—oo approaches optimal Bayesian estimate

Sample-based PDF Representation

® Regions of high
density
¢ Many particles

¢ Large weight of
particles

e Uneven partitioning

® Discrete
approximation for
continuous pdf

Importance Sampling
T

e Draw N samples x,,.) from importance sampling
distribution m(x.{2;.;)

® [mportance weight

e Estimation of arbitrary functions f:

w(x(’))

Z . ((J))
IV () = 1) = [1,00, s, | 31

LD =2 DR, 0 = o

Sequential Importance Sampling (SIS)

® Augmenting the samples

(X, | Z2,) =Xy | 2 (X, | X5 21,) =

= 71:()601_1 |Zl:t—1)ﬂ:(xt |xt 1° t)

X, ~(x, | x5,2,)

e Weight update

(1) (1)
: Z, | X, X, x
Wt)OCWl)l p(t| (,))p(|
m(x,” | x5, t)

Degeneracy Problem

e After a few iterations, all but one particle will have
negligible weight

® Measure for degeneracy: effective sample size

N
N, =

w," ... true weights at time ¢

1+ Var(w, i)

e Small N indicates severe degeneracy
e Brute force solution: Use very large N

Choosing Importance Density
A
® Choose m to minimize variance of weights

e Optimal solution:

opt(‘x |'x I?Zt) p(‘x |x 192

(1)

:>W OCthp(Zt|x)

® Practical solution

¢ Importance density = prior

n(x, | x45,2,) = p(x, | x)

(2) (1)

= w,” cw p(z |‘xt(l))

Resampling

e Eliminate particles with small importance weights

e Concentrate on particles with large weights

e Sample N times with replacement from the set of
particles x,) according to importance weights w ()

e Survival of the fittest*

Sampling Importance Resample Filter:
Basic Algorithm

e].INIT, t=0
¢ for i=1,..., N: sample x,~p(x,); t:=1;

e 2. IMPORTANCE SAMPLING
¢ fori=l,..., N: sample x,® ~ p(xx,,")
= Xo,M:= (Xo.0q P, xP)
¢ for i=1,..., N: evaluate importance weights w,V=p(z|x,1))
¢ Normalize the importance weights

e 3. SELECTION / RESAMPLING

¢ resample with replacement N particles x,.") according to the
importance weights

¢ Set t:=t+1 and go to step 2

Variations

e Auxiliary Particle Filter:

¢ Resample at time t-1 with one-step lookahead (re-evaluate with
new sensory information)

e Regularisation:

¢ Resample from continuous approximation of posterior p(x,|z;.,)

Visualization of Particle Filter

i=1,...,N=10 particles
unweighted measure °o o oo

compute importance
weights = p(x |2,)
resampling

move particles

predict p(x,|z;.()

Particle Filter Demo 1

Time Step O B Time Step 1 . Time Step 2

3)‘([TR] % 7 1 g O R W G] % 2 1 g D)»z 0 W 3 W n
Time Step 3 Time Step 4 Time Step 5

3)((w " 0 v » % z 1 g C N 12 W G ¥ F] % 2 1 g D)»z 2 W 3 W n
Time Step 6 Time Step 7 Time Step 8

moving Gaussian + uniform, N=100 particles

Particle Filter Demo 2

Time Step O . Time Step 1 . Time Step 2

) © w " " - »)(' H 1 O) n n " * » n ‘)" 2 1 O D n n L] * C] 2]
X X
Time Step 3 Time Step 4 Time Step 5

s i w " " - »](> 7 1 O & n n " * » n "“ 2 1 O) i n " * " "
Time Step 6 Time Step 7 Time Step §

moving Gaussian + uniform, N=1000 particles

Particle Filter Demo 3

Time Step O . Time Step 1) Time Step 2

i Q " * v n) B . ' i Q " " - B o < 3 i w " "
Time Step 3 - Time Step 4 Time Step 5

pre e a3 R EL R LR
Time Step 6 - Time Step 7 ‘ Time Step 8

moving (sharp) Gaussian + uniform, N=100 particles

Particle Filter Demo 4

Time Step 0 . Time Step 1 . Time Step 2

2

) T, e s ® Ty
Time Step 2) Time Step 4 Time Step 5

i 2 " * » n 1) 7z - ' i Cl ‘ & - » o H &) i w " "
Time Step 6 N Time Step 7 ‘ Time Step 8

moving (sharp) Gaussian + uniform, N=1000 particles

Particle Filter Demo 5

Time Step 0 . Time Step 1) Tme Step 2

ey : ' ' T
Time Step 2 » Time Step 4) Tme Step 5

mixture of two
Gaussians,

filter loses track of
smaller and less
pronounced peaks

x ey e

Time Step 6 . Time Step 7) Tme Step 2

Time Step 9 _ Time Step 10) Tim= Step 11

Obtaining state estimates from particles

® Any estimate of a function f(x,) can be calculated by
discrete PDF-approximation

Elf(x)]== Z_l W £(xD)

® Mean:

® MAP-estimate: partlcle with 1argest weight

® Robust mean: mean within window around MAP-
estimate

Pros and Cons of Particle Filters

Estimation of full PDFs

Non-Gaussian
distributions

e.g. multi-modal

Non-linear state and
observation model

Parallelizable

Degeneracy problem

High number of
particles needed

Computationally
expensive

Linear-Gaussian
assumption 1s often
sufficient

Mobile Robot Localization

® Animation by
Sebastian
Thrun,
Stanford

RobotLocalisation. avi

Model Estimation

e Tracking with multiple motion-models
¢ Discrete hidden variable indicates active model (manoever)

® Recovery of signal from noisy measurements
¢ Even 1f signal may be absent (e.g. synaptic currents)
¢ Mixture model of several hypotheses

e Neural Network model selection [de Freitas]!

¢ Estimate parameters and architecture of RBF network
from mput-output pairs

¢ On-line classification (time-varying classes)

1: de Freitas, et.al.: Sequential Monte Carlo Methods for Neural Networks. in: Doucet, et.al.: Sequential Monte
Carlo Methods in Practice, Springer Verlag, 2001

Other Applications

® Visual Tracking

¢ e.g. human motion (body parts)
e Prediction of (financial) time series
¢ e.g. mapping gold price > stock price
® Quality control in semiconductor industry
e Military applications
¢ Target recognition from single or multiple 1images
¢ Guidance of missiles

