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[Reference] Taylor and Maclaurin Series

M Theorem 1 Taylor’s Theorem
» Let f (z) be analytic in a domain D, and let z = z, be any point in D.

= Then there exists precisely one Taylor series with center z, that
represents f (z).

» This representation is valid in the largest open disk with center z; in
which f (z) is analytic.

o0

f(z)=>a,(z-z,) where a =

n=1

Q: If f(2) is singular at z,?

A: We cannot use a Taylor series.
Instead we may use Laurent series.




Taylor Series

(] ®© n 1 n
16.1 Laurent Series ()= 2 (2-n) 3= 1 (2)
» Laurent series generalize Taylor series. y L0 T N
1{ = \
/ / \\ \
» Laurent series is a series of positive and negative integer L 9 1 |
powers of z -z, and converges in an annulus (a circular yoN e )
. . +
\ V4
ring) with center z,. S

= By a Laurent series we can represent a given function f (z) that is analytic in an
annulus and may have singularities outside the ring as well as in the “hole” of

the annulus.

» For a given function the Taylor series with a given center z; is unique.

= |n contrast, a function f(z) can have several Laurent series with the same center
Z, and valid in several concentric annuli.

= Laurent series converges for 0 < |z —z,| <R, that is, everywhere near the center
Z, except at z, itself, where z, is a singular point of f(z).
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16.1 Laurent Series Y .277 7

o |
M Laurent series ! ¢ 1

f(z)=z(;an(z—zo)”+z(z_z) RS
n= n 0
b b,

=a,+a,(z2-2,)+a,(2—2,)° ++}-+ -+ 4o

(Z o Zo) (Z B Zo)2

= The series (or finite sum) of the negative powers of this Laurent series is

called the principal part (5) of the singularity of f(z) at z,, and is used to
classify this singularity (Sec. 16.2).

» The coefficient (b,) of the power 1/(z — z,) of this series is called the residue
(]=) of f(2) at z,.

= If in an application we want to develop a function f(z) in powers of z—z, when
f(z) is singular at z,, we cannot use a Taylor series.

= |nstead we may use Laurent series, consisting of positive integer powers of z —
Z, (and a constant) as well as negative integer powers of z — z,.




Taylor Series

16.1 Laurent Series f(1)=2a (2-2) 3= 1" (@)

M Theorem 1 Laurent’s Theorem
Let f(z) be analytic in a domain containing two concentric circles C, and C,, with center
Z, and the annulus between them (blue in the figure). Then f(z) can be represented by the
Laurent series

O 1@)=Fae-2)+Y c
b, b, ...

—a,+a,(z-2,)+a,(z—2,)° +-+ - + + +
A TRITRET (-7) (-7)

Laurent’s theorem
consisting of nonnegative and negative powers.

The coefficients of this Laurent series are given by the integrals

1 f(z%) 1 n-1
2) a = dz* b, =——¢ (z*-z f (z*)dz*,
@) 2 27ri§C (z*—z,)"" 27[|§C( o) 1Z)

taken counterclockwise around any simple closed path C that lies in the
annulus and encircles the inner circle. we may write (denoting b, by a_))

, = i , 1 f(z%) .
@) f(2)= 2 a,(z-2)" (2) an:27ri§0(z*—zo)”+1dz  (n=0,%1 %2, )

N=—o0




16.1 Laurent Series

Proof)

(@) The nonnegative powers are those of a Taylor series

f(2)=9(2)+h(2) = .Eﬁz* —

f(

9(2) = .Eﬁ

72*-27

dz* Za

27z|

a

n

C,

Z*

1

Z

() .,

'm(z*—zo)M

27l g

We can replace C, by C, by the principle of
deformation of path.

(b) The negative powers

Since z lies in the annulus, it lies in the exterior of the path C,

Z—1,
2*-1,

1

S.a

1

() .

n

<1 in the first integral E>

1

2l

: (Z*—ZO )n+1

14.3 Cauchy’s Integral Formula

21 <1 in the second integral.

-1

(Z*_Z) 2*-7,—(2-1,) (z-— Zo)[

2*-1,

)

00

15.6 Taylor Series




1 . -1 . . 1_qn+1 1 qn+1
- b, =—/|(z2*-z f(z*)dz — _
16.1 Laurent Series %) 1(2) 1-q 1-q 1-qg
1 1 -1 = i
= = 1 1 z*-7, | _ -1 [7¥-g
(Z*_Z) Z*_ZO_(Z_ZO) (Z—ZO)[]_—Z*_ZOJ 2201—[22*_Zzoj(220j Z_Z*LZ_ZOJ <
Z-1, °
* % 2 % n % n+l
11 [1+z —zOJ{z —ZOJ +_”+£z —ZOJ ]_ 1 [z —zoj
2*-2 -1, -1, -1, -1, Z—-1%\ 71-1,
1 ¢ f(z%) 1
h(z)= dz* = f(z*)d *—z,) f(z*)dz*
(2) 27z|[7cﬁz*—z0 i m{z— 0@ a +(z—zo @(Z o) f (272
1 n-1
— 7*-1 f(z*)}dz* =b
(Z—Zo)n @( 0) ( ) n
1 n .
+ 2*-7,) f(z*)dz*;+R (z
(Z_Zo)n—i—l@( 0) ( ) } n( )
n+l
R: Z)= — dz *l«
7)= 27i(z-1, 1@ (%)

This establishes Laurent’s theorem, provided limR (z) =0
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dz*

16.1 Laurent Series R (2) =

(c) Convergence proof of limR (z) =0

f(z%)
7—-1%

<M forallz*on C,

because f(z*) is analytic in the annulus and on C, and z*
lies on C, and z outside, so that z—z* #0

L = 2xt, = length of C,, r, = |2" — z,| = radius of C, = const

~ n+l1
< = — "ML = MLI_*,
21|z -z 27 \ |2-12,|

M Uniqueness.

= The Laurent series of a given analytic function f(z) in its annulus of
convergence is unique.

» f(z) may have different Laurent series in two annuli with the same center.
= The uniqueness is essential.
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem

D 1(2)= Za (z-2)) +Z

1 (z- Zo)

()

Laurent’s theorem

M Ex. 1 Use of Maclaurin Series

Find the Laurent series of z°sin z with center 0.

: = (D"
z‘SSlnz:Z( ) s 1

~ (2n+1)! 2*

Y| pole

OO X
1,1 2z,
31z° 5' 7!

principal part of the series

Sec. 15.4. (14)

cosz—nz(;( 1)" (2 m
sinz_nz(;( 1)" (2n+1)'




16.1 Laurent Series

Theorem 1) Laurent’s Theorem

C
O @)= ) Y

Laurent’s theorem

M Ex. 2 Substitution

Find the Laurent series of z2e'z with center 0.

Sol) By (12) in Sec. 15.4, with z replaced by 1/z we

. . © n 2 3

obtain a Laurent series whose principal part is a? — Z_ e+l L
an infinite series, o N
Y| pole ( / )n .-

= (1/z 77 1 1 1

21/ 2

OO X ZeZ:ZZ = —ZZZ-I-Z—I——-I- + e QZ‘>O)

n=0 n! n=0 n' 2 3'2 4'2




16.1 Laurent Series

Theorem 1) Laurent’s Theorem

C
O @)= ) Y

Laurent’s theorem

M Ex. 3 Development of 1/(1-z)

Develop 1/(1-2) (a) in nonnegative powers of z, (b) in negative powers of z.

(valid if |z <2). (valid if |z[>1).

Sol) Harmonic series

Y| pole
(a) i iz” l+z+2%+--+ (valid if |z]<2) o 1 x
l n=0 |
1 —]_ -1 & 21 21 1 1
b - _ __ __ .
( ) 1- 7 . 1 Z nZ( j ;Zml ;Zml 7 Z2
(valid if |2 >1)




16.1 Laurent Series

Theorem 1) Laurent’s Theorem

D 1(2)= Za (z-2)) +Z

‘ (2- zo> C

Laurent’s theorem

M Ex. 4 Laurent Expansions in Different Concentric Annuli
Find all Laurent series of 1/(z3 - z*) with center 0.

(N

(1

Example 16.1-3

(a) 1T—Zz (|2 <)

O—O n=0
O X 2l
: ) =Y~ (4>D
7 &z

1 1 & ., 1 1 1
?(1_2):2;2 3—?+?+;+1+z+ (0< |7<1)
1 1 =1 1 1
Sa B b e




16.1 Laurent Series

Theorem 1) Laurent’s Theorem

D 1(2)= Za (z-2)) +Z

‘ (2- zo> C

Laurent’s theorem

M Ex. 5 Use of Partial Fractions 9743
Find all Taylor and Laurent series of f (z) with center 0. f(z)= 22 _374 9

Sol) In terms of partial fraction Example 16.1-3

1 1 1 1 ) == > 7] <1
ot 1 1 @ ;=22 (<D

z-1 z-2 1-z z1-2

: : : (b) —=—Z e (|74>2)

(a) and (b) in Example 3 take care of the first fraction. -

——ZZ” (| <D

1- n=0 Y| pole

) ——=-Y— (|2>1 o
1_ 7 —re Zn+1 O‘ 1 2 X




16.1 Laurent Series

For the second fraction,

1

L
21 1—— Z

2

(I) From (a) and (c), valid for |z | <1,

f(z)= Z(1+2n+1J §+%z+§zz+---

n=0

() From (c) and (b), validfor 1<|z|<2,

= 1 1 1 1
f Z = —_ :_+_Z—|—..-—____...
( ) nz=(;2n+l nZ;‘Zn—i-l 2 4 2

(Ill) From (d) and (b), valid for |z|> 2,

o 1 2 3 5 9
f(z)=-> (2 +1)z“+1:___ e
n=0

Z Z yA yA

(|>2)

n+1

Example 16.1-3

(a) %:iz" (12 <1)

) 5= (>0

y 1




16.1 Laurent Series

Theorem 1) Laurent’s Theorem

D 1(2)= Za (z-2)) +Z

‘ (2- zo) C

Laurent’s theorem

M Ex) Expand the function in a Laurent series that converges for e’

0<|z| <R and determine the precise region of convergence. 72— 7°
5 L& b 1+z+z—2+z—3+--- (1+z+22+z3+---) R= L ==
22—23 _22 1—2_22 21 3l n—wla
:i2 1+22+§zz+§23+---j
z 2 3
1 1 5 8
=—+t—+-+-Z+
VA Z
R=1 O7|Mz, 0T =70[0<|z|<R2E FO{H

%
[0
i
2

[~ 9
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem

D) f(2)= Za (z—2z,)" +Z(z oy

Laurent’s theorem

M Ex) Find the Laurent series that converges for 0 <|z-z,|< R C0SZ

and determine the precise region of convergence. (z-7x)>" °
e
cosz  —cos(z—r) "
(z—7x)° (z-7x)° cosz—nzc;( 1" ot
1 (2—72')2 (2_72-)4 _ S2n4
:_(Z—ﬂ)z (1— o + T .. sinz = nz(;( 1)" T

. 2
1 1 (z-7) N

Z—27 " 2 a4
O<|Z—7T|<oo

(50
]
b i
2
-k
=)




16.2 Singularities (50|%) and Zeros (873). Infinity

M Singular Point
= f(z) is singular or has a singularity at a point z =z, (a singular point of f(z))
> f(2) is not analytic at z = z,
but every neighborhood of z = z, contains points at which f (z) is analytic.
= 7=17,1s an isolated singularity (1 & £ 0|&) of f(2)
¢ 1=1,has a neighborhood without further singularities of f(z).

=| Neighborhood (&) of a
: An open circular disk, p-Neighborhood of a

T -
—t—t+—+—+

M EX. tan z has isolated singularities
at +7,, 37/, .. etc.:

tan (1/z) has a nonisolated singularity at 0.

N R

S

333
-k
N

I
[l
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16.2 Singularities and Zeros. Infinity

M Isolated singularities of f (z) at z - z, can be classified by the Laurent
series

f(0)=3a (-2 + 3

valid in the immediate neighborhood of the singular point z - z,, except at
Z, itself, that is, in a region of the form 0 <|z - zy| <R.

= Principal part: The second series, containing the negative powers, of
Laurent series.

= |f the principal part has only finitely many terms, it is of the form

U g (b, #0, m : order)
-1, (z-1,)
the singularity of f(z) at z = z, is called a pole (&), and m is called its order

(¥l=)
= Simple order (tt=3): Poles of the first order (m = 1)
= |solated essential singular point (n& %I’d £0|#H): If the principal part has
infinitely many terms.

S22

sgd
-k
(-~}

7
L=



16.2 Singularities and Zeros. Infinity

M Ex. 1 Poles (=). Essential Singularities
= The function f(z)= L 3

z(z—2)5 +(2—2)2

and a pole of fifth order at z = 2.

1 1 1 i( (-1)’ 1 1 1

has a simple pole z=0

= + —
< (2n+1)1z°™  z 312° 5I7°

=1+= +—2+... sin= = —
= nlz" 217 Z

lsolated essent1al singularity at z = 0.

] Ex. 1
= 75sinz: a fourth-order pole at 0 . 1 1 1 22
Z_ SII’]Z=—3'7 g—ﬁ
= 1/(z2-7%: a third-order pole at 0
Ex. 4
L 1 +—+ +1+z+ (0<|z|<)
M Ex. 2 Behavior Near a Pole 2 (1 z)_@

f(z)=zi2 has a pole at 2= 0, and |f (z)|—> as z—0 in any manner.

7
55
S22
333
-t
©



16.2 Singularities and Zeros. Infinity

M Theorem 1 Poles (&)
If f(z) is analytic and has a pole at z =z, , then |f(z) >« as z — z, in any manner.

M Ex.3 Behavior Near an Essential Singularity (£1/d £0|H)

The function f (z) = e!Z has an essential singularity at z = 0.

= |t has no limit for approach along the imaginary axis.

= |t approaches zero if z — 0 (1/z — ) through negative real values.
= |t takes on any given value c =c,e"|# 0 in an arbitrarily small

€-neighborhood of z = 0.

-0

. 1 e - .
. i0 . __ A(cos@—isin@)/r ia
Z=re", —=—=¢ =C,e

z r
cosd=rinc,, and -sin@=ar

cos’@+sin®d=1, =r’*(Inc,)* +a’r’ =1 NG o 1

r? = 12 > tan@ = — « r can be made arbitrarily small by adding multiples of
(Inc)) +a Inc, 2= to a leaving ¢ unaltered.




16.2 Singularities and Zeros. Infinity

M Theorem 1 Poles

If (z) is analytic and has a pole at z = z;, then |f(z)| >« as z — z, in any
manner.

M Theorem 2 Picard’s Theorem

If f(z) is analytic and has an isolated essential singularity at a point z, it takes on

every value, with at most one exceptional value, in an arbitrarily small ¢-

neighborhood of z,.




16.2 Singularities and Zeros. Infinity

M Zeros of Analytic Functions
Zero of an analytic function f(z) in a domain D: a z =z, in D such that f(z)) = 0
= A zero has order (2/%) n
: Not only f but also the derivatives f', f", -
but ™ (z,)=0.
= Simple zero: A first-order zero (only f(z,) = 0)

U areall 0 at 2=z,

M Ex. 4 Zeros

= The function 1+z2 has simple zeros at =*I.

= The function (1-z%)? has second-order zeros at +1 and +i.

= The function e? has no zeros.

= The function sin z has simple zeros at 0, =7, +27x, -- sin z :%(e‘z —e™)

sin?z has second-order zeros.




16.2 Singularities and Zeros. Infinity

M Taylor Series at a Zero.
At an nth-order zero z =z, of f(z) ¢=> The derivatives '(z,), -, "7 (z,)

are zero = The first few coefficients a, = ... =a,, = 0 of the Taylor series
are zero, whereas a, #0

f(z)=a,(z-2)" +an+1(z—zo)n+l+---:(z—zo)n [an +an+1(z—zo)+an+2(z—zo)2+---

M Theorem 3 Zeros

The zeros of an analytic function f(z) (#0) are isolated; that is, each of
them has a neighborhood that contains no further zeros of f(z).

M Theorem 4 Poles and Zeros

Let f(z) be analytic at Z =z, and have a zero of nth order at z = z,,.

Then 1/f(z) has a pole of nth order at z = z,; and so does h(z)/f(z), provided
h(z) is analytic at z = z; and h(z) # 0.




16.2 Singularities and Zeros. Infinity

M [Reference] Riemann Sphere. Point at Infinity

Riemann Sphere: A sphere S of diameter 1 touching the complex z-plane at z=0

= |mage (&) of a point P (a number z in the plane)
: The intersection P* of the segment PN with S, where N is the “North Pole”
diametrically opposite to the origin in the plane.

= Each point on S represents a complex number z, except for N, which does

not correspond to any point in the complex plane.

= Point at infinity (denoted o): The image of N
= Extended complex plane: The complex plane

with co.

z (22EY, PO (1S3t

m|n




16.2 Singularities and Zeros. Infinity

M Analytic or Singular at Infinity
Set z = 1/w and f(1/w) = g(w)

f (z) is analytic at infinity <= g(w) is analytic at w = 0.

f (z) is singular at infinity <= g(w) is singular at w = 0.

f (z) has an nth-order zero at infinity <= g(w) has such a zero at

w=0.

Similarly for poles and essential singularities.

%
]
b Sy
2
N
(3]




16.3 Residue Integration Method (X =)

C
The purpose of Cauchy’s residue integration: the evaluation of integrals
§C f(z)dz

If f(z) has a singularity at a point z = z, inside C, but is otherwise analytic on C and inside C,
then f (z) has a Laurent series

Laurent’s theorem

ez el
f(Z)_nZ:c;an(z Z) +Z—Zo (-2,

that converges for all points near z = z, (except at z = z, itself), in some domain of the
form0<|z-z,|<R.

| Y
)

Now comes the key idea. The coefficient b, of the first negative power 1/(z - z,) of
this Laurent series is given by the integral formula (2) with n = 1, namely,

_ %Eﬁc f(2)dz () §_ f(2)dz=2rib;

The coefficient b, is called the residue () of f (z) at z=z,. Sec.16.1 (2) a, =

1 §( f@) 4

= n+l
2mic(z2*-1,)

b, = Res f(z) B, =, (2%-2,)""  (2%)dz*




16.3 Residue Integration Method

> Several Singularities Inside the Contour fc f(z)dz=2rx1-b
M Theorem 1 Residue Theorem b, =Res f(z)

Let f (z) be analytic inside a simple closed path C and on C, except for finitely
many singular points z,, z,, -+, z, inside C.
Then the integral of f(z) taken counterclockwise around C equals 2zi times the

sum of the residues of f(z) at z,, z,, -+, z;:

(6) §C f(z)dz = ZMZKZE\)SS f(2) C




16.3 Residue Integration Method

M Theorem 1 Residue Theorem

(6) §C f(2)dz= 27ziZk: Res f (2)

M Ex. 1 Evaluation of an Integral by Means of a Residue
Integrate the function f(z) = z# sin z counterclockwise around the unit circle C.

Sol) From (14) in Sec. 15.4 we obtain the Laurent series (1) [ﬂ f(z)dz=2rxib
3 Sec15.4 (14)
f()_smz 11 1 5_2_ B 2 5 s
ST Y TR

which converges for |z| > 0 (that is, for all z # 0). This series shows that f(z) has a pole
of third order at z = 0 and the residue b, =-1/3!. From (1) we thus obtain the answer.

sin z =2rib, —ZEI(—Ejz—ﬂ—I
c z* 6 3




16.3 Residue Integration Method

M Theorem 1 Residue Theorem

(6) §C f(2)dz= 27ziZk: Res f (2)

M Ex. 2 Use the Right Laurent Series
Integrate the function f(z) = 1/(z° - %) clockwise around the circle C: |z| = 1/2

SOI 3_ 4 — 3 - 1 0
) -7 =2%(1-2) shows thatf(z)is =~ 1 1 $re AT e e
singularatz=0and z=1. -7 = P Pz
1 1 -1 1 1
W e & 77 @Y

Now z =1 lies outside C. Hence it is of no interest here.
0 <|z| < 1. This is series (I) in Example 4, Sec. 16.1,

We see from it that this residue is 1. Clockwise integration thus yields
dz . :
§C p— _BZM I?SOS f(z)=—-2n
CAUTION! Had we used the wrong series (ll) in Example 4, Sec. 16.1,
we would have obtained the wrong answer, 0, because this series has no power 1/z.




16.3 Residue Integration Method

M Formulas for Residues

To calculate a residue at a pole, we need not produce a whole Laurent series, but,
more economically, we can derive formulas for residues once and for all.

= Simple Poles

1. z, is a simple pole of f(z):  (3) Res f(z)=b =Ilim(z—-z,)f(z)

Proof) f(z)= T blZ )+ao+a1(z—zo)+a2(2—zo)2 +--(0<z-2,]<R)

Iim(z_zo)f(z):b1+aO(Z—ZO)+a1(Z—ZO)2—|—a2(z—zo)3+...:

2. Assume that f (2) :@, p(z,)#0, and a simple zero at z,

a(z)

p(z) _ p(z,)
@) RS TO=RS 10 ")

Proof) q(z)=<yo/;+<z—zo)q'(zo)+( ) gy + E2B)

2! 3!

. p(z) . (z—12,)p(2) p(2)
R f = — L S I
s @ =lmG-z) o =lIm G S e-ma@yiz 1 )




16.3 Residue Integration

M Formulas for Residues

Method

To calculate a residue at a pole, we need not produce a whole Laurent series, but,
more economically, we can derive formulas for residues once and for all.

= Poles of Any Order
An mth-order pole:

A second-order pole:

bm bm—l 4ot
(Z - Zo)m (Z - Zo)m_1

Proof) f(z)=

(Z - Zo)m f (Z) = bm +bm_1(Z - Zo) +-

1 dm—l
(m-1)ldz™*

b

(2-2,)" £(2)]

1 . dmt m
Res 1 (2)= o im S 1 (2]
Res f(2) = lim[ (2-2,)"  (2)]
by _ 2V
(Z_ZO)+a0+a1(z Z,)+8,(2—2,)" +

-+b1(z—zo)m‘1+ao(z—zo)m L

=2
388

567
[



16.3 Residue Integration Method

M Simple Poles.
1. z, is a simple pole of f(z): (3) Res f(z)=b, = lim (z-27,)f(z)
2. Assume that f(Z)=M

) 0(2)  p(z,)
() Res T =Res ) " a0

P(z,)#0, and a simple zero at z,

M Ex. 3 Residue at a Simple pole

f (z) has some simple poles, and (3) gives the f(2) = 92+i 97+
residues at the poles. Find the all residues of f (z). 2°+1 z(z +1)(z—1)
R S ol) ..... P oles ..... z :O,l,—l
y pole
By (4), By (3), i
-0 Res 07 +i [92+|} i R95932+| _
7= 0 Z +7 =l 774+ 7 —I
=lim(z-1) 921
7=i, Res ™! [ } TR i)z -i)
z' 2+ 32° Z=| _ 9i+i _ g
7 —_ 9Z+| 9Z+| i |(|+|) '
z i 2®+z | 372 +1], |
Lﬂj\iu”/ 32




16.3 Residue Integration Method

M Simple Poles. Ul f(z)dz:Zﬂi_Zk:E\’:eZ:_s f(2)
1. z, is a simple pole of f(z): (3) Res f(z) =b, = Im (z-2,)1(2) :
2. Assume that f(Z)=M

a(z)’
Z Z
(4) Res f(2)=Res P(2) _ P(z,)
= q(z) (2,
M Ex. 5 Residue at a Pole of Higher Order
Evaluate the following integral counterclockwise around any simple closed path
such that (a) 0 and 1 are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, O
outside (d) 0 and 1 are out51de.if 4-37 . 4-37
C

P(z,)#0, and a simple zero at z,

Sol) The integrand has simple poles at 0 and 1, with residues [by (3)]

_ Y| pole
4-3z 437
Res = =4 O—0
=0 z(z-1) | (z-1) ] Ol 1 X
Res 4—-3z _ 4—-3z 1
=1 z2(z-1) | z 4




16.3 Residue Integration Method

M Simple Poles. [ch f(z)dz:Zﬂi_Zk:E\’:eZ:_s f(2)
1. z, is a simple pole of f(z): (3) Res f(z) =b, = Im (z-2,)1(2) :
2. Assume that f(Z)=M

a(z)’
(4) Res f(2)=Res P(2) _ P(z,)
= q(z)  q'(2,)

M Ex. 5 Residue at a Pole of Higher Order

Evaluate the following integral counterclockwise around any simple closed path Y| pole
such that (a) 0 and 1 are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, O

P(z,)#0, and a simple zero at z,

. . O—C
outside (d) 0 and 1 are outside. 4-37 4_37 O] 1 X
§ ——dz= dz
Cz°-z cz(z-1)
g 4-32 4-32
Res =4, S =1
(d) =0 7(z-1) =1 7(z2-1)
(b
0 1 X (@ 27i(-4+1)=-6xd (b) 2ni(-4)=-8x
C
( (c) 2#i(d)=2mn d O




16.3 Residue Integration Method

M Simple Poles. [ch f(z)dz:Zﬂi_Zk:E\’:eZ:_s f(2)
1. z, is a simple pole of f(z): (3) Res f(z)=b, = lim (z-27,)f(z)
2. Assume that f(Z)=M

" ) _ p(z)
@ BT84 "aw)

P(z,)#0, and a simple zero at z,

M Ex. Evaluate (counterclockwise).

[ﬁctan 272dz, C:|2-0.2|=0.2

. sin2rxz 1
. Resf(z)= - =T
Y| singular 2-1/4 2) IZLU;] 27sin 27z 2r
fo\
OolL/4 x 1.
[& tan27zdz = 271 — =l
27

(2ad]
L
=

50
155y
<
S2Y
3¥3
w
o



16.4 Residue Integration of Real Integrals

M Integrals of Rational Functions (g2l&<%) of cos® and sin©

Certain classes of complicated real integrals can be integrated by the residue
theorem, as we shall see.

We first consider integrals of the type

7 sin® @
@ J :joz F(cos@,sin #)do  EX)

5—4cosd
where F(cosH,sin 6?) is a real rational function of cos@ and Sin &.

Setting €'¢ = 7,dz/d@ =ie" ,d0=dz/iz

1 i0 -io 1 1

Then, COSQ:E(e +e ):E(”E)
B) J= f(Z)E @ 1w o\ 1(. 1

e 1Z SM:E(G ¢ ):E(Z_Ej

and, as ¢ ranges from 0 to 2= in (1), the variable Z = e'’ ranges counterclockwise
once around the unit circle |z| = 1.




16.4 Residue Integration of Real Integrals

M Integrals of Rational Functions of cos@ and sin©

(1) J:_LZ”F(COSH,sin 6yde > (3 J=9¢ f(z2)—

Real rational function

M Ex. 1. An Integral

2z d6
Show by the present method that J-O

ﬁ—cos@z

Sol) we use 0030:%(z+1/z) and €% =z (d9=dz/iz) ¢

Then the integral becomes

J-er do :§ dz/iz 2 dz
0 2 -cosé ‘2 1(”1)__iif(z—ﬁ—l)(Z—ﬁH)

Z

C: counterclockwise once
around the unit circle |z| = 1

%
]
b Sy
2
w
N




16.4 Residue Integration of Real Integrals

M Integrals of Rational Functions of cos@ and sin©

x . dz
D J :_[02 F(cos@,sing)ded > (3) J= a f(z)—
1Z
Real rational function
M Ex. 1 An Integral - continued 50

O)
S

_g[& dz C: counterclockwise once o
I *C(z —\/E—l)(z —\/§+1) around the unit circle |z| = 1 Qﬁ_l J2+1
X

We see that the integrand has a simple pole at z, =+/2+1 outside the unit circle C, so that it is

of no interest here, and another simple pole at z, =2 1.

(where z—+/2+1=0) inside C with &) Hes tilgy =1, = [l (2= (2)

1 _ 1 _ 1
Ii?zs (z-2-1)(z-/2+1) |:Z_\/§_1:|zﬁl 2

—E§ 0z :—E-Zﬂi-Res L :—E-Zﬂi-(—1
i ¢ (-2 -1)(z-/2 +1) i =2, (7 —~/2 =1)(z—~/2 +1) i 2

e
(e
b Sy
2L
(]
(-]



16.4 Residue Integration of Real Integrals

M Improper Integral

As another large class, let us consider real integrals of the form
o0
(4) | fodx
—00

Such an integral, whose interval of integration is not finite is called an improper integral
(O|AMH &), and it has the meaning

(5') _‘if(x)dx:Jin} f (x)dx+ lim bf(x)dx

b—w0

If both limits exist, we may couple the two independent passages to -« and -, and write

(5) j f(x)dx=lim [ f(x)dx

R—o

The limit in (5) is called the Cauchy principal value of the integral. It is written

Or.V. f f (x)dx

5
s
‘]
NP'd
W
(7<)



16.4 Residue Integration of Real Integrals

M Improper Integral
&) [ f(x)dx= lim jof(x)dx+ lim job f (x)dx

oJ— a—>—0o0

(* 00

6) [ f(ydx=lim [ f(xdx

= We assume that the function f (x) in (5’) is a real rational function whose
denominator (&%) is different from zero for all x and

= is of degree at least two units higher than the degree of the numerator(&2X}).

= Then the limits in (5’) exist, and we may start from (5).

We consider the corresponding contour integral

(5%) [ﬁc f(z)dz = L f(2)dz + j_RR f (x)dx

poles y S around a path C
o | ch f(2)dz = 27i Y Resf (z)
S-mas R X Since f (x) is rational, f (z) has finitely many poles in the

upper half-plane, and if we choose R large enough, then C
encloses all these poles. By the residue theorem we then

obtain R
(6) j_R f(x)dx =27 > Resf (z)- L, f(z)dz

Path C of the contour
integral in (5%)




16.4 Residue Integration of Real Integrals

M Improper Integral

(5) 'Zf(x)dx: lim :f(x)dx+tl)irr!o jobf(x)dx

J— a—>—oo

6) [ f(ydx=lim [ f(xdx

(5%) [ﬁc f(z)dz = L f(z)dz + j_RR f (x)dx

around a path C

6) [ f(xdx=27Y Resf(2)-[ f(2)dz

P S We prove that, if R —o0, the value of the integral over the
o o semicircle S approaches zero.*
.

"R R X If we set z=Rei’ | S is represented by R=const.

Path C of the contour
integral in (5%) | f (Z) |<

12 (|Z|2:R>Ro)

e
(e
b Sy
2
'S
-



16.4 Residue Integration of Real Integrals

M Improper Integral
&) [ f(x)dx= lim jof(x)dx+ lim job f (x)dx

oJ— a—>—0o0

6) [ f(ydx=lim [ f(xdx

By the ML-inequality

) f(z)dz‘ < %ER _kz

R
poles y as R approaches infinity, the value of the integral
S over S approaches zero,
© O
L ) (7) LO f(x)dx =27 Resf(z)
Path C of the contour
integral in (5%) where we sum over all the residues of f (z) at the poles of f (z)

in the upper half-plane.

e
(e
b Sy
2L
'S
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16.4 Residue Integration of Real Integrals

M Improper Integral

poles y o0 i
s (7) | f(Qdx=2zi)"Resf(z)
o o —®©
"R R X
M Ex. 2 An Improper Integral from 0 to Sec.16.3 (4) Res f(z) = Res p((z)) - p,EZ;
2=2 = (z) q(z
Show that J‘OO dx __Z
0 1+x*  24/2
Sol) f(z)= n 1 — has four simple poles at the points.
+2
y Z, = a7/ 7, = p37/4 7= o -37/4 7, = o7/
Z
25 oZ1 The first two of these poles lie in the upper half-plane. From (4) in the last
section we find the residues.
X Res f(Z)= 1 n :|:i3i| :Ee_3”i/4 :_Eeﬂi/4
0 o 2= @a+z") v, 4z° |,_, 4 4
5 “ 1 1 1
Res f(z)= [—3} =gt =g/
=1, 47 7=2, 4 4




16.4 Residue Integration of Real Integrals

M Improper Integral

poles y o0 i
/X (7) j f(x)dx =27 Resf (z)
o o —®©
"R R X
M Ex. 2 An Improper Integral from O to sinz = i(eiz —e )
21
Show that J‘OO dx __ 7
0 1+x*  24/2
Sol - continued) R_ s f (z) o7/ R_es f (Z) o/t
By (1) in Sec. 13.6 and (7) in this section,
y - zifd _ -7i/d ) :
Z, Z, j dx4=2m’ LS J —xsint =" :—2—m-2i-sin£
o o 14X 4 4 J2 4 4
X Since 1/ (1 +x%) is an even function we thus obtain, as asserted,
o o . -
Z3 Zy I 1+x* -[001+ x*




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral
B
(11) jA f (x)dx

(12) jff(x)dx=lirr3) [T £ oodx+tim [ (x)dx

n—0 Ja+n

a—r a a+rX

13) fim| [ fedx+ [ f(x)d
@) ) [ f0oax [ 109ax
This is called the Cauchy principal value (F&kt) of the integral. It is written

B
or. V. jAf(x)dx.

(50
]
b i
2
'S
(3]




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral

M Theorem 1 Simple Poles on the Real Axis
If f(z) has a simple pole at z =a on the real axis, then

mz im [ f(z)dz =i Res  (2)

a—r a a+r X

Proof) By the definition of a simple pole

f(z)—i+g(z) b, = Resf(z) 0<z-akR
Z —
Here g(z) is analytlc on the semicircle of integration
C,:z=a+re’, 0<0<r

And for all z between C2 and the x-axis — 0(2) <M

. f(@)dz= j —|re'9d9+ jc g(z)dz =byri + jc g(z)dz

r—0

i g(Z)dZSI\/ILzl\/Im’—>O asr—0 ..lim f(z)dz_mResf(z)

* Kreyszig E. Advanced Engineering Mathematics, 9t edition, Wiley, 2006, p723

QE"\

lﬁ’




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral

M Theorem 1 Simple Poles on the Real Axis
If f(z) has a simple pole at z =a on the real axis, then

C, Iim | f(z)dz=mRes f(z)

r—0 JC,

a—r a a+r X

For sufficiently large R the integral over the entire contour
has the value J given by 2zi times the sum of the residues
of f (z) at the singularities in the upper half-plane.

J =27 Res f(z)

—-R ’a—r

a+r RX

0

We assume that f (z) 20, as x goes infinite then the value of the integral over the large
semicircle S approaches 0 as R —°,
For r — O the integral over C, (clockwise!) approaches the value.

K =-mRes f(z)




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral

M Theorem 1 Simple Poles on the Real Axis
If f(z) has a simple pole at z =a on the real axis, then

mz im [ f(z)dz =i Res  (2)

a—r a a+r X

J =27 Res f(z) K =—7iRes f ()

Together this show that the principal value P of the
integral from -« to « Plus K equals J.

~R - a-r § a+rRX Hence P=J]-K=2zi) Resf(z)+riResf(z)

If f (z) has several simple poles on the real axis, then

K =—7i ) Res f(2).




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral

M Theorem 1 Simple Poles on the Real Axis
If f(z) has a simple pole at z =a on the real axis, then

mz im [ f(z)dz =i Res  (2)

a—r a a+r X

S P=J—K =243 Res f(z)+iRes f (2).
C, J =27 Res f(2) K =—7iY Res f (2).

Hence the desired formula is

~-R"a-r g a+rRX B
(14) pr.v. j f(x)dx =27y Resf(z)+7y Resf(z)

where the first sum extends over all poles in the upper
half-plane and the second over all poles on the real axis,
the latter being simple by assumption.




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral
S (14) pr.v.| f(x)dx=27iy Resf(z)+7i) Resf(2)

where the first sum extends over all poles in the upper
half-plane and the second over all poles on the real axis,

the latter being simple by assumption.

C,

_R'a—r a a+rRX
(3) Res f(z2)=b, =lim (z—2,) f (2)

M Ex. 4 Poles on the Real Axis

. o o dx
Find the principal value pr. V-J‘_oo (X2 T At 2)()(2 1)
Sol) Since f(x)=-—; 1 = - , s y
(X" =3x+2)(x"+1)  (Xx=D(x-2)(x+1)(x—1) i & pole
the integrand f (x), considered for complex z, has simple poles at
- 1 @) S 40X
1 - . 1 2
=1, Resf(z)= -
z=1, Res (2) {(2_2)(22 D 2 e
z2=2, Resf(z):{ 12 _ =£ z=-11n the lower
2-2 (z-D(@z*+1) |, O half-plane, which is
_ of no interest.
z=i, Re_sf(z)z{ > 1 } __ 1 _3-
(2°-3z+2)(z+1) |,, 6+2i 20
B o 50




16.4 Residue Integration of Real Integrals

M Another Kind of Improper Integral
S (14) pr.v.| f(x)dx=27iy Resf(z)+7i) Resf(2)

C, where the first sum extends over all poles in the upper
half-plane and the second over all poles on the real axis,

the latter being simple by assumption.

—R ’a—r a a+rRrRX

M Ex. 4 Poles on the Real Axis

Find the principal value pr.V.Jm dx
RN Ao ks ol OO,
Sol-continued ) Since f(x)=-—; ! > = 1 _ —
(x> —3x+2)(x*+1)  (x-D(x-2)(x+i)(x—i)" Y
i & pole
1 1 3—1
Resf(z)=——, Resf(z)=—, Resf(z)=—— P
SOy RpTe=s R T=% §r e’
real axis upper half-plane _
Zz=-11n the lower
- dx 3_j 1 1 T half-plane, which is
PR . S ) W 981 B R
=~ (X°=3X+2)(X" +1) 20 2 5) 10




