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8.1 Introduction

B Supervised learning
* Learning from labeled examples

B Semisupervised learning

B Unsupervised learning
* Learning from examples without a teacher

® Self-organized learning
* Neurobiological considerations
* Locality of learning (immediate local behavior of neurons)

® Statistical learning theory
* Mathematical considerations
* Less emphasis on locality of learning



8.2 Principles of Self-Organization (1/2)

M Principle 1: Self-amplification (self-reinforcement)
® Synaptic modification self-amplifies by Hebb’s postulate of
learning

1) If two neurons of a synapse are activated simultaneously, then
synaptic strength is selectively increased.

2) If two neurons of a synapse are activated asynchronously,
then synaptic strength is selectively weakened or eliminated.

Aw, (n)=ny, (n)x (n)

® Four key mechanisms of Hebbian synapse
® Time-dependent mechanism
® Local mechanism
® |nteractive mechanism
® Conjunctional or correlational mechanism



8.2 Principles of Self-Organization (2/2)

B Principle 2: Competition
* Limitation of available resources

* The most vigorously growing (fittest) synapses or neurons are
selected at the expense of the others.

* Synaptic plasticity (adjustability of a synaptic weight)
B Principle 3: Cooperation

* Modifications in synaptic weights at the neural level and in
neurons at the network level tend to cooperate with each other.

* Lateral interaction among a group of excited neurons

B Principle 4: Structural information
* The underlying structure (redundancy) in the input signal is
acquired by a self-organizing system
* Inherent characteristic of the input signal



8.3 Self-organized Feature Analysis

Laver Layer Laver
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Figure 8.1 Layout of modular self-adaptive Linsker’s model, with
overlapping receptive fields. Mammalian visual system model.



8.4 Principal-Components Analysis (1/8)

Does there exist an invertible linear transformation T such
that the truncation of Tx is optimum in the mean-square-

error sense?
X :m-dimentional vector
X:m-dimentional random vector
g : m-dimentional unit vector
Projection:
A=X"q=q'X
Variance of A:
o’ =E[A*]=E[(q'X)(X"q)]=q E[XX"]q=q'Rq
R :m-by-m correlation matrix
R=E[XX"]



8.4 Principal-Components Analysis (2/8)

- CTZ - TR ek

v(a) qQ Rq RQO=0A

For any small perturbation oq: . .
5 Eigen decomposition:
+ —

y(a+oq)=y(q) ) Q'RQ= A
Introduce a scalar factor A: q'Rq = /1}" k=j

Rgq=/4q (eigenvalue problem) b 0, k#j
A A ,.,A : Eigenvalues of R m

AR i) R=QAQ" =2 a4

q,.9,,-.9,: Eigenvectors of R —

Rq=1q. j=1,2,.,m (spectral theorem)
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A>A > >A > >
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From ** we see that

Q:[ql,qz,...,qj.,---;qm] w[q}]: ‘;"'jr j: 1,2,...,m

RQ=0QA

L



8.4 Principal-Components Analysis (3/8)

1) The eigenvectors of the correlation matrix R
for the random vector X define the unit
vectors q;, representing the principal

directions along with the variance probes v(q,)
have their extremal values.

2) The associated eigenvalues define the
extremal values of the variance probes y(u )



8.4 Principal-Components Analysis (4/8)

Data vector x: a realization of X
a: arealization of A
a, :qix:xrqj j=1,2,.,m
a: the projections of x onto principal directions

(principal components)

Reconstruction (synthesis) of the original data x:
T T, 1 1 T T
a=|a a,.al] =[xq,xq,.xq]=Qx

Qa=0QQ'x=Ix=x
X = Qazéajqj



8.4 Principal-Components Analysis (5/8)

Dimensionality reduction

/’L1 ,/"Lz,...,}L ,: largest / eigenvalues of R

]

X =
j=1

ajqj = [qllqz F“'Jqlr:]

Figure 8.2 Two phases of PCA
(a) Encoding, (b) Decoding
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8.4 Principal-Components Analysis (6/8)

- data vector x, |
o its reconstructed version x
e=Y aq and error vector e.
I I
i={+1
X

0



8.4 Principal-Components Analysis (7/8)

Figure 8.4: A cloud of data points. Projection onto Axis 1 has

maximum variance and shows bimodal.

1;_ ll- .'I-: -'.‘
""l.ll = . " 3 .H:.': .1':._: F .
\ 'r' “.1-'" . i | <
X : aeTest e e
® il =
\'\ kI v & B ;l_'?:*:;ti"- »an
\ FeVays L s
‘,.._?-! - ‘ .J' '-. l'lrl. oy
\\ '*,}‘y - L .,,J__,,f.,f,h.»‘
:"'h--: - =1 " l',;"-‘."" 5 -
\ . | o i-f & . :. a-"«
1. -4 P i .
i 1 " "
K i 'l.l'gu;lr I“‘..,-lt K =
\ r.'..“"; s
\
4
\ g
\ -
-.\ 3
\
\
\ 2 + [y~
\ f;-f*""f
-
LY _f__',lw""f
e
" 1 1 i
u 4 8



8.4 Principal-Components Analysis (8/8)

Figure 8.5: Digital compression of handwritten digits using PCA.
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8.5 Hebbian-Based Maximum Eigenfilter (1/4)

Linear neuron with Hebbian adaptation

Synaptic weight w. varies with time

w (n+1)=w (n)+ny(n)x.(n), i=12,..m
w,(n+1)=w,(n)+ny(n)(x,(m)- y(n)w,(n))
¢ (n)=x,(n)= y(n)w,(n)

W (n+1)= W (n)+ny(n)x '(n



8.5 Hebbian-Based Maximum Eigenfilter (2/4)

Figure 8.6: Signal-flow graph representation of maximum eigenfilter
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8.5 Hebbian-Based Maximum Eigenfilter (3/4)

Matrix formulation
x(n)=[x,(n),x,(n),..x_(m]"

w(n)=[w,(n),w,(n),..w, (n)]'

y(n)=x"(n)w(n)=w"(n)x(n)

w(n+1)=w(n)+ny(n)[x(n)- y(n)w(n)]
—w(n)+nx' (n)w(n)[x(n)—w' (n)x(n)w(n)]
=w(n)+n[x" (n)x(n)w(n)—-w' (n)x(n)x" (n)w(n)w(n)]



8.5 Hebbian-Based Maximum Eigenfilter (4/4)

Aymptotic stability of maximum eigenfilter

w(t)—>q, as t > o
A single linear neuron governed by the self-organizing learning rule
adaptively extracts the first principal component of a stationary input.

x(n)=y(n)q, for n— oo

A Hebbian-based linear neuron with learning rule

w(n+1)=w(n)+ny(n)[x(n)-y(n)w(n)]
converges with probability 1 to a fixed point:

1) limo*(n)= 4,

n—xo

2) limw(n)=q, with lim|[|w(n)|| =1



8.6 Hebbian-Based PCA (1/3)

Figure 8.7: Feedforward network with a single layer of
computational nodes
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8.6 Hebbian-Based PCA (2/3)

Generalized Hebbian Algorithm (GHA)

Y, (n)= Zm: w, [n)xr, (n) j=1,2,..,4

Weight update rule:
( j \
Aw, (m)= 71| ¥, (m)x,(n) ()2 w, (), (n)

Rewriting as

Aw (n)=ny (n)| x,' ()= w,(n)y (n) |
X (0=, () 2w, (my, ()



8.6 Hebbian-Based PCA (3/3)

Aw (n)=ny (n)x,"(n)
x,"(n)=x,"(n)-w,(n)y (n)

W, (n+1)= wﬁ[n) - Awﬁ{n)

w, (n) = Z_l[Wﬁ(n—l— 1)]

Figure 8.8: Signal-flow graph of GHA




8.7 Case Study: Image Decoding (1/3)

Figure 8.9: Signal-flow graph representation of how the
reconstructed vector x” is computed in the GHA.




8.7 Case Study: Image Decoding (2/3)

Figure 8.10: (a) An image of Lena used in the image-coding experiment. (b) 8 x 8 masks representing the
synaptic weights learned by the GHA. (c) Reconstructed image of Lena obtained using the dominant 8
principal components without quantization. (d) Reconstructed image of Lena with an 11-to-1 compression
ratio using quantization
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8.7 Case Study: Image Decoding (3/3)

Figure 8.11: Image of peppers
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Summary and Discussion

* PCA =dimensionality reduction = compression
* Generalized Hebbian algorithm (GHA) = Neural algorithm for

PCA "

* Dimensionality reduction E qj,

1) Representation of data a= Eiz - qf X, /<m

2) Reconstruction of data a i
* Two views of unsupervised learning S

1) Bottom-up view a,

2) Top-down view i=Yaq=lq.q,-a] % | t<m
* Nonlinear PCA methods .

1) Hebbian networks > e

2) Replicator networks or autoencoders e=X-X

3) Principal curves e=> ag,

4) Kernel PCA )
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