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9.1 Vectors in 2-Space and 3-Space

M Scalar: A quantity that is determined by its magnitude
Ex. Length, Voltage, Temperature

M Vector: A quantity that is determined by both its
magnitude and its direction (arrow or directed line
segment).

Ex. Force, Velocity (Giving the speed and direction of motion)
= Notation (EA|): a, b, v (lowercase boldface letters) or a, b
= |a] (norm ): The length (or magnitude) of the vector a

= Unit Vector: A vector of length 1
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9.1 Vectors in 2-Space and 3-Space

M Definition Equality of Vectors (MIE{2]| &&)
= Two vectors a and b are equal (a = b) if and only if they have the
same length and the same direction.

}-f-"’ P 4 \ \“-\ A

//‘ \\ " / |
a b a\ \b a / b a/ \b
L ¥\ L ¥y 2 \

Equal vectors Vectors having the Vectors having the Vectors having
a=Db same length but same direction but different length and
(A) different directions different length different direction
(B) (©) (D)

(A) Equal vectors. (B) ~ (D) Different vectors




9.1 Vectors in 2-Space and 3-Space

M Components of a Vector
= Let a be a given vector with initial point P: (x4, vy, Z)

and terminal point Q: (x,, Y,, Z,)

[

= Components of a

: The three coordinate differences
q=X—X, L =Y,— Y, =7,—12

= Notation: a:[ai’ d; a3]




9.1 Vectors in 2-Space and 3-Space

M Components of a Vector
= Position vector r of a point A (X, vy, z)
: The vector with the origin as the initial point and A the

terminal point z

Position vector r of a point A: (X, Y, 2)
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9.1 Vectors in 2-Space and 3-Space

M Theorem 1 Vectors as Ordered Triples of Real Numbers

= A fixed Cartesian coordinate system being given, each vector is
uniquely determined by its ordered triple (ZME 2= A=) of

corresponding components.

= To each ordered triple of real numbers there corresponds precisely
one vector, with (0, 0, 0) corresponding to the zero vector 0.

M Zero vector: A vector which has length 0 and no
direction.

Ma=b < a1:b11 a2:b2’ a3:b3
(Wherea:[al, a,, ag], b=[b1, b,, bs])
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9.1 Vectors in 2-Space and 3-Space

M Definition Addition of Vectors

= The sum of two vectors a=[a,, a,, &,], b=[b,, b,, b,]
By adding the corresponding components:

a+b=[a,+b, a,+b,, a,+h,]

= Geometrically: a + b is the vector drawn from the initial point of a
to the terminal point of b

M Basic Properties of Vector Addition
(@) a + b = b + a (Commutativity, w2t A])
b) (U + V) +w=u+ (v+Ww) (Associativity, 2 g & &l)

e
(e
b Sy
2
~



9.1 Vectors in 2-Space and 3-Space

M Definition Scalar Multiplication (Multiplication by
Number)

: The product of any vector and any scalar ¢ (real number ¢)

by multiplying each component : ca = [Cal, ca,, Ca3]

» Geometrically: ca with ¢ >0 has the direction of a and with ¢ <0 the
direction opposite to a.

" |ca =|c||al
= ca=0 ifandonlyifa=0o0rc=0

M Basic Properties of Scalar Multiplication
(@)c(a+b)=ca+cb (b) (c +k)a=ca+ka
(c) c(ka) = (ck)a (d)la=a

M Properties of Vector Addition and Scalar Multiplication
(@)0a=0 (b) ((-a=-a

e
(e
b Sy
2
(-]



9.1 Vectors in 2-Space and 3-Space

M Unit Vectors i, j, k
=i=[1,0,0],j=[0,1,0],k=[0,0,1]

The unit vector i, j, k and the representation

= All the vectors a=[a,, a,, a;] = a,i+ a, j+ a5k
form the real vector space R3? with two algebraic operations of

vector addition and scalar multiplication as just defined.
» R3 has dimension 3.

= The triple of vectors i, j, k is a standard basis (E=7|X{) of R3.




9.2 Inner Product (Dot Product, LX)

M Definition Inner Product (Dot Product) of Vectors
= |nner product or dot product
= The product of their lengths times the cosine of their angle.

a.b:{|a||b|(3037/ ?f a=0, b=0
0 if a=0 or b=0

= The angle y, 0< y <rn, between a and b is measured when the initial
points of the vectors coincide.

a=|a, a,, a,|, b=|b, b,, b,]
a:(ai’az’ae)

* |n components.

aeb=ab +ab, +ab, y ..
- ’>2’ 3

la|cos y
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9.2 Inner Product (Dot Product)

M Theorem 1 Orthogonality (& 11/d)

= The inner product of two nonzero vectors is 0 if and only if these
vectors are perpendicular.

M Length and Angle

a-b =|a||b|cosy

a|=+a-a cosy:ﬂ: a-b
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9.2 Inner Product (Dot Product)

M Properties of the Inner Product

For any vectors a, b, c and scalars q,,q,

1. [qa+q,b]ec=0aec+q,bec

2.aeb=Dbea
{a-azo
3.

aea=0 ifandonlyif a=0

4. (a+b)ec=aec+bec

asb|<[all
a+b|<|aj+|b

~N o o

a+b2+b—b

*=2(Jaf" +[o)

(Linearity)
(Symmetry)

(Positive definiteness)
(

Distributivity )
(Cauchy-Schwarz inequality )
(Triangle inequality)
(

Parallelogram equality)

B A
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9.2 Inner Product (Dot Product)

M Work done by force

W=F-d W =|F||d|cosd =F-d

__________
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9.2 Inner Product (Dot Product)

__________

mg

W =|F||d|cos0 =|F||d| W =|F||d|cos90° =0 W = |F||d|cos180° = —|F||d|

%
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9.2 Inner Product (Dot Product)

M Component or projection of vector a in the direction of

a vector b
a
a | ) : a .
¥ | 4 | |
{ B ! — I I S
[§] [§ = e “ b
i . I P
P
(p=>0) (p=0) (p=<0)

Fig. 181. Component of a vector a in the direction of a vector b

= |a|COS
P=lpicos bl _fllbicosy _a-b
p=lajcosy — = =

b|/|b| =1 bl o] b
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9.2 Inner Product (Dot Product)

M Ex.6 Normal Vector to a Plane
= Find a unit vector perpendicular to the plane 4x + 2y + 4z = -7

Q:asr=ax+ay +a;z=0

We may write any plane in space as

asr=ax+ay +azz=c ...(1)

a=[4,2,4], c=—7

Fig. 184. MNormal vector to a plane Dividing Eq. (1) by |a|
NLr = p ... 2) where, p=i

a




9.3 Vector Product (Cross Product, 2|X)

M Definition Vector Product of Vectors
= Vector product (Cross Product, Outer Product) v = axb

= |f a and b have the same or opposite direction, orifa=0orb =0,
then axb=0

M Length of |v| = |a]| |b]|siny: the area of blue parallelogram

M Direction of v: perpendicular to both a and b (form a right-handed

triple)
Av=axh
b
¥ __:::-
-
Right-handed triple of
Vector product vectors a, b, v
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9.3 Vector Product (Cross Product)

M In components a=|a, a,, a,]. b=|[b, b,, b,]
1 ] k . .
aXb:al a2 a3: 2 a3_a1 a3j+a1 2k
b b b b2 b3 bl b3 bl bZ
1 2 3
= :a2b3_a3b2’ a3b1_a1b , a1b2 _a2b1]

M Right-Handed Cartesian Coordinate System

Z

iXj= k, jXk= i, LkXi= |

ixi=—-k kxj=-i ixk=-j

x y
Right-handed
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9.3 Vector Product (Cross Product)

M Theorem 1 General Properties of Vector Products

1. (la)xb=I(axb) =ax(Ib)
(a) a><(b+c):(a><b)+(a><c)

(b (a+b)xc=(axc)+(bxc) (Distributive with respect to vector addition)

3.bxa=—(axb) (Anticommutative, il 2t#A])
4.ax(bxc)=#(axb)xc (The parentheses cannot be omitted.)

axb

b
|
|
I a
hxaf
Anticommutativity
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9.3 Vector Product (Cross Product)

M Ex 3. Moment of a Force
= The moment m of a force p about a point Q

m =|p|d = |rlplsiny =|r x p|

Q: m=|p[d=|p|rlsiny=pXr?

" * Seoul
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9.3 Vector Product (Cross Product)

M Ex 5. Velocity of a Rotating Body

= Rotation of a rigid body B in space can be simply and uniquely
described by a vector w.

= The length of w = angular speed w (4 =) of the rotation
= The speed (& E) of P
wd =|w||r| siny = |wXr|

=V =wXr

1
Cp

r

(0]

Rotation of a rigid body
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9.3 Vector Product (Cross Product)

M Scalar Triple Product (2Z 2} &5 H)
= Scalar triple product of three vectors

az[ai, a, aﬁ]’ b:[bl’ b, , b3]’ C:[Cl’ Ca C3:

b, b b, b b
(a b C):a.(bxc):al 2 3_|_a2 3 1_|_a3b1 2
C2 C3 C3 Cl Cl CZ
a a, a,
b, b, b,
Cl C2 C3
V< b, b b b
bxc=|p, b, b= - i+ K
¢, ¢ o ol o ¢,
Cl CZ C3




9.3 Vector Product (Cross Product)

M Theorem 2 Properties and Applications of Scalar Triple Products
= The dot and cross can be interchanged:
(a b c)=ae(bxc)=(axb)ec

Cl CZ 3 al a'2 a’3
(axb)ec=ce(axb)=|a, a, a3:> =-|c, ¢, ¢
b, b, b, b, b, b3>
3 2 a
=+|b, b, by|=ae(bxc)
cC C C
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9.3 Vector Product (Cross Product)

= Geometric Interpretation

* Linear Independence

scalar triple product is not zero.

M Theorem 2 Properties and Applications of Scalar Triple Products

The absolute value |( a b ¢ )| is the volume of the parallelepiped
(S HA|) with a, b, ¢ as edge vectors.

Three vectors in R3 are linearly independent if and only if their

The volume of the parallelepiped is
|lbxc|h=a|lbxcl|cos@|=ae(bxc)]

Y S

bxC s
h=|a|cos @ / /

Geometric Interpretation

Three nonzero vectors, whose

initial points coin

cide, are linearly

independent.

A

A

\

y

The vectors do not lie in the same
plane nor lie on the same straight
line.

A

\

A

y

The triple prod

uct is not zero.




9.4 Vector and Scalar Functions and Fields. Vector
Calculus: Derivatives

M Vector function (M E{ gt%)
= Function whose values are vectors v=V(P)=|v,(P), v,(P), v;(P)]
depending on the points P in space.
= A vector function defines a vector field.

= |f we introduce Cartesian coordinates X, vy, z,

v=V(XYy,2)=[v,(XY.2), V,(%Y,2), V;(xY,2)]

\
o

Field of tangent vectors of Field of normal
a curve vectors of a surface




9.4 Vector and Scalar Functions and Fields. Vector
Calculus: Derivatives

M Scalar function
= Function whose values are scalars f=f(P) depending in P

= A scalar function defines a scalar field.

Ex. Temperature field in a body, Pressure field of the air in the

earth’s atmosphere
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9.4 Vector and Scalar Functions and Fields. Vector
Calculus: Derivatives

M Ex 2. Vector Field (Velocity Field)
V(X, Y, Z) =wxr =wx [X,VY, z] =w x(Xi +y] + zK)

T
i ik W= oK
v=|0 0 o|=o0[-Y,X0]=w0(-yl+X|)
X y Z

S

Velocity field of a rotation body

- Sec_:ul
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9.4 Vector and Scalar Functions and Fields. Vector
Calculus: Derivatives

M Vector Calculus

* Aninfinite sequence (72t €) of vectors a, is said to converge if
2,

a=lima, (a(n),n 1,2,

N—o0

- converge to a)

< Thereis a such that lim

n—coo

= v(t) is said to have limit I if limv(t)=1 < lim|v(t)-1|=0

t—>t

%n) ‘a‘ =

M Continuity

= v(t) is continuous at t =t; < it is defined in some neighborhood of t,
and lim v(t)=v(t,).

= v(t)=[v,(t), v,(1), v5(t)] is continuous at t, < its three components are

continuous at t,.
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%
b Sy

i,

(5=
fu
N
(-]

Sy
3§88



9.4 Vector and Scalar Functions and Fields. Vector
Calculus: Derivatives

M Definition: Derivative of a Vector Function

o | , _v(t+At)-v(t)
= y(t) is differentiable att < V(t):ﬂrj‘o At

= The derivative is obtained by differentiating each component
separately.

VD)=V (1), v (1), v ()]

= Properties of Derivative of a Vector Function —=
vt + At)

1. (cv)' =V’ (c constant)

Derivative of a vector function

Q : Prove this.




9.4 Vector and Scalar Functions and Fields. Vector
Calculus: Derivatives

M Partial Derivatives of a Vector Function
V=V, V,, Vo|=vi+Vv,j+vk
are differentiable functions of n variablest,, ... , t,

av:8v1i+av2j+6v3k

o, ot ot ot

o°v. 0%, . 0%, . O,
= i + j+
oot atot.  atot o atot
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9.5 Curves. Arc Length. Curvature. Torsion

M Differential Geometry (Bl 7|5}s})

= A mathematical discipline that uses the methods of differential and
integral calculus to study problems in geometry

= |t plays a role in mechanics, computer-aided and traditional

engineering design, geography (X|2[3}), space travel, and relativity
theory.

M Parametric Representation: Representation of the curve occurred as
path of moving body

r(t) =[x@), y(@), z(t)]=x@®)i+y)j+zt)k

— all three coordinates are dependent on t.

M Here t is the parameter and
X, Y, z are Cartesian coordinates. yar:

Parametric representation of
a curve

LA
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9.5 Curves. Arc Length. Curvature. Torsion

M Example 1
X° +y° =4,

r(t)=[2cost, 2sint, 0]

= 2Ccosti

z=0

+2sintj

Lett* = -t W t = -t*

r*(t*) =[2cos(-t*), 2sin(-t*), 0]

J'||‘I

(t=m)

\

\

i
it:E.TI:J

\jiﬂ
i}

it =0)

M Example 2
X2 y2
=+ ’ =12=0

r(t)=[acost, bsint, 0]
=acosti+bsintj

(t=m)

(t = 3m)

VAT

N

(=10
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9.5 Curves. Arc Length. Curvature. Torsion

M Example 3 Straight Line

Q: How to represent as a vector?

r()="

r(t)=a+tb

Parametric representation of a
straight line

=

R

pmr
2
W
W



9.5 Curves. Arc Length. Curvature. Torsion

M Example 5 circular helix

r(t) = [acost, asint, Ct] Q : How two helixes differ?
/J}\
eSS~
= ¢>0
l \
Z\
=

Right-handed circular helix




9.5 Curves. Arc Length. Curvature. Torsion

M Tangent (&41) to a Curve: The limiting position of a straight line L
through P and Q as Q approaches P along C.

F ()= lim = [ r(t+At)-r(t)]

At—0 At
: Tangent vector of C at P
M U= il" : Unit tangent vector o
r’ //’ /

M TangenttoCatP | Q:?

Tangent to a curve

g(w) =r+wr’

C Tangent to C at P




9.5 Curves. Arc Length. Curvature. Torsion

arc length

: e :
(/T e B

or / \tQ
Q
T L T(b) o9
r(t n 5t) chord length ,*|:'(t 4+ 5’[)
0 0
4 SN S
The chord PQ The tangent vector at P
Sr=r(t+6t)—r(t) im O _dr _
5st—0 St dt




9.5 Curves. Arc Length. Curvature. Torsion

M Arc Length S of a Curve

u tangent vector at P
lim or dr "
/ S S5 \ st>0 5t dt
/T St y Linear element of C: ds
\“m5s_ds_£_ r'l > ds=|r|dt
;. 'O -0 5t dt | dt N
r(t+ ot) ot Yo by
5= ds= Lo s'(t)dt = jto r'(t)|dt
pox y / = .tlx/r'-l"dt
The chord PQ

Jt,

Arc length of S

t
s(t):j\/r’-r'df (r’:%j
t

b % Sec_:ul
[ National 3T



9.5 Curves. Arc Length. Curvature. Torsion

M Length of a Curve

t,(=a), t,...,t_,,t

(=b), where t, <t <...,<t

n n

Length of a curve

. Seoul
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9.5 Curves. Arc Length. Curvature. Torsion

M Linear Element ds

”m5s_ds_£_r,
/ s S \ a0 S5t dt | dt|
/T It is customary to write
or /

Q dr =[dx, dy,dz

o — [dx, dy, dz]

ds) dr dr |, .2

F(t+ St) (Ej - I ey
0 (XY (dyY) (dzY
A R

The chord PQ 5 5 ) )
= ds° =dr-dr=dx” +dy° +dz

t Seoul
Nationa,
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9.5 Curves. Arc Length. Curvature. Torsion

M Arc Length as Parameter
= Unit tangent vector

1

Q:r(t)vsr(s), u(t)vsu(s)?

u(t) = @ r'(t) S o
g /_\’
N P SN
= |f choose s as parameter, then Q
chord length and arc length r(t) Is -0
become equal in the limit. z >
» The unit tangent vector at P
. or dr 0 Y
lim — = — =u(s) X
550 s  ds
dr(s or| ds
Lu(s) = (5) =r'(s) r'(s)|=lim|—|=—=1
dS 5501 5S ds




9.5 Curves. Arc Length. Curvature. Torsion

M Example 6 Circular helix

r(t) =[acost, asint, ct]

Q: represent r with arc length s

3-8 e
dt dt dt dt

ds = Kdt
s = Kt
t=s/K

r (s) =r (

A

o]

A

a cos —,

.S
a sin —,




9.5 Curves. Arc Length. Curvature. Torsion

M Curves in Mechanics. Velocity. Acceleration
= Curves serve as path of moving body in mechanics

= Curve is represented by a parametric representation r(t) with t as

parameter.
» The tangent vector r'(t) of C is the velocity vector v(t)

= The second derivative of r(t) is the acceleration vector a(t)

v(t)=r'(t)
a(t)=v'(t)=r"(t)
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9.5 Curves. Arc Length. Curvature. Torsion

M Tangential and Normal Acceleration: a =a., + a,,m

= Tangential velocity vector S v(t) =r'(t)

V(,[):dr:drds:u(s)ﬁ Y//:P’\
dt ds dt dt

dv d ds) du(ds d?s
t -
)= dt( ()dtj ds(dtj U)o

= Tangent vector u(s) has constant length (=1) 0
= du rpendicular t du = lim (s +08)u(S)
i is perpendicular to u(s) a5 oes 55

1) u(s+os) ~7
r(s) ) u(s +3s) —u(s)

' Sec_:ul
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9.5 Curves. Arc Length. Curvature. Torsion

M Derivative du/ds is perpendicular to u.

Proof)

u-u=1
e G umaun
S0y

ds

3 % Sec_:ul
Q) rational 44



9.5 Curves. Arc Length. Curvature. Torsion

M Tangential and Normal Acceleration: a =a,,, + a

dv d ds\ du(ds d’s

a(t +U(s)—

(t)= dt dt( (s )dtj ds(dtj ( )dt2
= Normal acceleration vector (= a,,,)

du ( ds j
a'norm -
ds \ dt

norm

v(t) =r'(t)

» Tangential acceleration vector (= a,,) 0 y
) X
a,, = u(s.)E
tan dt2

|a,, | : the absolute value of the projection of a in the direction of V

a-v bl _allbleosy _a-b
|y =T PR = e T 2
|V| i L. '

avyv _av, . _. . _b
V[ [v] v-v -

atan = norm tan 3




9.5 Curves. Arc Length. Curvature. Torsion

__ll_E

M Curvature (&

= Curvature «(s) of a curve C (r(s)) at P: The rate of change of the unit
tangent vector u(s) at P

zc(s):|u’(s)|=r”(s)| (:i] .'.u(S) :r’(s)

ds
U U Q: which one has larger curvature?

— for circle
F

duV

large curvature

small curvature

compare with the same arc length

ol
o
2

N
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9.5 Curves. Arc Length. Curvature. Torsion

M Summary S 5
| S
Y/S\’ 08 ' Y/\H oSSy
/o : (s) 5S—>g”/
0 LC >
. r(t) :
r(t+ot) l
| /
0] Y , OX '
4 |
|
dr(s
% ~ g : U(S) — d(s ) = I"'
dt [dt : _dr _drds ds
Unit tangent vector I V(t) dt ds dt U(S)E
1 |
u(t) = r'(t) . dv d ds) du(ds) d?s
4 {)=—=— — |=— — B
r'(t) 2= dt(u(s)dtj ds(dtj ()4
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9.5 Curves. Arc Length. Curvature. Torsion

M Example 7. Centripetal acceleration (47} ). Centrifugal force (¥
o5)

Q: prove acceleration is toward center.

r(t)=[Rcoswt, Rsinwt|=Rcoswti+Rsinawt j

v=r'=[-Rosinot, Rocoswt|=—-Rwsinoti+Rwcosotj

|V| =r'l=+r'-r=Ro v is tangent to C

a=V'=|-Ro’cosat, -Rw’sinot |=-Re’® coswti- R’ sin otj

a= —Cl)zr /J _T
4
a : toward center, centrifugal force . b’\ - x,

ma : centripetal force (7+& &) |
-ma : centrifugal force (& &) \




9.6 Calculus Review: Functions of Several Variables

MPartial Derivatives

Z (X,Y,z) where z= f(X,Y)

(X Y) \
y,
¢ (x.y) X, :ndependen
X Domain of Z = f (X, y) 7 . dependent
variable

\ e
Sl
Nt
pom
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9.6 Calculus Review: Functions of Several Variables

Ordinary Derivatives y = f(X)
ﬂ: iim f (X+Ax)— f(X)
dx ax—>o0 AX
Partial Derivatives 7= f (X, y)
oz _ o fx+Axy)-f(xy) o2 _ o Fy+Ay) - f(xy)
OX| &x—>0 AX @y AX—0 Ay
of i
:—:ZX:fX § :qzz :f
ax ay y y
partial derivative with respect to X partial derivative with respect to Y
treating Y as a constant | treating X as a constant

o )',&-" Seoul
Nationa,
> E'j\ Univ. 159



9.6 Calculus Review: Functions of Several Variables

MExample 1 MExample 2
Partial Derivatives Partial Derivatives

If z=4x3y2-4x>+y®+1, find 0z/0x and oz/dy.: If F(x,y,t)=e>" cos4x sin6y,

5 F.(x,y,t) =—4e " sin4xsin6y
 F,(x,y,t)=6e"" cos4xcosby
F (X, y,t) = —=37e " cos4xsin 6y

I
[l
b iy
2
A
a
©



9.6 Calculus Review: Functions of Several Variables

M Chain Rules

» Let w=f(Xx,y,z) be continuous and have continuous first partial
derivatives in a domain D in xyz-space. Let x=x(u,v), y=y(u,v), z=z(u,v)
be functions that are continuous and have first partial derivatives
in a domain B in the uv-plane

OW  OW OX 8W8y OW 0z
— f V), y(u,v),z(u, =
W (x(u v),y(u.v),z(d V)) = ou  OX 8u oy 8u oz ou’

OW  OW OX 6W8y OW 0z
oV 8X8V 8y6v 0z oV

I F

D

-c(ﬁ’u‘}/— \\19 [elee, o], v, o), 2w, v)]

B =

S i /H'--_____

Notations in Theorem 1
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9.6 Calculus Review: Functions of Several Variables

M Special Cases of Practical Interest

OW  OW OX 8W8y OW  OW OX 8\N8y
ou 8x8u oy du’  ov axﬁv oy ov

dw ow dx @Wdy ow dz
= £ (x(t), y(t), z(t
w=tx®.y(M)20) = =5 Ty dt az dt

w=f(x(uv),y(uv)) =

dw  ow dx awdy
= f(x(t), y(t
w=txOy) = =i oy dt

dw dw dx
dt  dx dt

w=f(x(t)) =

%
]
b Sy
2
(4]
%)




9.6 Calculus Review: Functions of Several Variables

M Theorem 2 Mean Value Theorem (Hzat ddl)

= Let f(x,y, z) be continuous and have continuous first partial
derivatives in a domain D in xyz-space.

» Let Py (Xg Yo, Zg) @and P : (Xg+h, yo+kK, ,+1) be points in D such that
the straight line segment P,P joining these points lies entirely in D.

Then of ~of | of
f(%+hy,+k zo+1)—f (xo,yo,zo)zh&+k5+|E

= the partial derivatives being evaluated at a suitable point of that
segment.

|:.'I.'D + h,_}'n + &)

D

g g




9.6 Calculus Review: Functions of Several Variables

M Special Cases of Practical Interest

= For a function f (X, y) of two variables,
of of
f(x+hy,+k)—f (xo,yo)zh&+k5

= For a function f (x) of a single variable,

of

f (% +h)—f (xo)zh&
f(X+h)—f(x%) of
h - OX

a point between x, and Xy +h

(50
]
b i
2
(2]
(3]




9.7 Gradient of a Scalar Field. Directional Derivative

M Definition 1 Gradient (7|2 7|)

Differentiable

function
z="1(XY)
w=F(X,Y,2) Vector differential
o operator
V=i 9 +] 9
ox oy
V=l 9 + ] 9 +K 9
X "oy 0z
V :“del” or “nabla”
Vf “grad fe

Gradients of function

Vf(x,y):gi+%j
X

VFE(X, y,z):g—Fi+@Fj+8F K
X

oy 0z

* Gradient: scalar field => vector field
* Divergence: vector field => scalar field
* Curl: vector field => new vector field

E] ),x‘ Seoul ;
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9.7 Gradient of a Scalar Field. Directional Derivative

Ea

M Directional Derivatives (U&= gh)
— :Rate of change of f in the i -direction

OX

V4
z=1(xy)

(50
]
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9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivatives (2gF &)

q :Rate of change of f in the j-direction
oy
Z /
Qf(x’ '
I J7 d
_______________________________________________ J

%
]
b i
2
(2]
(-]




9.7 Gradient of a Scalar Field. Directional Derivative

M The rate of change of f in the direction given by the vector u: D f

oy

:ﬂsine

_ of
7 z=1(x, Y}: The rate of change of fin x: X
of
i =The component of N inu:=—cosf
o | o
i The rate of change of finy: —
| v
J Y
' | = The component of a inu: qCOS(Z—@)
] & 2
I
|
1
1

:@cose + ﬂsine

OX oy
=(ii+ﬂj)-(cosﬁi+sin 6j)=Vf-u
oX oy




9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivatives (‘& E 8 4)

~ T (X+AX, y+Ay)— (X, y)

Q)
Slope of indicated secant line is
f(X+AX, y+Ay)-f(x,y) f(x+hcos@,y+hsing)—f(x,y)

h h




9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivatives (‘& E 8 4)

Slope of indicated secant line is
f(x+AX,y+Ay)-f(x,y) f(x+hcosd,y+hsing)-f(xy)

h h




9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivatives (‘& E 8 4)

f(X+AX, y+Ay)— (X, V)

As h—>0 we expect the slope of secant line would be tangent line
f(X+AX, y+Ay)-f(x,y) f(x+hcosd,y+hsing)-f(xy)
h B h




9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivative

Ve
/

unit vector u=cos@i+singj is

" The directional derivative of z= f(x,y)

in the direction of a

f(x+hcosd,y+hsind)— f(x,y)

D, f(X,y)= Llﬂg

\_provided the limit exists.

h

f(x+h,y)—f(xYy) :82

€ =0 implies D, f(x,y) = Ihim0

T . . ]
0= > implies D; f (X, y) = Ihlgg

h

OX

f(x,y+h)—Tf(x,y) :az

h

oy

55/
[l
b i
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9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivative

If z=f(X,y) isdifferentiable function of x and y and
u=cosédi+sindj then,

Duf(xv y)ZVf (X’ y)u

Proof)
g(t)= f(x+tcosd,y+tsin )

by definition of a derivative
9'(0) = I|m g(0+h)—g(0) i f(x+hcos@,y+hsin9)— f(x,y) _D, f(x,y)

h—0 h

by the Chain Rule
g'(t)=f (x+tcosé, y+tsm9)—(x+tcos@)+f (x+tcosé, y+tsm9)—(y+tsm6’)

= f,(x+tcos®,y+tsind)cosd+ f (x+tcosd,y+tsind)sing

~.9'(0)=f (x,y)cos@+ f (x,y)sind

%
s
b i
2
»
>



9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivative

If z=f(X,y) isdifferentiable function of x and y and
u=cosédi+sindj then,

Duf(xv y)ZVf (X’ y)u

PI"OOf) ] of of
g(t)= f(x+tcosd,y+tsin g) Vf(x’y):&”@j

D, f(x,y)=9'(0) = f,(x,y)cos &+ f (X, y)sin&
=[f (X, y)i+ fy(x, y)j]-(cos@i+sin )
=VIi(x,y)-u

%
[l
b i
2
[+2)
(3]




9.7 Gradient of a Scalar Field. Directional Derivative

M Directional Derivative

if z=1f(X,Y)

Is differentiable function of x and y and

u=cosédi+sindj then,

Duf(xv y)ZVf (X’ y)u

V4

D, T(x,y) = Txy)
=[f,(x y)I+1,(x y)]]-(cos@i+sin g j)
=Vf(x,y)-u T~
(scalar value)
il : y
Yo~
X 0

%
]
b i
2
[+2]
»




9.7 Gradient of a Scalar Field. Directional Derivative

M Definition 2 Directional Derivative

= The directional derivative of f(x,y,z)at Pin the /
direction of b: ///»@
f . f —f(P b
Dbf:d_:“m (Q)-F(P) /
ds -0 S T

» Here Qs a variable point on the straight line L in the
direction of b and |s] is the distance between P and Q

L :r(s)=x(s)i+y(s)j+z(s)k=p,+sb
(|b|:1’ where p, the position vector of P)

o) — v ()i v'(e)is " _ for a vector a of any
r'(s)=x(s)i+y'(s)j+z'(s)k=b ength
= Dbfzdf :6f x'+§y'+ﬂz':b-gradf Daf:la.gradf
ds aXT ayT 82T 4
o L a
0s 0s 0s G Seoul

() nationat 67



9.7 Gradient of a Scalar Field. Directional Derivative

MExample 1
Directional Derivative

Find the directional derivative of
f(x,y)=2x2y3+6xy at (1,1) in the :
direction of a unit vector whose = (10i +12j)-(\/§i +1j]

angle with the positive x-axis is n/6. 2 2

u=cos@i+sin Qj:cos%i+sin %j

D, f(L1)=Vf(L1) u

~-5/3+6

Solution)

Vf(x,y):(;in%j
X

= (4xy° +6Y)i + (6X°y* +6X)j

Vi (11) =10i +12]

e
(e
b Sy
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9.7 Gradient of a Scalar Field. Directional Derivative

MExample 2
Directional Derivative

= Consider the plane that is
perpendicular to the xy-plane.

= The plane passes through the points
P(2,1) and Q(3,2).

= What is the slope of the tangent line
to the curve on intersection of this
plane with the surface f(x,y)=4x?+y? at
(2,1,17) in the direction of Q?

Solution)

f(x,y)=4x"+y°
VT (x,y)=8xi+2yj
Vi (2,1) =16i + 2

P_Q>:u:

1,1
V2o V2

D, f(2,1) =V (2,1) eu

=(16i+2j)o( - | +

7l
NN
- 92

%
]
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9.7 Gradient of a Scalar Field. Directional Derivative

M Theorem 1 Gradient is a Vector. Maximum Increase

= Letf(P)=1f(x,Y,z) be a scalar function having continuous first
partial derivatives in some domain B in space.

= Then grad f exists in B and is a vector, that is, its length and
direction are independent of the particular choice of Cartesian
coordinates.

= |If grad f (P) #0 at some point P, it has the direction of maximum
increase of f at P.

* Gradient: scalar field => vector field
* Divergence: vector field => scalar field
* Curl: vector field => new vector field

B g0
3 LJ\ NUl:m/. 0 |




9.7 Gradient of a Scalar Field. Directional Derivative

M Proof D, f(x,y)=Vf(xy)-b, |b|=1

D, f =|Vf||b|cos¢ =|Vf|cosg, ¢:angle betweenVf and b
—1<cos¢p <1

The maximum value of Dp T = D, f = ‘Vf ‘ , When COS¢ =1, 9=0

U

b has the same direction of Vf

[> VT is the direction of maximum increase of T at P

—Vf is the direction of maximum decrease of T at P

=, Vi(e ZI=270)7t £ S7tA7|e 7t 2 X ZEL| bS B
Of 7t 7ty 2 dl= HOrEL, viet X

(50
]
b i
2
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9.7 Gradient of a Scalar Field. Directional Derivative

Level Curves

7 prane
surface y
i

Y-

@ increasing
f(x,y)=c value bf

X Surface
X

. . . \Level Curves
The rate of change of f in the direction U

given by the vector: ) f (X y)
u ]

Vf is the direction of
maximum increase of f at P,




9.7 Gradient of a Scalar Field. Directional Derivative

M Gradient as Curve Normal Vector
f(x(t), y(t)):C . A curve passes through a specified point P(x,,Y,)-

r= (X(t), y(t)) . A position vector of a point on the curve.

df (x(t), y(t)) curve
f(x®),yt))=c = =0 R
(x(), y()) " y X y)—c
s 9F(x(®), y(©)) _ of dx of dy r(t;)

dt ox dt oy dt Vi (X, Vo)
()9 p
| ox oy . dt dt . P(X: Yo)

= Vf (X, y) = r(t) Tangent vector

X'

S VEXY)-F{) =0 | Vi(x,y) is normal to the curve at the point P.

b E K " Seoul 7 3
Nationa, |
E'j\ Univ. |




9.7 Gradient of a Scalar Field. Directional Derivative

MExample 1
Gradient at a Point

Find the level curve of f(x,y)=-x?+y?
passing through (2,3). Graph the
gradient at the point.

Solution)
f(2,3) = —2°+3* =5
Level curve : —X°+Yy° =5
VI (X, y) =-2XI+2Y]
VIi(2,3)=-2-21+2-3]
=—41+06]

I
[l
b iy
~
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9.7 Gradient of a Scalar Field. Directional Derivative

M Gradient as Surface Normal Vector
= Level Surface of f: A surface represented by f (X, y, z) = ¢ = const
= Tangent Plane of SatP
: A plane which is formed by the tangent vectors of all curves on S
passing through P
= Curve C on the surface r(t) = x(t)i + y(t)j + z(t)k
= Surface Normal to S at P: The straight line through P perpendicular

to the tangent plane
sentp f =const

Tangent plane

55/
(S
b Sy
2
~
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9.7 Gradient of a Scalar Field. Directional Derivative

M Gradient as Surface Normal Vector

= A Surface Normal Vector of S at P: A vector in the direction of the

surface normal
The chain

f(x(t), y(t).2(t)) =c —L4 e d e I (grad £)r'=0
dx dy dz

— grad f is orthogonal to all the vectors r' in the tangent plane

— grad f is a normal vector of S at P f = const

Tangent plane

%
(S
b Sy
2
~
(=]



9.7 Gradient of a Scalar Field. Directional Derivative

M Theorem 2 Gradient as Surface Normal Vector

= Let f be a differentiable scalar function in space. Let f(x,y,z)=c=
const represent a surface S.

= Then if the gradient of f at a point P of S is not the zero vector, it is
a normal vector of S at P.

M Example 2 !
|
Find the level surface of F(x,y,z)=x?+y?+z2 passing i // VFQ2, 2, 2)
through (1.L.1). Graph the gradient at the point. [ A
Solution) 7 4 .

F11) =1° +12 +12 =3 / .

Level surface :  Xx*+y°+2° =3

VE(X,y,2) =2Xi+2y]+ 27K yE@111)=2-1i+2-1j+2-1k

S e a7
y E'j\ NUtniv. |



9.7 Gradient of a Scalar Field. Directional Derivative

M Vector Fields That Are Gradients of Scalar Fields
(“Potentials”)
= f(P)is potential function of v(P): v(P) =grad f (P)
= Vector field is conservative: energy is conserved in a vector field

M Theorem 3 Gravitational Field (2121%). Laplace’s Equation
= The force of attraction ( °|E=' C[X X, y y0 z—zo}

r r

between two particles at pomts Po: (Xos Yor Zo) and P: (X, Y, 2) has
the potential f(x,y, z) = c/r, where r (> 0) is the distance between P, and

P.
= Thus p =grad f=grad (c/r). This potential fis a solution of Laplace’s
equation.
2 2 2
V2§ :6 1; +8 1; 0 f
ox>  oy* oz’




9.7 Gradient of a Scalar Field. Directional Derivative

M Proof
I = ((X_ X0)2 + (y— y0)2 4+ (y_ y0)2)1/2
g(ij: —2(X—X,) _ :_X—3X0 |:> 5_22(;):_%4_3()(_5)(0)2
XN 2[(X—Xo)2+(y—yo)2+(y—yo)2] r ox“\r r r

g(lj:_ 2—320 E> 8_2 __i+3(z_zo)2
oz\r r or’\r) r re

3(X—X%,) +3(Y—Yp)* +3(y—Y,)" =3r’

0° (1 0° (1 0° (1 3 3r°
| == = |+ = |=—=+—=0 = AZUEL e FOl 7|27 (p=
OXZ(FJ a,z(r) azz(r) 37 5 P 2ot el 7= |(P V)




% Gradient, Divergence, Curl in Fluid Mechanics

M Velocity Potential

V =grad¢
0. 04 04,

V=Uul+Vj+WK=—I1+—]+ "Gradient is used here”
OX 0z

V = 9

(Vector, 3 unknown (1 unknown)
components)

We can reduce the unknowns from 3 to 1.




9.8 Divergence (Z4h) of a Vector Field

ov, oV, OV, ,
+ + , (scalar field)

ox oy oz

V,,V,,V, the components of v

M Divergence of v : divv=

M Example v =[3xz,2xy,— yz°]=3xzi + 2xyj — yz?k
= divv=3z+2x-2yz
* Gradient: scalar field => vector field

V] Common notation * Divergence: vector field => scalar field
* Curl: vector field => new vector field

divv=Vev= 2 , 2 , g o[v,V,,V,]
OX o0y oz
L L Dk |eitv,jevk) =Dy Mo OV
oXx oy oz ox oy oz




9.8 Divergence of a Vector Field

M Theorem 1 Invariance (2H‘d) of the Divergence

= The divergence div v is a scalar function, that is, its values depend
only on the points in space but not on the choice of the
coordinates.
avl* 6\/2* aVB*
+ +
oxX* oy* oz*
with respect to other Cartesian coordinates x*,y*,z* and
corresponding components v,*, v,*, v;* of v. (to be proved in Sec. 10.7)

divv =

Let f (X, Y, z) be a twice differentiable scalar function.

of of of
v=grad f = , —,
X oy oz
2 2 2
div(v)=div(grad f):(?9 I +2 1;+8 I =V*f
X z

(712710 cHgr L2 Laplace HH7H Al)




9.8 Divergence of a Vector Field

M Ex.2 Flow of a Compressible Fluid. Physical meaning of
the Divergence

at time t+ At

ttimet - :
e density : p density : p
Y4 Control Volume / y 4 Control Volum%/
Vv y \'
Fluix U F|UK}
i out |
________ N A
X X
7 Z
¢ A 5

55/
(S
b Sy
2
©
w



9.8 Divergence of a Vector Field

M Ex.2 Flow of a Compressible Fluid.

N
©
>
®)
7\
>
d2
—~
-
>
X3
Q
I_I
Q
N
I S
o
H _ ES
Vup m — |
= <
' &)
||||||||||||||||||| L/
N
©
>
\VA \ @)
S | N 9
—~
-
>
SIEE
Q > -
_
Q
N




Ex.2 Flow of a Compressible Fluid.

vV

<
o
r
1B

dVrlght
prlght
dt
(pu)leftdydz ]
<[ pu- 2P O g £
ox 2 '
1 \'
] -
S ! }dp
P w
dy Sq--+
Y
dx —dx

ri
1B

dvrlght (dydz)dxrlght (dde) rlghtdt

HE SOl MM 2R E LIzt FHe| Fo

HE Sol dANN22RE MXLZE fH2 23

Pright@Viright = pright(dydz)urightdt = (pu )rightdydz - dt
v el AMZHE 2EF HE Soll WLzt FH|12 2T

pright(dydz)uright = (pu )rightdydz

dz

v (pU)ign 2 Taylor Series2 M8},

1 5*(pu)

ol pu dx
(pu)right = ,OU + (8X ) 2
_ . 0(pu)dx
= 8x

(pU )rightdydZ - (,OU +

OX

dx

2!

al

2

(1XFE x| 2t

jZ
M

|

+ ...

EH
=

)

Soll WX LEZE FH2] 2

olu) ix

2

jdydz




Ex.2 Flow of a Compressible Fluid.

v B N7 2t B2 Sof BLZ 9o By

o(pu) ox

Right(+x): ( ,ou)right dydz = [ pu+ dydz

a(pv)ﬂ dxdz
oy 2

Front(+2): (oW)g,q dxdy = (/JW + @ %}dxdy

Top(+y): (,ov)tOID dxdz = (pv+

3
Il
7~ X\
—_~
i)
c
~
I
o)
X
™ |
o
<
o
N
+
7~ N\
iS!
<
~
I
o)}
—~~
Q
<
~
Q.
NIRS
N——
o
x
o
N
+
7~ X\
—~~
iS)
=
~—
I
o)}
—_
k)
=
~
o
N

v B9l A2k 2t g Sof Boi2 SHlel XY

left(-x):

Bottom(-y): (pv)bottom dxdz =| pv— oy

Rear(-z):  (ow),, dxdy= ( PV — opw) Ejdxdy

dxdy

dxdy

= —L'Ou) dxdydz— % dxdydz— M dxdydz

0z

i
i



Ex.2 Flow of a Compressible Fluid.

» Mass conservation

v BHel AZHE A HH S Saket /A

[ )

o
40
o
p
m
?
rlo
02
njo
+
I
i

OX 8y o

/ (HAMIE U] By Hete)= aa—‘t’dxdydz ---------- )

@ = @@(mass conservation)

% dxdydz= —M dxdydz—M dxdydz—M dxdydz
ot OX oy 07

ﬂdxdydz O UHE LIFH,

op __dpu)_a(pv) _o(ow)
o x oy @

op a(PU)+a(PV) o(pw) 0 |:> %—f+V0(pV)=0

=> Continuity Equation




Ex.2 Flow of a Compressible Fluid.

Continuity Equation (2Ed FHIZE2| A=d BA4)

ap
“E1Ve(pV)=0
L +Ve(oV)

HI2t=A SHl(Incompressible fluid)dial 7FE0HH,

(p = const)
ou ov oOow
VeV=0 (ax +ay+ o7 :Oj Divergence

(HIg=del =)

FO{Z! M Hojl cisl Y22 AlZtoMel |3t FE2| X7t 09 HH HEH
HEA} - © 1
2 — 17

u :> 2D Flow Example

v

—

(S
i




“ Gradient, Divergence, Curl in Fluid Mechanics

M Velocity Potential

V=grad¢g V=ui+vj+wks= 7 |+ a¢j+%k “Gradient is used here”
ox oy oz

Gxay 0z

i P9 06,
OX’ ay2 oz°

VeV=0 (8u 8v ow _ Oj “divergence is used here”

“Laplace Equation”

b " Seoul 89
3 Nationa, |
y E'j\ Univ. |



9.9 Curl of a Vector Field

M Curl (2]F):

= Let V(X V,2)=[v,V,,V;]=Vi+V,j+V.K be a differentiable vector

function of Cartesian coordinates X, y, z.

= Then the curl of the vector function v or of the vector field given

by v is defined by the “symbolic” determinant.

curlv=Vxv =

i j K
0 0 of (v v, i+(%_%jj+ Ny
OX ay 07 @y Oz 07 OX OX ay
Vl V2 V3

* Gradient: scalar field => vector field
* Divergence: vector field => scalar field
* Curl: vector field => new vector field

E] > Seoul

=
E Nationa/ 90
T Univ. ‘

55N



9.9 Curl of a Vector Field

M Example

Let v =[yz, 3zx, z] = yzi + 3zxj + z k with right-handed x, v, z.
Find curl v.

Solution) curl v — vy OV, i+(avl—6v3jj+ v, oV K
oy oz oz OX oX oy

:(62_aBij”(@yz_azjjJ{@Bzx_ayz]k
oy 0z 0z OX ox oy

= —3X1+ Y]+ 2zK

(50
]
b i
2
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9.9 Curl of a Vector Field

M Theorem 1 Rotating Body and Curl

= The curl of the velocity field of a rotating rigid body has the
direction of the axis of the rotation,

= and its magnitude equals twice the angular speed of the rotation.

M Theorem 2 Grad, Div, Curl

= Gradient fields are irrotational.
curl (gradf) =0
= The divergence of the curl of a function is zero.

div (curlv) =0
curlv=(%—%]i+(%_%jj+(%_%}<
oy 0oz oz ox ox oy
. Prove them!
2 Vf:ﬁfi+afj+5fk diVV:8v1+8v2+6v3
oXx oy oz ox oy oz




9.9 Curl of a Vector Field

M Theorem 3 Invariance of the Curl

= curlvis avector. That is, it has a length and direction that are
independent of the particular choice of a Cartesian coordinate
system in space.




9.9 Curl of a Vector Field

M Physical Meaning of Curl (2|%)
= Focusing on xy-plane
V=[Vvy, vy, Vs

|82 1/
do = (1Mo g - M gi |2 L %dtzdﬁl
2 oy 2

OX OX
FEE Az
dé ov,
a) = =
> dt  ox

' Sec_:ul
)} Vosional 94



9.9 Curl of a Vector Field

M Physical Meaning of Curl (2|%)
= Focusing on xy-plane
V=[Vvy, vy, Vs

curlv = %—% |+(%_%jj+ %_% k
oy oz oz  OX X oy

= MY HAH (shear deformation )

|V2|:|V1|
do =2 VMegr- Mg |- L(de, -da,)=0
20 x - oy ) 2

- Sec_:ul
) vetonst 95



9.9 Curl of a Vector Field

M Physical Meaning of Curl (2| %)
= Focusing on xy-plane
V=[Vy, Vs, V3] curlv=(—3 Wz]i{

oy o
(e S

ov, B oV,

do=2
2

W

OX OX

o ox

E%dtzgd@ >

5
oX oYy
_4do _1ov,
 dt 2 ox

o]}

=
==

(shear + rotation )

& Moy

= @|& (rotation)

oy

.
de, \

de,

AX




»» Curl and Rotation in Fluids

AX

V+— AX
OX

v SNl AXIO| A ORHOl YU S
valil 2 I, xE2 2 Ax BHE HojA
XIHOIAL] Y3 &5

v=V(X,Y,t)

y,t 7t A& 0I2HH,

vV =V(X)

l AxJI}ECH P01,

V(X +AX) =Vv(X) + v AX
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»» Curl and Rotation in Fluids
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»» Curl and Rotation in Fluids
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Curl and Rotation in Fluids
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Curl of a Vector Fields

% Paddle device
If a paddle device is inserted in a flowing fluid, WIH i
then the curl of the velocity field v is a measure of *'“} B

the tendency of the fluid to turn the device about
its vertical axis w.

Paddle device

Physical Interpretations

A A A A B
—Xg—=>Xg—=>X’s _>><B_>B><A —>A><
Irrotational flow Rotational flow
(curl F =0) (curl F=0)




“ Gradient, Divergence, Curl in Fluid Mechanics

M Velocity Potential
V=grad¢g V=ui+vj+wk= %I +£]+6—¢k “Gradient is used here”

_I_

vev_g | M XL MW “divergence is used here”
B OX 8y (64
| |
2 2
0 ¢ 0 ¢ 0°¢ -0 Continuity Equation
8X2 5)/ 52 (Laplace Equation for Incompressible Fluid)

For any scalar function ¢ =¢(X,Y,2), curl(grad¢): 0 is always true.

curl(grad¢) = curl(w 4+ 00 j+ 9 k}

oXx oy 0z
0° o°¢ ). [ 0° 0’ ). ( 0° 0°
= P99 I - P _0o9 J+ p_9 k=0 |:> Irrotational
oyoz ozoy OXOZ  OZOX OXOy  OyOX
“Velocity potentlala |'-9-'5|'7| f18i A = irrotational 7}°d0| BF=EA| & 2 5fCt”

=Turbulence §H 252 £ £+ giCh

“Curl is used here”




Key Summary




9.7 Gradient of a Scalar Field. Directional Derivative

M Proof
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“ Gradient, Divergence, Curl in Fluid Mechanics

M Velocity Potential

V=grad¢g V=ui+vj+wks= 7 |+ a¢j+%k “Gradient is used here”
Z

ox oy
VeV=0 ou 8V 8W:0 “divergence is used here”
OX ay 0z
@¢ 52¢ 0°¢

“Laplace Equation”

PYIMPYIP ﬁ
u—> 2D Flow Example —>
v

L1

- 5 Sec_:ul
g Lj\ N'Z;Zz;:a 106



Curl of a Vector Field

M Curl (2]F):
= Let V(X V,2)=[v,V,,V;]=Vi+V,j+V.K be a differentiable vector

function of Cartesian coordinates X, v, z.

= Then the curl of the vector function v or of the vector field given

by v is defined by the “symbolic” determinant.

I ] kK

arlv=vxv=|L & 2/_[Ns_ N, i+(%—%jj+ Ny M e
ox oy oz oy 0z 0z OX ox oy
Vl V2 V3

(50
s
b i
2
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o
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9.9 Curl of a Vector Field

M Physical Meaning of Curl (2|%)
= Focusing on xy-plane
V=[Vvy, vy, Vs

|82 1/
do = (1Mo g - M gi |2 L %dtzdﬁl
2 oy 2

OX OX
FEE Az
dé ov,
a) = =
> dt  ox

' Sec_:ul 108
[ Nationsl 108



9.9 Curl of a Vector Field

M Physical Meaning of Curl (2|%)
= Focusing on xy-plane
V=[Vvy, vy, Vs

curlv = %—% |+(%_%jj+ %_% k
oy oz oz  OX X oy

= MY HAH (shear deformation )

|V2|:|V1|

do =2 VMegr- Mg |- L(de, -da,)=0
20 x - oy ) 2

> @, =0

- Sec_:ul 109
[ Mational 108



9.9 Curl of a Vector Field

M Physical Meaning of Curl (2| %)
= Focusing on xy-plane

V=[V1, Vo, V3] curlv=(%—%]i +(8V aVSJH(aVZ —%jk

oy oz 0z OX X oy
do = 1 aVZAt—élAt =1%dt=£d02|:> . d@ 1(3V

2l oy ) 2o 2 Tt 2 ox
58t (shear + rotation ) AN MO HY 22 3| (rotation)
oV M Ay =0 w0,
oy + :
do, \

dé. oV
2 I —2 AX
P OX p
AX




“ Gradient, Divergence, Curl in Fluid Mechanics

M Velocity Potential

V=grad¢g V=ui+vj+wk= %I —|——¢j—|——¢k “Gradient is used here”
ox oy 0z
0° ¢ 0° ¢ 0°¢ Laplace Equation for
2 =0 Incompressible Fluid
OX 8y i P

For any scalar function ¢ =¢(x,y,2), curl(gradg)=0 is always true.

“Curl is used here”

curl(grad¢) = curl(?ﬁ + ¢' a¢ j

O’p 3¢ ¢\ (% ) _ |
(8yaz azéyj [8xaz 8zaxj (ﬁxay ayaxjk_o :> Irrotational

“Velocity potentlala MRO 7| I8 A= irrotational 7}°40| BtEA| & Q 5}C}H”
=Turbulence /4| 282 & =+ 8ICH

ol
o
2

N
§338
-
-
iy



Spare Slides




T8 §4H1) (Newtonian Fluid)

N
y velocity profile
—PU(y) ............................................ ‘/ UIﬁ -_rllj_l‘OIIA.Igl EE}EQ%
= -dldt’ d 9 ~ tan d H _ dUdt _ d_U d t
o dy  dy
ay 99 v HOWMHEO| SIS S A TN 23
— / do  du
A G )
.............. dt dy
. . v 58 SHl(Newtonian fluid)
ldeal Bingham plastic . MChS (| MOHIAS0| A|ZHADHZ0] HI
T dé
Dilatant EE

Plastic

v 58 SHl(Newtonian fluid)| E&
: @,01 Clol, MHYSEH2 S=1HH0 HlHIE

"l S p: 88 A=)

Newtonian

seudoplastic
do roc r=
= d d
o y y
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