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9.1 Introduction (1/2)

Somatosensory Map

Homunculus
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9.1 Introduction (1/2)

* Self-organizing feature maps
— Competitive learning, nonlinear
— Winner-takes-all neurons
— Topographic (topology-preserving) maps
— Lattice structure
— Place-coded probability distribution
* A self-organizing map is a topographic map of the input
patterns, in which the spatial locations (i.e. coordinates) of

the neurons in the lattice are indicative of intrinsic
statistical features contained in the input patters.

* The brain is organized in many places in such a way that
different sensory inputs are represented by topologically
ordered computational maps.



9.2 Two Basic Feature Mapping Models (1/2)

Figure 9.1: Two self-organized feature maps.
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9.2 Two Basic Feature Mapping Models (2/2)

* Principle of topographic map formation: The spatial
location of an output neuron in a topographic map
corresponds to a particular domain or feature of data
drawn from the input space

* Willshaw-von der Malsburg Model

* Map from input lattice to output lattice (same dimensions)
* Not winner-take-all neurons (but thresholds)
* Topologically ordered mapping

* Kohonen Model

* Map from input (no lattice) to output lattice
* Winner-take-all neurons

* Vector-coding algorithm



9.3 Self-Organizing Map (1/4)

Figure 9.2: Two-dimensional lattice of neurons, illustrated for a three-dimensional input

and four-by-four dimensional output (all shown in ).
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9.3 Self-Organizing Map (2/4)

Figure 9.3: Gaussian neighborhood function.
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9.3 Self-Organizing Map (3/4)

SOM Algorithm
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9.3 Self-Organizing Map (4/4)

* Two phases of the adaptive process
— Ordering phase and convergence phase

* Adaptation of neighborhood and learning rate parameters
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SOM Animations

https://www.youtube.com/watch?v=zyYZUAQZWTM
https://www.youtube.com/watch?v=b3nG4c2NECI&t=35s
https://www.youtube.com/watch?v=k7DK5fnJH94

https://www.youtube.com/watch?v=IttfH2nwdb4 &t=9s
https://www.youtube.com/watch?v=dASyjPQtbS8&t=27s
https://www.youtube.com/watch?v=3YhiU2 uk5I
https://www.youtube.com/watch?v=71wmOT4IHWc&t=38s

https://www.youtube.com/watch?v=WIGxS-quGSo
(Growing Neural Gas Algorithm)

https://www.youtube.com/watch?v=GdZckTLNgsY
(Video Lecture)
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9.4 Properties of the Feature Map (1/5)

Property 1. Approximation of the Input Space
The feature map, represented by the set of synaptic weight vectors in
the output space, provides a good approximation to the input space.
Property 2. Topological Ordering

The feature map computed by the SOM algorithm is topologically
ordered in the sense that the spatial location of the neuron in the
lattice corresponds to a particular domain or feature of input patterns.

Property 3. Density Matching

Regions in the input space from which sample vectors are drawn with a
high probability of occurrence are mapped onto larger domains of the
output space.

Property 4. Feature Selection

Given data from an input space, the self-organizing map is able to
select a set of best features for approximating the underlying
distribution.
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9.4 Properties of the Feature Map (2/5)

Figure 9.4: Illustration of the relationship between feature map ©
and weight vector w; of winning neuron /.
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9.4 Properties of the Feature Map (3/5)

Figure 9.5: Encoder—decoder model for describing Property 1 of the SOM model.
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9.4 Properties of the Feature Map (4/5)

Figure 9.6: Noisy encoder—decoder model.
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9.4 Properties of the Feature Map (5/5)

Figure 9.7: (a) Two-dimensional distribution produced by a linear input—output mapping.
(b) Two dimensional distribution produced by a nonlinearinput—output mapping.
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9.5 Computer Experiments: Disentangling
Lattice Dynamics Using SOM (1/2)

Figure 9.8: (a) Distribution of the input data. (b) Initial condition of the two-dimensional lattice. (c) Condition of the
lattice at the end of the ordering phase. (d) Condition of the lattice at the end of the convergence phase.
The times indicated under maps (b), (c), and (d) represent the numbers of iterations.

W ..ll‘ "|' THe % T a -
¢*':‘:i '.:. o -,.‘ “. LT
08Foaym aultma, * 2%00 % aon U0

] s et fa ) ..*‘4..' .
L Y p) - :‘.:'l. '.t"l'. - .- tn:: :

”Er :::: :: .; -. ,: -..: 'l' "‘- * . - '-'-. N
0.4 ':. " P f'-;".."'l f.l.:: <
:.I L 'l..‘\rl ',: -: ." l.':- . . :t- -'In:'

”.2 '.‘- ..i:‘..:‘:" i.?é ...i '-" :é
N R X 2 P
0 0.5 1

(a) Input distribution

11
1T 1 L1
ns ! ~
- - | 4 -
| g - ¢
0.6 H ! A
. ; I' 1 L
0.4 - R +
02 HH \ ] )
T [ 1
- SEEEEY
0
0 0.5 |

Time = 160 K
(c) Ordering phase

n2
.1
0k
—0.1}
-0.2 :
=().2 )] 0.2
Time =0
(b) Initial weights
|
0.8 -
A
0.6 T T }
[
.4 u F
02 : 1 .
] ﬁ
] .5 |
Time = 800 K 17

(d) Convergence phase



9.5 Computer Experiments: Disentangling
Lattice Dynamics Using SOM (2/2)

Figure 9.9: (a) Distribution of the two-dimensional input data. (b) Initial condition of the one-dimensional lattice.
(c) Condition of the one-dimensional lattice at the end of the ordering phase. (d) Condition of the lattice at the end

of the convergence phase. The times included under maps (b), (c), and (d) represent the numbers of iterations.
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9.6 Contextual Maps

Table 9.2 Animal names and their attributes
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Animal A T A © O © w £ A 2 U k= O T N O
([ small | 1 1 1 | 1 0 0 0 0 1 0 0 0 0 0
1S medium 0 0 0 0 0 0 | l 1 1 0 0 0 0 0 0
| big 0 1] 0 (0 0 0 0 0 0 0 0 1 1 1 1 ]
[ 2 legs 1 1 1 1 1 1 1 0O 0 0 0O 0O O 0 0 0
4 legs 0 0 0 0 0 0 0 l | l l 1 1 1 1 ]
has hair 0 (0 0 (0 0 0 0 | 1 I | 1 1 1 1 ]
" hooves 0 0 0 0 0 0 0 0 0 0 0 0 () 1 1 ]
mane 0 1] 0 1] 0 0 0 ] 0 | 0 0 1 1 1 ()
([ feathers 1 1 1 1 | 1 1 0 0 0 1] 0 () ] 0 ()
[ hunt () 0 0 0 l 1 | l 0 | | 1 1 0 (0 0
likes run o 0 0 o o o0 O O 1 1 0 1 1 1 1 0
to fly | 0 0 1 | 1 | 0 0 0 0 0 0 0 0 0
[ swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 9.10: Feature map containing labeled neurons with strongest
responses to their respective inputs.
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9.6 Contextual Maps

Figure 9.11: Semantic map obtained through the use of simulated electrode penetration mapping.
The map is divided into three regions, representing birds (white), peaceful species (grey), and hunters (red).
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9.7 Hierarchical Vector Quantization (1/2)

Figure 9.12: (a) Single-stage vector quantizer with fourdimensional input. (b) Two-stage hierarchical
vector quantizer using two-input vector quantizers. (From S.P. Luttrell, 1989a, British Crown copyright.)
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9.7 Hierarchical Vector Quantization (2/2)

Figure 9.13: Two-stage encoding—decoding results, using the binary tree shown in red in Fig. 9.12, for the
compression of correlated Gaussian noise input. Correlation coefficient & = 0.85.
(From S.P. Luttrell, 19893, British Crown copyright.)
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9.8 Kernel Self-Organizing Map (1/5)

* Objective function: Joint entropy of the kernel (i.e., neural)
outputs

H(Y)==| p, (¥)logp, (¥,)dy,
y.=k(x,w, o)

* Definition of the kernel

k(x,w,0)=k(l|x-w,]||.0,)

r=[|x—w || : incomplete gamma distribution
(m || x-w |}
kxw o)=L ™l zf” i=1,2,,0
1 1 2 20_I

(%)
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9.8 Kernel Self-Organizing Map (2/5)

Figure 9.14: Two different sets of plots versus the distance r are shown in the figure for unit variance and
increasing dimensionalitym =1,2, 3, ...
* The continuous curves (printed in black) are plots of the probability density function of Eq. (9.41).
* The dashed curves (printed in red) are plots of the complement of the incomplete gamma distribution or,
equivalently, kernel k{r) of Eq. (9.44) with r = ||lx —w||.
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9.8 Kernel Self-Organizing Map (3/5)

From SOM to Kernel SOM
e Similarity matching

i(x):argmion—wj 1
j

— I(x)=argmin y =argmin k(x,w o)
j j

* Neighborhood function

[ lx-w IF)
hji(x]:eXpL_ >0y J* J €4
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9.8 Kernel Self-Organizing Map (4/5)

Kernel SOM Algorithm

1.

2.
3.

Initialization. Weights w (0)
]
- Random, different, small magnitude
Sampling. Input X
Similarity matching.
i(x)=argminy.
j

=argmin k(X,w o)
j
Updating.

(see next slide)

= Uy



9.8 Kernel Self-Organizing Map (5/5)

Kernel SOM: Update Equations
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9.9 Computer Experiments: Disentangling
Lattice Dynamics Using Kernel SOM

Figure 9.15: The evolution of a 24-by-24 lattice over time, the values of which (in terms of the number of iterations)
are given below each picture. Left column: Evolution of the kernel weights. Right column: Evolution of the kernel widths.
Each boxin the figure outlines the result of a uniform input distribution.The time given below each map represents
the number of iterations. (This figure is reproduced with the permission of Dr. Marc Van Hulle.)
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9.10 Relationship Between Kernel SOM and
Kullback-Leibler Divergence (1/3)

Quality of density estimate p_(x) against true density p, (x)

(p ]\I
D5, = a0 325

Density estimate as a mixture of Gaussian density function

X)=p.(x|w.,0)=—
py(X)=p4(x|w,,0)) Eé[zﬁ]mﬁgr
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llx—w, IIZJ

Partial derivative w.r.t. w,
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9.10 Relationship Between Kernel SOM and
Kullback-Leibler Divergence (2/2)

Similarly, partial derivative w.rt. o,

6 | o . \
- o) |d
55( PX"”K) st ]pr[xlwho‘f]aﬁjpx[ﬂw’ D-IJJ g
Setting
o
a(%m) =0

-

s,
g(%@x) — 0

and invoking stochastic approximation theory,

we obtain the learning rules
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9.10 Relationship Between Kernel SOM and
Kullback-Leibler Divergence (3/3)

Suppose we set the conditional posterior density

ﬁx(xj lw,,0)=5, forj=12,..1

5 1 for j=i
g 0 for j=i

When this ideal condition is satistifed, neuron i is the winning neuron.

We may therefore view ﬁx (x|w o ) as playing the role of the

topological neighborhood function
Py(X|w,0,)= hj,r’[x]
Minimization of the KL divergence is equivalent to maximization of the joint

entropy (defined in terms of incomplete gamma distribution kernels and an
activity-based neighborhood function which is the core of the kernel SOM).
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Summary and Discussion

Self-organizing map

v 1D or 2D lattice map, Order out of disorder, Vector quantization
Convergence considerations of SOM

v “Almost sure” convergence

Neurobiological considerations
v' SOM and cortical maps in the brain
v Formation of computational maps in primary visual cortex

Applications of SOM

v Semantically related object groupings (classes)
v’ Visual images, millions of documents

Kernel SOM
v Online, stochastic-gradient-based algorithm

v Automatically adjust the kernel, but requires careful tuning of
the learning rate parameters for the weights and width

(c) 2017 Biointe gence Lao, 2NU
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