Chapter 1. Properties of Gases

Equation of State (Single Component in Solid, Liqid or Gas)

The physical state of a pure substance is described by its physical properties. The state of a pure gas, for example, is specified by giving its value, V, n, p, and T. Equation of state is an equation which interrelate these four variables:

$$
\begin{equation*}
p=f(T, V, n) \quad V=f(T, p, n) \tag{1.A.3}
\end{equation*}
$$

Extensive Properties: properties proportional to the amount of material.
e.g., mass, volume, number of moles, heat capacity.

Intensive Properties: the nature of materials not depending upon the amount. e.g., temperature, pressure, diffusivity, viscosity, thermal conductivity, dielectric constant, electrical conductivity, electronic conductivity, ionic conductivity, heat capacity / mole, heat capacity / atom, etc.

For a homogeneous material, only two intensive variables can be independent; the remaining variables must then be a function of these two.

Intensive Property: $f(P, T) \underset{1 \text { Component }}{ } f_{\mathrm{IQ} 300}(O, P)$

Equation of state \longleftrightarrow Functional dependence of any other physical properties on these two variables.

1.A.2. The Ideal Gas Law (Perfect Gas) Single Component

Ideal Gas: 1. The size of molecule is negligibly small.
2. The interactions between molecules do not exist.

$$
p V=n R T \quad p V=N k_{B} T
$$

$p V=N k_{B} T$

Figure 1.A. 2
The pressure-volume dependence of a fixed amount of perfect gas at different temperatures. Each curve is a hyperbola ($p V=$ constant) and is called an isotherm.

http://bp.snu.ac.kr
$p=N k_{B} T / V$

Figure 1.A. 3
Straight lines are obtained when the pressure is plotted against $1 / V$.

$V=N k_{B} T / p$

Figure 1.A. 4

The variation of volume of a fixed amount of gas with the temperature at constant pressure (isobar).
Note that in each case they extrapolate to zero volume at $-273.15^{\circ} \mathrm{C}$.

by Experimentalists

(at the given pressure)

"I take my blood pressure medicine at bedtime and before looking at the market reports."

$p=N k_{B} T / V$

Figure 1.A. 5

The pressure also varies linearly with the temperature at constant volume, and extrapolates to zero at $T=0 \mathrm{~K}\left(=-273.15^{\circ} \mathrm{C}\right)$.

by Theoreticians

(at the given volume)

3D Plot

$p V=N k_{B} T$

Figure 1.A. 6
A region of the p, V, T surface of a fixed amount of perfect gas. The points forming the surface represent the only states of the gas that can exist.

$$
p V=N k_{B} T
$$

Figure 1.A. 7
Sections through the surface shown at a constant variable.

1.B. The Kinetic Model of Gases

Three Assumptions:

1. The gas consists of molecules of mass m in ceaseless (elastic) random motion.
2. The size of molecules is negligible, in the sense that their diameters are much smaller than the average distance traveled between collisions.
3. The molecules do not interact, except that they make perfectly elastic collisions when they are in contact.

An elastic collision means that the
total translational kinetic energy of a colliding pair is
the same before and after the collision:
no energy is left in one of the colliding particles
as rotational energy or vibrational energy, etc.

The collision frequency, $z=$ the number of collisions made by a single particle per time

$$
z^{-1}=\tau: \text { Collision Time }
$$

The mean free path, $\lambda=$ the average distance each particle travels between collisions

$$
\sigma=n e^{2} \tau / m^{*}
$$

free electron model in solid

1.B.1(a). The Pressure Exerted by a Gas

When a molecule of mass m collides with the wall perpendicular to the x-axis, its component of momentum along the x-axis changes from $m v_{x}$ to $-m v_{x}$. The total change of momentum on each collision is of magnitude $\left|2 m v_{x}\right|$.

Figure 1.B. 1
The pressure of a gas arises from the impact of its molecules on the walls. In an elastic collision of a molecule with a wall perpendicular to the x-axis, the x-component of velocity is reversed, but the y-and z-components are unchanged.

The number of collisions in a time interval Δt \cong
The number of molecules able to reach in that time

Figure 1.B. 2

A molecule will reach the wall on the right within an interval Δt if it is within a distance $v_{x} \Delta t$ of the wall and traveling to the right.

The distance a molecule of velocity $\underline{v}_{\underline{x}}$ can travel in a time $\Delta x=\left|v_{x}\right| \Delta t$, so all the molecules lying within a distance $\left|v_{x}\right| \Delta t$ of the wall will strike it if they are traveling towards it.
A : the cross-section of the container
$\frac{n N_{A}}{V}$: the number of molecules per volume
All the molecules lying in a volume $A\left|v_{x}\right| \Delta t$ will reach the wall.
$\therefore \frac{n N_{A} A\left|v_{x}\right| \Delta t}{V}$: the number of molecules in the volume of interest
On the average, half of these are moving to the right, and half to the left, and so the average number of collisions in the interval Δt is $n N_{A} A\left|v_{x}\right| \Delta t$
\therefore the total momentum change
$=\frac{n N_{A} A v_{x} \Delta t}{2 V} \times 2 m v_{x}=\frac{n m N_{A} A v_{x}^{2} \Delta t}{V}=\frac{n M A v_{x}^{2} \Delta t}{V} \quad$ where $M=m N_{A}$
The rate of change of momentum $=\underline{\text { force }}=\frac{n M A \nu_{x}{ }^{2}}{V}$
The pressure $=\frac{n M v_{x}^{2}}{V}$

Not all the molecules travel with the same velocity, and so the detected pressure is the average quantity just calculated.

$$
p=\frac{n M\left\langle v_{x}^{2}\right\rangle}{V}
$$

Since the motion of the molecules is random,

$$
\begin{aligned}
& \left\langle v_{x}^{2}\right\rangle=\left\langle v_{y}^{2}\right\rangle=\left\langle v_{z}^{2}\right\rangle \\
& v^{2}=v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}^{2}
\end{aligned}
$$

$\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle=3\left\langle v_{x}^{2}\right\rangle, \quad\left\langle v_{x}{ }^{2}\right\rangle=\frac{1}{3}\left\langle v^{2}\right\rangle$
$\left\langle v^{2}\right\rangle$: mean square speed of the molecules \rightarrow mean energy

$$
V_{r m s}=\sqrt{\left\langle V^{2}\right\rangle} \text { root mean square }(\mathrm{rms}) \text { speed }
$$

$$
\begin{aligned}
& \therefore p=\frac{n M\left\langle v_{x}^{2}\right\rangle}{V}=\frac{n M\left\langle v^{2}\right\rangle}{3 V} \\
& \therefore p V=\frac{1}{3} n M\left(V_{m s}\right)^{2}=\frac{1}{3} N m\left(V_{m s}\right)^{2}
\end{aligned}
$$

$$
p V=\frac{1}{3} n M\left(V_{m s}\right)^{2}=n R T=N k_{B} T \quad \frac{3}{2} k_{B} T=\frac{1}{2} m\left\langle v^{2}\right\rangle
$$

$$
v_{r m s}=\left(\frac{3 R T}{M}\right)^{\frac{1}{2}}=\left(\frac{3 k T}{m}\right)^{\frac{1}{2}}
$$

root mean square speed of molecules

1.B.1(b). Maxwell-Boltzmann Distribution of Molecular Speeds

In an actual gas, the speeds of individual molecules span a wide range, and the collisions in the gas continually redistribute the speeds among the molecules.

The probability that a molecule has a velocity with components in the range v_{x} to $v_{x}+d v_{x}, v_{y}$ to $v_{y}+d v_{y}$, and $v_{z}+d v_{z}=f\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} d v_{z}$.

Fraction in the range v_{1} to $v_{2}=\int_{v_{1}}^{v_{2}} f(v) d v$

Figure 1.B. 6

To calculate the probability that a molecule will have a speed in the range v_{1} to v_{2}, we integrate the distribution between those two limits.

The distribution $f\left(v_{x}, v_{y}, v_{z}\right)$ can depend only on the speed v, where

$$
v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2},
$$

The evaluation of K

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f\left(v_{x}\right) d v_{x}=1 \\
& \int_{-\infty}^{\infty} f\left(v_{x}\right) d v_{x}=K \int_{-\infty}^{\infty} e^{-\frac{m v_{x}^{2}}{2 k T}} d v_{x}=K\left(\frac{2 \pi k T}{m}\right)^{\frac{1}{2}}=1
\end{aligned}
$$

Why $\delta v_{x}, \operatorname{not} \delta E$

Maxwell-Boltzmann distribution of

 molecular velocitiesFor three-dimensional case, the Maxwell-Boltzmann distribution:

$$
f\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} d v_{z}=f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) d v_{x} d v_{y} d v_{z}
$$

3D

$$
=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{-\frac{m v^{2}}{2 k T}} d v_{\nu} d v_{v} d v_{z}
$$

Particle in a Box

$$
p=\frac{h}{\lambda}=k k\left(k=\frac{2 \pi}{\lambda}\right)
$$

(3)

$$
E_{n}=\frac{h^{2} n^{2}}{8 m x^{2}}
$$

(2)

$$
\vec{p}=\frac{h \cdot n}{2 x}=m \vec{v}
$$

(1) $\lambda=\frac{2 x}{n}$

Ar gas $\quad x=10 \mathrm{~cm}$ $\binom{$ idea gas }{ perfect gas }$\frac{\text { size zero }}{\text { natation zeno }}$

Approximations to integral of $\sqrt{ } x$ from 0 to 1 , with 5 yellow right endpoint partitions, and with 12 green left endpoint partitions.

The volume of spherical shell $=4 \pi v^{2} d v$ The probability that the speed lies in the range v to $v+d v$ irrespective of direction of motion:

$$
f(v) d v=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{-\frac{m v^{2}}{2 k T}} 4 \pi v^{2} d v
$$

$$
f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} v^{2} e^{-\frac{m v^{2}}{2 k T}}
$$

3D

Figure 1.B. 3
The probability $f(v) d v$ that the molecule has a speed in the range $v\left(=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}\right)$ to $v+d v$ is the sum of the probabilities that it lies in any way of the volume elements $d v_{x} d v_{y} d v_{z}$ in a spherical shell of radius v.
(1) The root mean square speed is the square root of the average value of v^{2}

$$
v_{m m s}=\left(\frac{3 R T}{M}\right)^{\frac{1}{2}}=\left(\frac{3 k T}{m}\right)^{\frac{1}{2}} \quad \begin{align*}
& \text { ppt } \mathbf{0} \mathbf{- 1 1} \tag{1.B.7}\\
& \text { ppt } 15
\end{align*}
$$

(2) The mean speed is the mean of the speeds calculated using the Maxwell-Boltzmann distribution.

$$
\begin{equation*}
\langle v\rangle=\int_{0}^{\infty} v f(v) d v=\left(\frac{8 R T}{\pi M}\right)^{\frac{1}{2}} \tag{1.B.7}
\end{equation*}
$$

(3) The most probable speed is the speed at which the MaxwellBoltzmann distribution passes through a maximum.

$$
\begin{equation*}
V_{\text {most probable }}=\left(\frac{2 R T}{M}\right)^{\frac{1}{2}} \tag{1.B.9}
\end{equation*}
$$

(4) The relative mean speed $V_{\text {rel }}=\sqrt{2} V$ mean $=\sqrt{2}\langle v\rangle$

For two dissimilar molecules of masses m_{A} and m_{B},

$$
\begin{equation*}
v_{r e l}=\left(\frac{8 k T}{\pi \mu}\right)^{\frac{1}{2}}, \text { where } \mu=\frac{m_{A} m_{B}}{m_{A}+m_{B}} \tag{1.B.10a}
\end{equation*}
$$

Figure 1.B. 8

A simplified version of the argument to show that the mean relative speed of molecules in a gas is related to the mean speed.

When the molecules are moving in the same direction, the mean relative speed is zero. It is $2 v$ when the molecules are approaching each other.

The mean relative speed is $\underline{\sqrt{2} V}$ (as confirmed by more detailed calculation).

Neutral Molecule

Detector

Charged Molecule charge/mass ($=q / m$) through B (magnetic field)

ToF-SIMS

(Secondary Ion Mass Spectroscopy)

Fig. 1.B. 5

Velocity Selector = Time-of-Flight Measurement

The molecules are produced in the source (which may be an oven with a small hole in one wall), and travel in a beam towards the rotating disks. Only if the speed of a molecule is such as to carry it through each slot that rotates into its path will it reach the detector. Thus, the number of slow molecules can be counted by rotating the disks slowly, and the number of fast molecules counted by rotating the disks rapidly.

1.B.2(a) $z^{-1}=\tau$: Collision Time

$\sigma V_{\infty} \Delta t=V / N$

$\underline{\sigma=\pi d^{2}}, \widetilde{N}=\frac{N}{V}$
(1.B.11a)
(1.B.11b)
(1.B.12)

Cross Section $=$ Area, σ

Figure 1.B. 9

In an interval Δt, a molecule of diameter d sweeps out a tube of diameter $2 d$ and length $v_{\text {rel }} \Delta t$. As it does so, it encounters other molecules with centers that lie within the tube, and each such encounter counts as one collision. In practice, the tube is not straight, but changes direction at each collision. Nevertheless, the volume swept out is the same, and this straightened version of tube can be used as a basis of the calculation.

$$
v_{\text {rel }}=\sqrt{2} V_{\text {mean }}=\sqrt{2}\langle v\rangle \sim\langle v\rangle
$$

$$
\text { relative speed } \approx \text { mean speed } \approx v_{r m s}
$$

The mean free path λ,

$$
\lambda=\frac{\left\langle V_{r e l}\right\rangle}{z}=\frac{1}{\sigma\left(\frac{N}{V}\right)}
$$

$$
z=\left\langle v_{r e l}\right\rangle \sigma\left(\frac{N}{V}\right)
$$

For a perfect gas,

$$
\begin{equation*}
\lambda=\frac{1}{\sigma\left(\frac{p}{k T}\right)}=\left(\frac{1}{\sigma}\right)\left(\frac{k T}{p}\right) \tag{1.B.12}
\end{equation*}
$$

The mean free path is inversely proportional to the pressure.
$v \approx 500 \mathrm{~m} / \mathrm{s}$

$v \tau \approx 500 \mathrm{~nm}(\tau \approx 1 \mathrm{~ns}) \quad$| at 300 K |
| :--- |
| $1 \mathrm{~atm}+300 \mathrm{~K}$ |

http://bp.snu.ac.kr
$v \tau \approx 1 \mathrm{~cm} \quad$ at $10^{-5} \mathrm{~atm}+300 \mathrm{~K}$ Evaporation (in Vacuum) - reproducibility or
Wet Chemistry - cost

Thermal Equilibrium

The experience summarized by the Zeroth Law of Thermodynamics: If an object A is in thermal equilibrium with B, and if B is in thermal equilibrium with C, then C is in thermal equilibrium with A.

1.C. Real Gases

1.C.1. Intermolecular Forces

Pairwise potential function, $U(r)$, which gives the potential energy of the pair as a function of the distance (r) between their centers.

$$
F=-\frac{d U}{d r}
$$

At long range, a weak attractive force between the molecules

$$
\rightarrow F \propto-\frac{1}{r^{n}}
$$

At short range, the force becomes very strongly repulsive. A number of semi-empirical potentials have been proposed and used. The ability of a proposed potential to fit a variety of data over a range of temperatures with the set of parameters is an indicator of generality.

Figure 1.C. 1

The variation of the potential energy of two molecules on their separation.

High positive potential energy (at very small separations) indicates that the interactions between them are strongly repulsive at these distances.

At intermediate separations, where the potential energy is negative, the attractive interactions dominate.

At large separations (on the right), the potential energy is zero and there is negligible interaction between the molecules.

~Figure 1.C. 1

The intermolecular potential $U(r)$. The potential is a function of the distance between the centers of the molecule. This figure illustrates two parameters ($2 r$), which is the distance between the centers of the molecules where the potential curve crosses zero, and the well-depth parameters (ε), which is the depth of the potential well at its minimum.

\sim Fig. 1.C. 1
Energy vs. separation distance for two atoms (or two oppositely charged ions).

1.C.2. The van der Waals Equation \approx Real Gas

$$
\begin{aligned}
p & =\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \\
& =\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}}
\end{aligned}
$$

Ideal gas: 1 . The size of molecule is negligible.
2. The interactions are negligible.

$$
V_{m}=\text { molar volume }
$$

$a, b:$ empirical constants that are characteristic of the particular force.
$a \rightarrow$ At finite concentrations, molecules will have attractive forces which will reduce the pressure.
$b \rightarrow$ The volume in the ideal gas law should not be the volume of the container, but the volume available to a molecule for kinetic movement.

Magnitude of b by Volume

Excluded volume: A sphere of diameter $2 \boldsymbol{r}$ creates an excluded volume, which is a sphere of radius r, into which the center of another sphere of the same size cannot penetrate.

The excluded volume per pair of spheres: $\frac{4 \pi(2 r)^{3}}{3}$.
[Justific. 1.C.1]
The excluded volume is $b=4\left(4 \pi \frac{r^{3}}{3}\right) N_{\mathrm{A}}$ for N_{A} molecules.

P - V Dependence at Different Temperatures

Gas isotherms:
Comparison of the isotherms of an ideal gas to that predicted by the van der Waals equation for ammonia.

An ideal gas will not condense at any temperature.

Ideal Gas

Ammonia (van der Waals)

Figure 1.C. 2

Experimental isotherms of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ at several temperatures.

The critical isotherm *, the isotherm at the critical temperature, is at $31.04^{\circ} \mathrm{C}$. The critical point is marked with a star.
dry ice $=$ solid of CO_{2}
Critical Point: $7.38 \mathrm{MPa} \& 31 . \mathbf{0}^{\circ} \mathrm{C}$
Triple Point: $\quad 0.52 \mathrm{MPa} \&-56.6^{\circ} \mathrm{C}$

Critical point (continuous transtronations)
Triple point: 3 phases coexist.

$$
\begin{gathered}
d G=-S d T+U d P+\sum \mu_{i} d N_{i} \\
G(P)=\int V d P
\end{gathered}
$$

Equilibrium / Metastable / Reversithe

~Figure 1.C. 7
Van der Waals isotherms at several values of T / T_{c}.
The van der Waals loops are replaced by horizontal straight lines.
The critical isotherm is the isotherm for $T / T_{c}=1$.

Figure 1.C. 7
The surface of possible states allowed by the van der Waals equation.

For van der Waals equation,
$T>T_{c}$, somewhat realistic
$T<T_{c}$, the isotherms show an undulation which is not at all like the observed behavior

Reason:
Van der Waals equation \rightarrow cube in volume

$$
\begin{aligned}
& p=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}} \\
& V_{m}^{3}-\left(\frac{R T}{p}+b\right) V_{m}^{2}+\left(\frac{a}{p}\right) V_{m}-\left(\frac{a b}{p}\right)=0
\end{aligned}
$$

For any choice of T and p, there will be three values of the volume which will, mathematically, satisfy the van der Waals equation.

$$
\begin{aligned}
& p=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}} \\
& V_{m}^{3}-\left(\frac{R T}{p}+b\right) V_{m}^{2}+\left(\frac{a}{p}\right) V_{m}-\left(\frac{a b}{p}\right)=0
\end{aligned}
$$

A cubic equation \rightarrow three roots
$T>T_{c} \rightarrow$ one real, two complex
$T=T_{c} \rightarrow$ all three roots: real and equal
$T<T_{c} \rightarrow$ all three roots: real and unequal
Horizontal line is drawn through the undulation with equal areas above \& below:
Interpreted as the vapor pressure of the liquid. (Maxwell construction)

Why? (derivation on ppt 1-36)

[Later]

$$
d G\left(T, p, n_{j}\right)=-S d T+V d p+\sum_{i} \mu_{i} d n_{i}
$$

Critical Behavior of Fluids

P vs. V (or P vs. V_{m}) for a gas at constant temperature (isotherms)
~Fig. 1.C. 7

At high temperatures, these are similar to the hyperbolae predicted by the ideal gas law. At the critical temperature, the isotherm has a horizontal inflection at the critical point (C).

Below the critical temperature, the isotherms have a horizontal segment (shown by the dotted lines) in the two-phase region, where both liquid and vapor are present.

Near the critical temperature, the isotherms have a nearly horizontal section.
At the critical temperature, this becomes an inflection point for which the slope is zero at some point - namely, the critical point $\left(\boldsymbol{P}_{c}, V_{c}, \boldsymbol{T}_{\mathrm{c}}\right)$.

Meaning of the Horizontal Part of the Isotherms below $\boldsymbol{T}_{\underline{c}}$:

- The value of the pressure at which, for a given temperature, liquid and vapor phases are in equilibrium (i.e., the horizontal lines) is called the vapor pressure.
- The total volume of the liquid + vapor can increase without a change in pressure.
- If there are two phases in the container, compression will cause more vapor to condense into the higher-fraction liquid, but at the same pressure.

The isothermal compression of a gas (below its critical temperature) will, at the $P-V$ point (a), cause the condensation of a liquid.
Further reduction of volume will cause more gas to condense, but the pressure will not change. This is the vapor pressure of liquid at this temperature.

At point (c), all the gas will be condensed to a liquid, and further reduction of volume requires the compression of the liquid.

1.4(b). Evaluation of Gas Constants from the Critical Data

At the critical temperature, the curve has an inflection at which the gradient and curvature are zero.

$$
p=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}} \longleftrightarrow V_{m}^{3}-\left(\frac{R T}{p}+b\right) V_{m}^{2}+\left(\frac{a}{p}\right) V_{m}-\left(\frac{a b}{p}\right)=0
$$

$1^{s t}$ derivative $\frac{d p}{d V_{m}}=\frac{-R T}{\left(V_{m}-b\right)^{2}}+\frac{2 a}{V_{m}^{3}}=0$
$2^{2^{n d} d e r i v a t i v e} \frac{d^{2} p}{d V_{m}^{2}}=\frac{2 R T}{\left(V_{m}-b\right)^{3}}-\frac{6 a}{V_{m}^{4}}=0$

$$
V_{m, c}=3 b
$$

$$
p_{c}=\frac{a}{27 b^{2}}
$$

$$
\begin{equation*}
T_{c}=\frac{8 a}{27 b R} \tag{1.C.6}
\end{equation*}
$$

Table (1.C.4)

1.C.2(c). The Principle of Corresponding States

- The He and CO_{2} gases look very different in their behavior at any given temperature and pressure.
- However, if we compare them, each by its critical point, heir compression factors are nearly the same.

$$
\begin{aligned}
\text { He: } T_{c}=5.3 \mathrm{~K}, \quad p_{c}=2.26 \mathrm{~atm}, V_{c}=57.7 \mathrm{~cm}^{3} / \mathrm{mol} & \rightarrow Z_{c}=0.300 \\
\mathrm{CO}_{2}: T_{c}=304.2 \mathrm{~K}, p_{c}=73.0 \mathrm{~atm}, V_{c}=95.6 \mathrm{~cm}^{3} / \mathrm{mol} & \rightarrow Z_{c}=0.280
\end{aligned}
$$

The law of corresponding states demonstrates that the compression factor (and many other intensive properties) of any gas can be written as a Univelsal function of the reduced variables:

$$
T_{r}=\frac{T}{T_{c}}, \quad p_{r}=\frac{p}{p_{c}}, \quad V_{r}=\frac{V_{m}}{V_{m, c}}
$$

Write the p, V_{m} and T of van der Waals equation in terms of the reduced variables, and then express the latter in terms of the relations in eqs:

$$
p_{c}=a / 27 b^{2}, V_{m, c}=3 b, T_{c}=8 a / 27 b R .
$$

$$
\begin{aligned}
& p=p_{r} p_{c}=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}}=\frac{R T_{r} T_{c}}{V_{r} V_{m, c}-b}-\frac{a}{V_{r}^{2} V_{m, c}^{2}} \\
& p_{r} p_{c}=p_{r} \frac{a}{27 b^{2}}=\frac{R T\left(\frac{8 a}{27 b R}\right)}{3 b V_{r}-b}-\frac{a}{V_{r}^{2}\left(9 b^{2}\right)}=\frac{8 a T_{r}}{27 b\left(3 b V_{r}-b\right)}-\frac{a}{9 b^{2} V_{r}^{2}}
\end{aligned}
$$

$$
\therefore p_{r}=\frac{8 T_{r}}{3 V_{r}-1}-\frac{3}{V_{r}^{2}}
$$

Meaning

These have the same form as the original equation. However,
the constants a and b, which differ from gas to gas, have disappeared.

$$
T_{r}=\frac{T}{T_{c}}, \quad p_{r}=\frac{p}{p_{c}}, \quad V_{r}=\frac{V_{m}}{V_{m, c}}
$$

1.C.1(a). The Compresssion Factor 1.C.1(b). The Virial Series

Define the compression factor:
$\boldsymbol{p} \boldsymbol{V}_{\boldsymbol{m}}=\boldsymbol{R} \boldsymbol{T} \boldsymbol{Z} \quad\left(\frac{n}{V}=\frac{1}{V_{m}}\right)$
For ideal gas, $\quad Z \rightarrow 1$
For real gas, $\quad \underline{p} \rightarrow 0, Z \rightarrow 1$
\therefore We might represent Z as a power series in the mole concentration:
$Z=1+B\left(\frac{n}{V}\right)+C\left(\frac{n}{V}\right)^{2}+D\left(\frac{n}{V}\right)^{3}+E\left(\frac{n}{V}\right)^{4}+\cdots$
$B=B(T)$: the second virial coefficient
$C=C(T)$: the third virial coefficient

$Z(p, T) \equiv p V_{m} / R T$ $=V_{m} / V_{m}^{\text {ideal }}$

Figure 1.C. 3

The variation of the compression factor $Z=p V_{m} / R T$ with pressure for several gases at $0^{\circ} \mathrm{C}$. A perfect gas has $Z=1$ at all pressures. Notice that, although the curves approach 1 as $p \rightarrow \mathbf{0}$, they do so with different slopes.

Estimation of Virial Coefficients

The virial coefficients can be related to the van der Waals constants.

$$
\begin{gathered}
p=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}} \\
Z=1+B\left(\frac{n}{V}\right)+C\left(\frac{n}{V}\right)^{2}+D\left(\frac{n}{V}\right)^{3}+\cdots \\
\\
B(T)=b-\frac{a}{R T}, \quad C=b^{2}, \quad D=b^{3}
\end{gathered}
$$

$$
\begin{aligned}
Z(p, T) & \equiv p V_{m} / R T \\
& =V_{m} / V_{m}^{i d e a l}
\end{aligned}
$$

At Various T

$$
B(T)=b-\frac{a}{R T}, \quad C=b^{2}, \quad D=b^{3}
$$

The Boyle Temperature

For all gases, there is some temperature at which $B(T)=0$. Boyle temperature \rightarrow the repulsive and attractive forces
cancel each other, giving nearly ideal behavior.
Example: Estimate the Boyle Temperature of N_{2} : the actual value is 324 K .

$$
\begin{aligned}
& a\left(\mathrm{~N}_{2}\right)=1.39\left(\mathrm{dm}^{6} \mathrm{~atm} / \mathrm{mol}^{2}\right) \\
& b\left(\mathrm{~N}_{2}\right)=0.0391\left(\mathrm{dm}^{3} / \mathrm{mol}\right)
\end{aligned}
$$

Table 1.C. 3

From van der Waals constants,

$$
\begin{gathered}
b-\frac{a}{R T_{B}}=0 \quad T_{B}=\frac{a}{b R} \\
T_{B}=\frac{1.39}{(0.0391)(0.08206)}=433 \mathrm{~K}
\end{gathered}
$$

The Lennard-Jones Potential

Second virial coefficient

$$
U(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

$$
B(T)=2 \pi N_{\mathrm{A}} \int_{0}^{\infty}\left(1-e^{-\frac{U}{k T}}\right) r^{2} d r
$$

The integral part of the equation for the second virial coefficient can be done analytically, but the solution is complicated and in the form of an infinite series.
Define a unitless distance as

$$
\rho=\frac{r}{\sigma} \quad \therefore B(T)=2 \pi N_{A} \sigma^{3} \int_{0}^{\infty}\left(1-e^{-\frac{U}{k T}}\right) \rho^{2} d \rho
$$

Define a parameter:

$$
b_{0}=\frac{2 \pi N_{A} \sigma^{3}}{3} \therefore B=3 b_{0} \int_{0}^{\infty}\left(1-e^{-\frac{U}{k T}}\right) \rho^{2} d \rho
$$

For the Lennard-Jones ($\mathrm{L}-\mathrm{J}$) potential, the exponent in the integral is:

$$
\frac{U}{k T}=\frac{4(\varepsilon / k)}{T}\left[\frac{1}{\rho^{12}}-\frac{1}{\rho^{6}}\right]
$$

Note that ε / k has unit of temperature, i.e., Kelvin. This suggests the use of two reduced parameters.

Define a parameter

$$
\begin{aligned}
& \tilde{B}=\frac{B}{b_{0}}, \quad \tilde{T}=\frac{T}{(\varepsilon / k)} \\
& \tilde{B}=3 \int_{0}^{\infty}\left\{1-\exp \left[-\frac{4\left(\rho^{-12}-\rho^{-6}\right)}{\tilde{T}}\right]\right\} \rho^{2} d \rho
\end{aligned}
$$

Note that the reduced virial coefficient is a universal function of the reduced temperature. The integral must be evaluated numerically for each of \tilde{T}.

1.A.2(b). Mixture of Gases (Ideal Mixture)

The simplest assumption is that of an ideal mixture.

1. The sizes of different molecules are all negligibe.
2. The interactions between any molecules do not exist.

Daltons's law

$$
p=\sum_{i} p_{i} \quad \begin{aligned}
& \text { where } p_{i} \underline{\text { is the partial pressure }}, \text { the pressure exerted by } \\
& \text { the individual gases. }
\end{aligned}
$$

The total pressure of a gas is in proportion to the numbers of molecules present:

$$
\begin{aligned}
p_{i} & =x_{i} \rho \quad \text { where } x_{i} \text { is the mole fraction. } \\
x_{i} & =\frac{n_{i}}{n_{1}+n_{2}+\cdots}, \quad \sum_{i} x_{i}=1 \\
p_{i} & =f\left(n_{i}, V, T\right)
\end{aligned}
$$

| Ideal Mixture
Total pressure, $p=p_{\mathrm{A}}+p_{\mathrm{B}}$

$100 \% \stackrel{0}{A}$-Ahele-fractiep-efA- $*_{A} \quad 100 \%$ B
$X_{B}=$ Mole Fraction of B

$P_{i} V=N_{i} k_{B} T$

The partial pressures P_{A} and P_{B} of a binary mixture of [ideal (perfect) or real] gases of total pressure P as the composition changes from pure A to pure B.

If the gases are ideal (perfect), then the partial pressure is also the pressure that each gas would exert if it were present alone in the container.

Figure 5A. 13

Problems from Chap. 1

1 A .2
1A.5(b) 1A.8(b) 1A.9(b)
1A. 6
1B. 2
1B.2(b) 1B.3(b) 1B.6(b)
1B. 4 1B. 6
1C. 2

