Chapter 15.
Statistical Thermodynamics:

The Concepts

Quantum Mechanics: Detailed arrangement, motion and energy of
atoms and/or electrons.
Thermodynamics: The average behavior [Equilibrium = Reversible]

Statistical Thermodynamics = Statistical Physics:

Thermodynamics expressed

in terms of Molecular properties.
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Chap. 0
15A. Boltzmann Distribution (Molecular Energy Levels)

Energy levels: &,&, &, [Fixed at the Given Volume]

VAN :
Number of molecules: ny, n,, n,,--- [INdependent Molecules]

Configuration of the systems: the specification of the set of
populations n, n,, -

eg. )n=N, n,=0, n,=0 --- = onlyinone way
i)n,=N-2, n,=2, n,=0--- = more likely to occur

"

%N (N -1) different ways of forming it

A general configuration { n,, n,, ...} can be achieved in W different
ways, called its weight, where
N!

W(n,n,, )=
(M) n!n,In,!--
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Question: Is there, In fact, a configuration with so great
a weight that it so overwhelms all the rest

In Importance

that there Is negligible error in supposing that
the system will always be found in it, and

that the system will display properties
characteristic of that configuration to the
virtual exclusion of all others?
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W Different Ways
For{1,1,1,...}— W = N!: the maximum value = for IQ 50

The feature missing from the discussion so far is the fact that many
configurations conflict with the specified total energy of the system.
For instance, the configurations suchas { N, 0, 0, ...}, {N-2,2,0, ...}
and {1, 1, 1, ...}, among numerous others, may be inadmissible
because they cannot be achieved with the specified total energy.

Total energy criterion: Znigi =E No Free Lunch

E = the total energy of the system

Another constraint: the total number of molecules present in the
system is fixed.

Total number criterion: > n, =N
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The maximum value of W can be found by varying the n, and
looking for the values for which dW = 0.

W = f(n)

olnwW
d(InW) = ZTdni W different ways

E, N :constant
Zgidni =0 Total energy criterion

Z dni =0 Total number criterion
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Method of undetermined multipliers:

http://bp.snu.ac.kr

LI SFA
e

Jo

Lagrangian (undetermined multipliers)

A constraint should be multiplied by some constant and then added to
the main variation equation.

d(InW) = Z(ag;w Jdni + odeni —,BZgidni

— Z{ag:]vv +a — fe. }dni

All the dn; are now treated as independent. Hence the only way of
satisfying d InW =0 Is to require that, for each I,

olnW
on.

j+a—,6’gi =0

for the n, taking their most probable values n; .



Stirling’s Approximation

For large X, Inx!~ xInx— X

|
INW =1In N
n!n,!In,t-..

=InN'-In(n!n,!n.!---)

=InNI=> Innl= (NInN - N) - Z( Inn t-n, )

:NInN—anInnj [-.-N:anj
j j

Differentiation with respect to n; gives

olnW |} o(NInN) o(n, Inn)
e
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ONInN) _(oN NN 2NN
on. on. on.

= N InN+J><ria—|\I

a_ni N on,

= oN InN+a—N=InN+1

a_ni on,

(“N=n+n,+n,+...)
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L ~(Inn, +1)+(InN +1)= —In(::;j

on,
N.
So—=Inl 2+ |+a—-Ls =0
(N Jrape
n_i*:ea_ﬂgi
N

The final step is to find the values of «and S.

N :Zni* = Ne"‘Ze‘ﬂ‘gi
1
Ze—ﬂgi
Hence we arrive at the form of BOltzmann distribution:

%k

nl e_ﬂgi

N Z e /i (15A.6a)
J

9

.eOC:
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15A.1(b). The Molecular Partition Function
g = Zexp(_ IBgi) Definition

If the energy e; arises from g; different states (that is, the energy
level is gi—fold degenerate), there are g; terms in sum all with the
value exp(-fs).

Molecular partition function:

q=>.9,expl- B, ) =

g -170904(8)
E=>ne=>ns E:%Zgi exp(- fe;)

%exm— pe,)= & expl- e,

http://bp.snu.ac.kr 10



U=U (O + E Fixed Volume
Independent Molecules

o {(4)) ) e

This equation confirms that we need to know only the

molecular partition function

In order to calculate the internal energy. [Entropy later
in Chap. 15]

http://bp.snu.ac.kr 11



15B. An Interpretation of Molecular Partition Function

1
i
g=>e”" >0 T->0K exceptoneterm(s =0)
~atT=0K, q=1 (org=g,)

At the other extreme, consider the case when T is so large that for every term

In the sum

& 1KT =0
Since e X =1 when x =0, every term in the sum then contributes to the value 1.
In general, as T — oo, g — .

Partition function gives an INAICALION of the number of states that are
thermally accessible to the system at the given temperature.

At absolute zero, only the ground state is available, and q = 1.

At the highest temperatures, virtually all the states are thermally accessible,

and so g approaches infinity.
http://bp.snu.ac.kr



Example:

3€
2¢
£

0
http://bp.snu.ac.kr

Fig. 15B.1 Harmonic Oscillator
The array of molecular energy levels
used to calculate the molecular
partition function.

13



Partition Function for a Harmonic Oscillator

q=1+e” +e % +...
=1+e‘ﬂg+(e‘ﬂg)2+~- (I—x)" =1+ x+ x>+
=(1—e‘ﬁ‘9)_1

The proportion (P; ) of molecules in the state with energy e;

P, = % =(1—e "

http://bp.snu.ac.kr 14



Low High

temperature temperature
Pe: 3.0 1.0 0.7 0.3
g: 1.05 1.58 1.99 3.86

http://bp.snu.ac.kr

Figure 15B.4 Harmonic Oscillator
Populations of molecular states at
various temperatures.
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o _ Later (pages 616 — 629)
15B.2. Molecular Partition Function

Non-interacting molecules (such as a perfect gas)

An Internal structure

Translational, Rotational, Vibrational, and Electronic Modes

___translation rotation vibration electronic

Ej—é‘ + & + & + &

g= Y. expl-pe'-pe - pe’ - pet)

States
(trans, rot, vib, elec)

= exp(- p&')> exp(- ,Bgr)z exp(- pe*)> expl(- ps°)

t N~V AE

=044949
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15B.2(a). The Translational Partition Function
Consider a perfect monatomic gas in a container of volume V
(Ilength X, width Y, depth Z).

The partition function for any one of the molecules

4= Zexp(—ﬂgj)
j
¢; the energy at | state

J : the quantum number labelling the state
E. =&\t Eiw T E.
J ) eI ) j = meaning n,, n,, and n, quantum numbers

for x-, y-, and z-directions, respectively
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4= ZEXP(_ PExy = PE ) _18‘91'(2))

All |
= {;)GXP(_ PE(x)
J

=0y0y0;

i

Zexp(— PE i)

i(Y)

SR |
gj(X) =) (8mxzj J :172131"'

http://bp.snu.ac.kr

i

Zexp(— PE i)

1(2)

]
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15C.2(a). The Internal Energy

The translational energy levels are very close, so the sum can be

replaced by an integral: [Justific. 15B.1]
. thZﬁ - . thZIB _
— [“exp| — dj = [ exp| — d
k p( 8mX2J 1=k p( 8mX ? J
1
=212 2 \2
Let X2=Jh€,d1'= 8”;)( dx
8mX h*f
1 1

8mX 8mX T
(i o

_(2amX? 2 27mY? \2( 22mZ° ;(Zyszv
) Unp ) Unip ) g

Translational Partition Function
(Ideal Gas)
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(15C.3)

_ U- U(O)_—N(alnqj
How to calculate the internal energy of the gas p N

o {oa),

(a_qj 0 <(27zmj2v>_(27zmj2v
op ), opllh’p L n?

(T
.'.U—U(O)=—[Nj[aqj _ ~c JN
a \oB ), %y[ﬁz 2P
1
Given ,B——_l_

K
-3 3 the same result as from
U-U0)=2NKT =2RT = the equipartition value  (15C.5b)

http://bp.snu.ac.kr 20



http://bp.snu.ac.kr /V — OO

15D. Canonical Ensemble

- Imaginary collection of replications.

- Common temperature.

- Interacting molecules 3N; V T).

- Thermal contact among the members.

- Most members of ensemble have
similar energies.

Fig. 15D.1

A representation of the canonical ensemble, in this
case forN = 20. The individual replications of the
actual system all have the same composition and
volume. They are all in mutual thermal contact, and
so all have the same temperature. Energy may be
transferred between them as heat, and so they do
not all have the same energy. The total energy (E)
of all 20 replications is constant because the
ensemble is isolated overall.

21



Refinements: Ensembles and Reservoir

- In order to set up the ensemble, we take a system of
specified volume, composition, and temperature, and think of
it as being reproduced N times.

- We can think of this ensemble as consisting of
approximately identical closed systems (members) in S A 2/ 2F
thermal contact with each other.

- This thermal contact ensures that they are all at the same
temperature, but allows them to exchange energy with each
other. The total energy of the ensemble E, however, is
constant.

- This imag | NalVy collection of replications is called the
canonical ensemble.

http://bp.snu.ac.kr 22



Microcanonical ensembles correspond to isolated systems which
exchange neither energy nor mass with one another and which
therefore keep the total number of particles N and the total energy
E as constants.

Canonical ensembles correspond to closed isothermal systems
which exchange energy but not mass with one another and which
therefore keep N and temperature T as constants.

Grand canonical ensembles correspond to open isothermal systems
which exchange energy and mass with one another and which
therefore keep T and the chemical potential x as constant.

Microcanonical: N, V, E common
Canonical: N, V, T common Page 631

Grand canonical: ‘Ll V, T common
-170906(Z)
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Dominating Configurations

Total ensemble energy o since N — o«

Average energy of any member

F
£
N

_—Number of members of the ensemble being
1 In a state 1 with energy E;

—~

/' Weight of each configuration

http://bp.snu.ac.kr

No Free Lunch
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~ At thermodynamic limit, the most probable

N —> o0 configuration is overwhelmly the most probable.
. N
W (7, 7y -) = A P. 631
7 exp(—fE,) Canonical Distribution = Dependent
N > exp(—E,) [Interacting]

(Boltzmann Distribution = Independent)

Canonical partition function Q Is more general than
molecular partition function g because

Q does not assume that the molecules are independent.
—>Properties of condensed phases and real gases.

[Fig. 15D.2 and Fig. 15D.3]
(p. 632)
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15D.2. Thermodynamics from Canonical Partition Ftn (textbook)

The Canonical partition function

Q =D exp(-fE;) Canonical partition function
| [gi—fold degenerate]

o Proportion of members that are in the

> i 1 .. .
R=%= aexp(—ﬁEi) state i with energy E; in an ensemble

The mean energy of a member Molecular Partition
) 1 Function
U —U(O)=Zpi i =6ZEi exp(—pE;) Z/’]/.g/ =£
i [1)9Q) _ (dInQ U—UO:—N(alnq]
U -U(0) (Qj(aﬂjv ( op jv (15D.5) ©) Iy
15A.1

| S(T) = +kInQ
Derivation for S from g [molecular pt] | T (15E.8¢)

(white board) | F=-kTInQ
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15D.3. Canonical Partition Ftn for Independent (Same) Molecules

The total energy of a collection of N independent molecules is the
sum of the energies of the molecules. Therefore, we can write the
total energy of a state ijkl... of the system as:

2 3 N Ijkl... = every possible state
Eijkl... :5i(1)+51( )+5|E)+"'+5|( ) 0t JHX|

Infinite

where 5/0) IS the energy of molecule 1 in the member of ensemble
happening to be In the state | with energy &;.

Canonical partition function

Q=3 ekl N = 10%° atoms

N=SROI2F4 =

http://bp.snu.ac.kr 27



The sum over the states of the system can be produced by letting each
molecule enter all its own individual states.

Therefore, instead of summing over the states ijkl... of the system, we
can sum over all the individual states of i of molecule 1, all the states i1 of
molecule 2, and so on:

_ g _p.:(2) _ W) | = I-th energy level
Q = i Pe; Z pe; Z pe;
_£ ' e j( ' e j“’( ' e j
/ / /

Since all the molecules may have the same energy states,

N

Q=q (15D.6)

http://bp.snu.ac.kr
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If all the molecules are the same and free to move, we cannot
distinguish one from another.

molecules state molecules state
1 a indistinguishable 1 b
2 b 2 C
3 C 3 a

For indistinguishable independent molecules,

q" (15D.7)
Q=i

Gibbs paradox

15D.3. Indistinguishable and Independent Molecules:

Identical molecules in an ldeal gas are free to move, and
no way of keeping track of the identity.

-170911(8)
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15E.2(b)
Translational Entropy of a Monatomic Ideal Gas

Since they are not interacting, the molecular partition function can
be used to find U and S.

The canonical partition function will be retained if we deal with
Interacting atoms.

Since the only degree of freedom for the atoms is translational, the
molecular partition function is

3

27m 2
q:(h%j '
ppt 15-19
ppt 15-20
U—U(O)z—[Nj(an :EnRT n mole
qa \op), 2
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S =

U -U(0)

:EnR+nR<
2

= nRX

-

3
Ine? +1n

=nRIn

http://bp.snu.ac.kr

\

/

In(

|

+nR(Ing—InN +1)

3
2rmkT jzv ~InN +1}
h
3
2ﬂmsz)ZV —InN +1Ine
h
\

\

6 (Zﬂ:ijV/N

J

N

2

4

J

N

9

Q:_

N |
Indistinguishable &

Independent

(15E.10a)
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Sackur-Tetrode equation for the entropy of a monatomic perfect gas

. . .
S = nAIns eg(an/(T : ﬁ
hH? Yo,

"~ J

_nRT
e

V/

e

When a perfect gas expands isothermally from V; to V,

AS =S; - S, =nRInaV, —nRInaV,

=nRIn Vf <« the same result as thermodynamic argument

' (3A.1)
Gibbs Paradox a”
@R ="
/V!
Indistinguishable &
Independent
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15E. Statistical Thermodynamics:
Applications

g = Noninteracting (independent)

How to calculate the partition function?

q
®=\

1
q =Zj’,exp(—ﬁe,-), f=1=

http://bp.snu.ac.kr
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Q = for Interacting Molecules

How to calculate the thermodynamic functions?

oo 3] -8) o
QNIp ), op ),
S = U -U(0) +kInQ (15F.1b)
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The Helmholtz function, A

A=U —TS
A(0)=U(0) atT =0
. A—A0)=U -U(0)-TS

=U —U(O)—T{U _TU (©) +kInQ}

=—kT InQ

The pressure
SORCS
oV ); oV );

http://bp.snu.ac.kr

[reversible]

(15F.2)

(15F.3)
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The enthalpy, H

H=U+pV
H(O)=U(0) atT =0K
" H-H(0)=U -U(0)+ pV

—U —U(O)+kTV(a|an
N .

_ aanj +kTV(a|an
op ), N )

http://bp.snu.ac.kr

(15F.4)
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The Gibbs function, G

G=H-TS=U+pV-TS, G()=U(0) atT=0K
G-G(0)=U -U(0)+ pV -TS

o 0lnQ) (U-U(0)
=U U(O)+kTV( ~ 1 ( = +kanjT

:u/-u(aﬂkTv(a'”Ql ~ (U~H0))-KT InQ

oV
=-kT InQ + kTV(gér\]/QjT (15F.6)
- -In-th-e -ca-se-o; a-p-er;ec-:t :_Ja-s,-th-is-egp;es—si;)n- s;m-pI-ifi-es-c;)n-sizle-ra-bl;. o
G-G(0)=—kKT InQ+KTV (6;/(2) From (15F.3)
— _KTINQ +nRT T (- pV =nRT) ("1612';?5)
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Replacing Q by g" / N! gives

G —G(0)=—kT In(g" / N!)+ nRT
=—NKT Inq+ kT InN4+nRT
=—nRTIng+kT(NInN — M)+ nRT
=—nRT In(g/N)

http://bp.snu.ac.kr

(Ideal Gas)

(15F.9)
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15B.2. How to Calculate the Molecular Partition Function?

Consider a system of non-interacting molecules, such as a perfect gas.

The molecules, however, are allowed to have an internal structure.

The energy of molecule has the translational, rotational, vibrational,
and electronic modes of motion.

translation rotation vibration electronic
E j = E + & + & + &

q= > expl-pe' - pe' - pe’ - )

States
(trans rot vib, eIec)

—Zexp( S )Zexp( Be' )Zexp( gv)iex-p(—jﬁge;

trans. rot. vib. elec.

t T~V

=0dq'q°

- The modes are not completely independent.
- Vibration indep = when only the ground electronic state is occupied.
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15B.2(a). The Translational Contribution

3 3
27im \2 27mkT 2
of :(hzﬂj v Z( h2 )V (15B.7a)
qt = ig! A= h 1772 Thermal de Broglie wavelength
A (272mKT )

The value of gt rises to infinity as the temperature increases.
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15B.2(b). The Rotational Contribution

One point to remember is that more than one rotational state may
correspond to the same energy

3-D
(15B.11)
q = Z(ZJ + 1)exp(— ﬂEJ) Sec. 12B

J=0

(2J + 1) degeneracy for the given J

The rotational energy levels of many molecules lie close enough
together for a large number to be populated at room temperature.
So, to a good approximation, the sum can be replaced by an integral.

http://bp.snu.ac.kr
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For a homonuclear diatomic molecule or a symmetric linear molecule,
rotation by 180° interchanges is indistinguishable from the original.
So, we have to divide the integral by 2 to avoid counting
Indistinguishable orientations twice:

homonuclear diatomic: Q' = %I:(ZJ +1)exp(— BE, }J

In the case of a heteronuclear diatomic, the rotation by 180° leads to a

distinguishable orientation (HCI — CIH) and so the factor 2 does not
appear.

In general form
1
q = —_[O (23 +1)exp(- BE, }J
o

where o Is the symmetry number.

http://bp.snu.ac.kr
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Refer to Chapter 12 Molecular Symmetry.

CO, CH, o=2
0=C=S o=1

more complex molecules more than two orientations

H,O c=2
NH; c=3 {E, 2C.}
H . H
CH,=CH, o=4 c=C.
H H
?
@ 0=12 E,2C,,2C,,C,,3C,,3C, |

http://bp.snu.ac.kr
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q' = iJ-OOO(ZJ +1)exp(- BE, JdJ
o

Linear Rotor (Molecule):
E1 =hcBJ(J +1)
where B : the rotational constant of the
molecule and related to its
moment of inertia

g_
4 el

S = 1 j:(zJ +1)exp{— AhcBJ (J +1)}d]

o 1 d
q ~ jo (— aﬂthj{dJ exp{- phcBJ (J +1)}}d;l

http://bp.snu.ac.kr

B = rotational constant
o =symmetry number

Sec. 12B

I:(rnlmz jrz
m, +m,

Justif. 15B.2
3-D
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B = rotational constant
o = symmetry number
The integral of a derivative of a function is the function itself, and so

1
ofhcB

(1 3 Y
q ~( Gﬂth]exp{ SheBI (3 +1)} 5=

The approximate form of the rotational partition function:

KK oM (. h
T e o (158 12a)
__onet  pe

2rcl 3-D

[skip] Approximate rotational partition function for other types of molecule
can be foundlin the same way, leading to

- 1
2 [(21,KT Y 21,k (2|Cij 2 |
qNG{(hZX:# j 7 [SKip]

where 14, Ig and I are their three moments of inertia.

http://bp.snu.ac.kr 45



15B.2(c). The Vibrational Contribution
q" :Zexp(—ﬂgjv)
J

In a polyatomic molecule, every normal mode of vibration has its
own independent set of energy levels,

@’ = ' (U’ (2)--

where gV(K) is the partition function for the K" Assumption:

normal mode. simple harmonic
approximation

1 -

E,=|n+—=\|hcv n=0123,:
2 3-D
~ 1 |k F=kAr
where v = .
G \/; k: the force constant spring 194

- the reduced mass

http://bp.snu.ac.kr



If we measure energies from the zero-point level, the permitted
values are E' =vhcv.

q'=>"exp(- nh,BC\7)=Z(e‘h/3CV)n N=0123"-

v 1
1 T I exp(Chev /KT) (15B.15)

P~

V : wavenumber of the vibration mode

In many molecules the vibrational frequencies are
so high that hevg >1.

e.g., the lowest vibrational wavenumber of methane: Example 15B.2

1306 cm™ = hev 3 ~ 6 at room temp.
2850 ~ 2960 cm™ —, ey B ~14 at room temp.

e =0.002

-.0" =1 implying that only the lowest state is occupied.
http://bp.snu.ac.kr 47




15B.2(d). The Electronic Contribution

Electronic energy separations are usually very large, and so the
exponentials exp(— ,Bge) are all very small, except for the ground state,

for which £° =0.

Therefore, in most cases:
q =1

The Overall Partition Function

For a diatomic molecule, g
3
2amkT 2 KT 1
q = / % — ¢
h? chcB hcv
1—exp| —
KT

1) Approximations: independent modes and harmonic vibrations.
2) Rotational levels are very close together.

-170913(2:)
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15C.2(c). High-Temperature Limit for Vibration

. [ .2 Anharmonic Term £

V —
q o 1_ e—ﬂhcv

At temperatures so high that kT > hcv, the partition function may be
approximated by expanding the exponential

v 1 1

7= 1— (1= BhcV +---) ~ phcV’
Hence,
T (15B.16)
T = (15C.9)

We can express the temperatures for which this expansion is valid in terms
of the characteristic vibrational temperature 8,, which is defined through:

~ Debye Temperature
KO, = NCV  (solid State)

(Table 15B.3)
4

http://bp.snu.ac.kr 9



Non-Interacting Molecules

Equation of State of a Perfect Gas

Allowed for Internal Structures

Q=q" /NI
p-1(g ), (5 ) ol ),

V
Since only g'depends on the volume ( q = F)' this becomes

p:kT[(qtqfqque) N]{('?(qtq;/“qe) l o
e L [8(q‘) ]TkT 1 (a(\//A?’)N)T

@l viw)

N
L N(lj Ny L NLKT _nRT
(V/X) r'd vV oV V
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Using Statistical Thermodynamics
Any thermodynamic properties can now be deduced from a

knowledge of energy levels: p. 476
Thermodynamics and Spectroscopy have been combined.

non-interacting molecules
15C. Average Energies and the Equipartition Principle

t TV ~E {0921}
s3] {205
qA\0p ddqgqg op

1 Fve0qt L0000
=-N|———[9'9'q° ==+q'9'q° =-+q'q'q
[qtqqu{ op op op

r Va °
+9'q'g aqﬂ}

eSS

http://bp.snu.ac.kr 51
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Since [U —U (0)]/N is the sum of the mean energies of all the modes,
U-U(0)=N {<gt> + <gr> + <5V> + <ge>}

. <gm> _ 1) og9” Mean Energy of a Molecule
R a" \ op
(15C.3)
1g° =1

where each mode m = translation, rotation, vibration, or electronic.
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15C.2(a). Mean Translational Energy

Can be found from the translational partition function.

Consider an one-dimensional system.

2
qt:[anj X m : mass of a molecule

a
(%%ix e T L

In three dimensions, the same calculation leads to

In classical mechanics,
 the Kinetic energy T

<5t>:§kT 3-D

Mean energy: independent of
the mass of molecule and the size of container.

! 1 1 1
T=—my, +=mv, +=my,’
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15C.2(b). Mean Rotational Energy of alinear molecule
An_ (1) aoq
(=)= [qrj(ﬁﬁJ

q" = > (23 +1)exp(— phcBI(J +1))

Low Temperature: we need term-by-term summation. hcB ~ 10~ eV

b = ShcB.

o =1+ 3o 2hhc8 —68hcB

+5e +--=1+3" +567°° + ...

<€r> _ /705’{6@‘2" + 30e7% + }
1+3672% +507% 4.

(15C.6a)

7 — 0, <g”> —0 Fig. 15C.2
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Mean Rotational Energy of a linear molecule

High Temperature: many rotational levels are occupied.

hcB ~ 10~ eV
g = 2/57 __KT (15B.12a)
h‘c ohcB
o X 20\ .\
N\ _ . — _ — /(7_ S'D
) (2//(7](;120]( pe) B (15C.6b;

The classical expression for the rotational energy of a linear molecule:

E, = % lo,’ +% lo,” : two degrees of freedom

ZX%kT:kT 3-D
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15C.2(c). Mean Vibrational Energy

q' = .
1—e A

69"  hcve ™

B e he ~0.5eV

\/ h v
o) N

When the temperature is so high: ,BhC\7 <<1 (T >> 6 )
Vv

N 1 1
O P R 5
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- The classical expression for the VIDrational Ene rqy:

1 2 1 2
E=T+V == +—kX
ZﬂVX 2

J J
kinetic £. potential £. 3-D

i) b

High-Temperature Limit

Equipartition Principle: the average energy of quadratic term in the
energy expression has the same value, EkT .

Debye Temperature
(Phonon In Solid Phase)

2,230 K in diamond
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15E.1(b). Heat Capacities:
Detecting (Phase) Transitions

_(oU _1 __af
CV_(@TJV’ 'B_kT’ 4f = KT 2

. _ 1 ouU _ 25_U
"o (szjtﬁﬂjv_ kﬂ(@ﬂl

The internal energy translational, rotational, vibrational and electronic
contributions: )
1g° =1

000N+ ) ()l

The heat capacity has contributions from each mode of motion:

C,=C+C +C/+C
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where C;' = N{a<‘9m>}
\Y
_ _( N j[5<3m>] m = translation, rotation

\Y

T 2 vibration, or electronic

Translational

3
C, =N£62ij :ENk:EnR
\%

oT

In the case of monoatomic ideal gas,
the translational energy is the only contribution.

Rotational

hcB ~ 102 eV

<6r> =kT
C! = Nk =nR Valid at room temperature
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Rotational

When the temperature is so low that only the lowest
rotational state is occupied, <6r> =0 and there is no
contribution to the heat capacity from the rotations.

An intermediate values the value of C,, can be
obtained by differentiating Eq. (15C.6a) ppt 15-54

N th{6e‘ZIO +30e™ +}
<g >_ 1+3e7% +5e™ +...

(kT < hcB)

where b = phcB.

We can see that the rotational contribution to the
heat capacity rises from zero (kT <hcB) to kT.

http://bp.snu.ac.kr

hcB ~ 102 eV

q"=> (23 +1)e’®

J

E, =hcBJ(J +1)

)5
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C\/molecule (not C;)

2 / \ Linear Diatomic
4 Molecules (ldeal Gas)
7| T+V+R / \
T 32
S / K
S 3 -
Z T+R 2 x Atoms (T)
s /
e, Temperature dependence
o / of the heat capacity of
?; 3 LA linear molecules.
o ~0.5 eVs
= 1 g
(&)
1 5 7
7 [0~ eV— & -
- Assuming ideal gas at 0 K
0

0K % & Not Linear

Temperature, T
-170918(&)
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The approximate form of the rotational partition function for a
linear molecule.

kT

N/

~ ohcB

A useful way of expressing the temperature above which the
approximation is valid to introduce the rotational temperature g

q

The *high temperature’ means T > @ hcB ~ 105 eV
[
vV _ k_T qv — 1 —
Y 1-e hcv ~ 0.5 eV

We can express the temperature for which this expression is valid in
terms of the characteristic Vibrational temperature

In terms of the vibrational, ‘high temperature’ means T > (9
”
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C,/molecule for vibrational component

1

Molar heat capacity, C, /R
o
o1

Figure 15C.3
Figure 15E.1

The temperature dependence of
the vibrational heat capacity of
a molecule in the harmonic
approximation.

~0.5 eV

http://bp.snu.ac.kr

0.5
Temperature, T/6,
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15E.2(e). Residual Entropies

Some disorder is present in solid even at absolute zero.

The entropy of solid at absolute zero is greater than zero, and Is
called the residual entropy.

The source and magnitude of the residual entropy:

Example: Consider a crystal composed of molecules AB, where
A and B are of similar size.

AB AB AB AB
AB BAAB BA

} very little enerqy difference

— The molecules adopt either orientation at random in the solid.

— Since solidification is not an infinitely slow process

_(m etaStab I e)_ the random array may be

frozen in and survive even at absolute zero.

http://bp.snu.ac.kr
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S =kIlnW

Suppose that two molecular orientationS are equally probable, and
that the sample contains N molecules.

2N different ways for each member of ensemble

S=kIn2" =NkIn2=nRIn2

This predicts a residual entropy of

kgIn 2 =5.97 x 10~ eV/K (per molecule)

for molecules that can adopt either of two orientations at absolute zero.

(15E.14b)

Experimentally, entropy measurements

[ _ aa
by calorimetry (Chap. 3) or spectroscopic data. C, = (dfj
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15F.2. Equilibrium Constants K =exp(—FAG,)

R =P
P P
Proddcts Products
Reactants
Reactants

Iy Iy
[ [

F

AE,
’ AE,

Reactants will not dominate in the Reactants predominate in the

reaction mixture at equilibrium. reaction mixture.

Figs. 15F.2 and 15F.3. The array of energy levels for R and P molecules in
the equilibrium R = p, and the dependence of equilibrium on the density
of states. In classical thermodynamic terms, we need entropy and enthalpy
to consider.
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Independent Molecules —  Molecular Partition Function

At some temperature T, the number of molecules in
some state i of the joint system

n. =Eexp(—ﬂgi) N : the total number of molecules

Reactants

Ne = 30, =%Zexp(—ﬁeR)

iof R

N .
N, = Zni =EZEXP(—,B<9P) Products
iof P P

The sum over the states of R is nothing other than the
molecular partition function for molecule (reactant), Yr:

N
Np = C?R

http://bp.snu.ac.kr
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Reactants (R) < Products (P)

The sum over the states of P Is also a partition function, but it is
not quite the same as the ones met so far because the energies &,
are measured from the ground state of the total system, which in
the present example happens to be the ground state of A.

g‘P = &, + AEO &Ep : Not from Zero &p: from Zero
AE, : the separation between the lowest levels of Rand P

Ny = %exp(—ﬂAEo)z exp(—pBe,)
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Reactants (R) < Products (P)

Equilibrium constant of the reaction: Derivation:
Assume Independence +
Given Volume

dp
= = expl(— SAE
N q (- PAE, )

This gives a way of calculating the value of K simply from a
knowledge of the partition function, and therefore from
spectroscopic data or molecular properties.

Equilibrium Constant K of Reaction (in general)

K =exp(=BAG,) ==
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Problems from Chap. 15
D 15A.4
15A.1(b) 15A.3(b) 15A.4(b)
15B.2
15B.1(b) 15B.2(b) 15B.3(b) 15B.10(b)
15C.1(b) 15C.5(b)
15D.2 15D .4
15E.4 15E.6

O U m m QO m
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