
Chapter 15.

Statistical Thermodynamics:

The Concepts
Quantum Mechanics: Detailed arrangement, motion and energy of  

atoms and/or electrons.

Thermodynamics: The average behavior  [Equilibrium = Reversible]

Statistical Thermodynamics = Statistical Physics:

Thermodynamics expressed

in terms of molecular properties.
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15A. Boltzmann Distribution (Molecular Energy Levels)

Energy levels:

Number of molecules: n1, n2, n3,

Configuration of the systems: the specification of the set of 
populations n1, n2, 

e.g.  i)

ii)

only in one way

different ways of forming it

more likely to occur

A general configuration { n1, n2, …} can be achieved in W different 
ways, called its weight, where
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[Fixed at the Given Volume]

[Independent Molecules]
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Question: Is there, in fact, a configuration with so great 
a weight that it so overwhelms all the rest

in importance

that there is negligible error in supposing that 
the system will always be found in it, and 

that the system will display properties 
characteristic of that configuration to the 
virtual exclusion of all others?
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Total energy criterion:

For {1, 1, 1, …}                   : the maximum value     = for IQ 50

The feature missing from the discussion so far is the fact that many 
configurations conflict with the specified total energy of the system. 
For instance, the configurations such as { N, 0, 0, …}, {N−2, 2, 0, …} 
and {1, 1, 1, …}, among numerous others, may be inadmissible 
because they cannot be achieved with the specified total energy.

Total number criterion:

Another constraint: the total number of molecules present in the  
system is fixed.
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The maximum value of W can be found by varying the and 
looking for the values for which dW = 0.
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Method of undetermined multipliers:
Lagrangian (undetermined multipliers)

A constraint should be multiplied by some constant and then added to 
the main variation equation. 

All the dni are now treated as independent.  Hence the only way of 
satisfying                  is to require that, for each i,

for the ni taking their most probable values

ln 0d W =
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Stirling’s Approximation

For large x,

Differentiation with respect to ni gives
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The final step is to find the values of α and β.

Hence we arrive at the form of Boltzmann distribution:
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(15A.6a)
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15A.1(b). The Molecular Partition Function

Molecular partition function:

If the energy ej arises from gj different states (that is, the energy 
level is gj–fold degenerate), there are gj terms in sum all with the 
value exp(-βεi).
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This equation confirms that we need to know only the

molecular partition function
in order to calculate the internal energy.

q
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_________________

Fixed Volume 
Independent Molecules

(15C.3)

[Entropy later
in Chap. 15]



15B. An Interpretation of Molecular Partition Function

At the other extreme, consider the case when T is so large that for every term 
in the sum 

Since e−x = 1 when x = 0, every term in the sum then contributes to the value 1. 
In general, as 

Partition function gives an indication of the number of states that are 
thermally accessible to the system at the given temperature.

At absolute zero, only the ground state is available, and q = 1. 

At the highest temperatures, virtually all the states are thermally accessible, 
and so q approaches infinity.
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Example:

Fig. 15B.1  Harmonic Oscillator
The array of molecular energy levels 
used to calculate the molecular 
partition function.
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The proportion (Pj ) of molecules in the state with energy ej
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Partition Function for a Harmonic Oscillator
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Figure 15B.4  Harmonic Oscillator 
Populations of molecular states at 
various temperatures.
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Non-interacting molecules (such as a perfect gas)

An internal structure

Translational, Rotational, Vibrational, and Electronic Modes

15B.2. Molecular Partition Function
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15B.2(a). The Translational Partition Function

Consider a perfect monatomic gas in a container of volume V
(length X, width Y, depth Z).

The partition function for any one of the molecules
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j =  meaning nx, ny, and nz quantum numbers

for x-, y-, and z-directions, respectively
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The translational energy levels are very close, so the sum can be 
replaced by an integral:

Let 
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15C.2(a). The Internal Energy
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How to calculate the internal energy of the gas
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(15C.3)

(15C.5b)
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Fig. 15D.1
A representation of the canonical ensemble, in this 
case for     = 20. The individual replications of the 
actual system all have the same composition and 
volume.  They are all in mutual thermal contact, and 
so all have the same temperature. Energy may be 
transferred between them as heat, and so they do 
not all have the same energy. The total energy (E) 
of all 20 replications is constant because the 
ensemble is isolated overall.
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15D. Canonical Ensemble
- Imaginary collection of replications.

- Common temperature. 

- Interacting molecules (∑Nj V   T ).

- Thermal contact among the members. 

- Most members of ensemble have

similar energies.
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Refinements: Ensembles and Reservoir

- In order to set up the ensemble, we take a system of 
specified volume, composition, and temperature, and think of 
it as being reproduced     times.

- We can think of this ensemble as consisting of
approximately identical closed systems (members) in 
thermal contact with each other.

- This thermal contact ensures that they are all at the same 
temperature, but allows them to exchange energy with each 
other.  The total energy of the ensemble    , however, is 
constant.

- This imaginary collection of replications is called the 
canonical ensemble.
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Microcanonical ensembles correspond to isolated systems which 
exchange neither energy nor mass with one another and which 
therefore keep the total number of particles N and the total energy 
E as constants.

Canonical ensembles correspond to closed isothermal systems 
which exchange energy but not mass with one another and which 
therefore keep N and temperature T as constants. 

Grand canonical ensembles correspond to open isothermal systems 
which exchange energy and mass with one another and which 
therefore keep T and the chemical potential µ as constant.

Microcanonical: N, V, E common

Canonical: N, V, T common

Grand canonical: µ, V, T common
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Dominating Configurations

Total ensemble energy

Average energy of any member

Number of members of the ensemble being
in a state i with energy Ei

Weight of each configuration
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At thermodynamic limit, the most probable 
configuration is overwhelmly the most probable.

Canonical Distribution = Dependent
[Interacting]
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Canonical partition function Q is more general than
molecular partition function q because
Q does not assume that the molecules are independent.
Properties of condensed phases and real gases.

[Fig. 15D.2 and Fig. 15D.3]
(p. 632)
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The Canonical partition function

Proportion of members that are in the 
state i with energy Ei in an ensemble

The mean energy of a member

Canonical partition function
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(15D.5)

15D.2. Thermodynamics from Canonical Partition Ftn (textbook)  
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15D.3. Canonical Partition Ftn for Independent (Same) Molecules

The total energy of a collection of N independent molecules is the 
sum of the energies of the molecules.  Therefore, we can write the 
total energy of a state ijkl… of the system as:

where         is the energy of molecule 1 in the member of ensemble 
happening to be in the state i with energy .

Canonical partition function
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ijkl… =  every possible state
오만가지
infinite
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The sum over the states of the system can be produced by letting each 
molecule enter all its own individual states.
Therefore, instead of summing over the states ijkl… of the system, we 
can sum over all the individual states of i of molecule 1, all the states i of 
molecule 2, and so on:

Since all the molecules may have the same energy states,
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If all the molecules are the same and free to move, we cannot 
distinguish one from another.

For indistinguishable independent molecules,

molecules state

indistinguishable

molecules state
1 a 1 b
2 b 2 c
3 c 3 a
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15D.3.  Indistinguishable and Independent Molecules:
Identical molecules in an ideal gas are free to move, and
no way of keeping track of the identity.

Gibbs paradox
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Since they are not interacting, the molecular partition function can 
be used to find U and S. 

The canonical partition function will be retained if we deal with 
interacting atoms.

Since the only degree of freedom for the atoms is translational, the 
molecular partition function is

15E.2(b) 
Translational Entropy of a Monatomic Ideal Gas
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Sackur-Tetrode equation for the entropy of a monatomic perfect gas

When a perfect gas expands isothermally from Vi to Vf,

← the same result as thermodynamic argument
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15E. Statistical Thermodynamics: 
Applications

How to calculate the partition function?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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q = Noninteracting (independent)
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Here,  Q = Indistinguishable & independent molecules 



How to calculate the thermodynamic functions?
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The Helmholtz function, A

The pressure
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[reversible]

QkT

Qk
T
UUTUU

TSUUAA
TUA

TSUA

ln                  

ln)0()0(                  

)0()0(
0at       )0()0(

−=






 +

−
−−=

−−=−∴
==

−=

TT V
QkT

V
Ap 







∂
∂

=






∂
∂

−=
ln

__
___ (15F.2)

(15F.3)



The enthalpy, H
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The Gibbs function, G

In the case of a perfect gas, this expression simplifies considerably.
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Replacing Q by              gives
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(15F.9)
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Consider a system of non-interacting molecules, such as a perfect gas.

The molecules, however, are allowed to have an internal structure.

The energy of molecule has the translational, rotational, vibrational, 
and electronic modes of motion.

15B.2. How to Calculate the Molecular Partition Function?

- The modes are not completely independent.
- Vibration indep = when only the ground electronic state is occupied.

- - - - - - - - - - - - - - - - - -
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15B.2(a). The Translational Contribution

The value of qt rises to infinity as the temperature increases.
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15B.2(b). The Rotational Contribution
One point to remember is that more than one rotational state may 
correspond to the same energy 

(2J + 1) degeneracy for the given J

The rotational energy levels of many molecules lie close enough 
together for a large number to be populated at room temperature.  
So, to a good approximation, the sum can be replaced by an integral. 
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For a homonuclear diatomic molecule or a symmetric linear molecule, 
rotation by 180˚ interchanges is indistinguishable from the original. 
So, we have to divide the integral by 2 to avoid counting 
indistinguishable orientations twice:

homonuclear diatomic: 

In the case of a heteronuclear diatomic, the rotation by 180˚ leads to a 
distinguishable orientation (HCl → ClH) and so the factor ½ does not 
appear.

In general form

where σ is the symmetry number.
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Refer to Chapter 12 Molecular Symmetry.

CO2 C2H2 σ = 2

O=C=S σ =1

more complex molecules more than two orientations

H2O σ = 2

NH3 σ = 3

CH2=CH2 σ = 4

σ = 12

{E, 2C3}
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Linear Rotor (Molecule):

where B : the rotational constant of  the 
molecule and related to its 
moment of inertia

m1 m2

r
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The approximate form of the rotational partition function:

Approximate rotational partition function for other types of molecule 
can be found in the same way, leading to

[skip]

where IA, IB and IC are their three moments of inertia.

The integral of a derivative of a function is the function itself, and so
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15B.2(c). The Vibrational Contribution

In a polyatomic molecule, every normal mode of vibration has its 
own independent set of energy levels,

where qv(K) is the partition function for the Kth

normal mode.

k: the force constant
µ: the reduced mass

Assumption:  
simple harmonic 
approximation
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: wavenumber of the vibration mode

In many molecules the vibrational frequencies are 
so high that           

If we measure energies from the zero-point level, the permitted 
values are

e.g., the lowest vibrational wavenumber of methane:

1306 cm−1 at room temp.

2850 ~ 2960 cm−1 at room temp.

implying that only the lowest state is occupied.
47http://bp.snu.ac.kr

( ) ( ) ,3 ,2 ,1 ,0                 ~exp
~v ==−= ∑∑ − nevcnhq n

n

vch

n

ββ

.~vvhcE =′

( )kTvhc
q

/~exp1
1v

−−
=

v~

.1~ >βvhc

6~ ≈⇒ βvhc

14~ ≈⇒ βvhc
002.06 ≅−e

1v ≈∴q

______

______

(15B.15)

Example 15B.2



Electronic energy separations are usually very large, and so the 
exponentials                   are all very small, except for the ground state, 
for which           .

Therefore, in most cases:

15B.2(d). The Electronic Contribution

For a diatomic molecule,
The Overall Partition Function

1) Approximations: independent modes and harmonic vibrations.
2) Rotational levels are very close together.
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At temperatures so high that                 , the partition function may be 
approximated by expanding the exponential

Hence,

We can express the temperatures for which this expansion is valid in terms 
of the characteristic vibrational temperature , which is defined through:            
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(15B.16)

(15C.9) 

15C.2(c). High-Temperature Limit for Vibration 
[모순: Anharmonic Term 탄생]
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Equation of State of a Perfect Gas

Since only     depends on the volume (                ), this becomes

50http://bp.snu.ac.kr

( )
T

N

N
T

N

N
T

N

V
q

q
kT

V
Nq

q
NkT

V
Q

Q
kTp

NqQ









∂
∂









=








∂

∂








=







∂
∂









=

=

1!/!1

!/

3Λ
=

Vqttq

( )
( )

( )
( )

( )
( )

( ) V
nRT

V
nLkT

V
NkTNV

V
kT

V
V

V
kT

V
q

q
kT

V
qqqq

qqqq
kTp

N
N

N

T

N

N

T

N

N

T

N

N

===






ΛΛ

=









∂
Λ∂

Λ
=











∂
∂

=












∂
∂











=

− 11
/
1    

/
/
11    

1

1
33

3

3

t

t

evrt

evrt

Non-Interacting Molecules
Allowed for Internal Structures

}1{ =eq



Using Statistical Thermodynamics
Any thermodynamic properties can now be deduced from a
knowledge of energy levels:

Thermodynamics and Spectroscopy have been combined.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

15C.  Average Energies and the Equipartition Principle
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Since                          is the sum of the mean energies of all the modes,

where  each mode m = translation, rotation, vibration, or electronic.
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Mean Energy of a Molecule
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15C.2(a). Mean Translational Energy
Can be found from the translational partition function.

Consider an one-dimensional system.

In three dimensions, the same calculation leads to

Mean energy: independent of 
the mass of molecule and the size of container.

In classical mechanics, 
the kinetic energy T

53http://bp.snu.ac.kr

kTX
h

m

X
h
m

X
h
mq

2
1

2
1

2
12

2

1

molecule a of mass :m                        2

2
32

1

2
2
1

2

t

2
1

2
t

==







−
















−=









=

−

β
βπ

β
π

ε

β
π

kT
2
3t =ε

222

2
1

2
1

2
1

zyx mvmvmvT ++=

kT
2
1
   ↑

kT
2
1
   ↑

kT
2
1
   ↑

1-D

3-D



15C.2(b). Mean Rotational Energy of a linear molecule

Low Temperature: we need term-by-term summation. 
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Fig. 15C.2 
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hcB ~ 10-5 eV
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High Temperature: many rotational levels are occupied.

The classical expression for the rotational energy of a linear molecule:
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15C.2(c). Mean Vibrational Energy

When the temperature is so high:
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- The classical expression for the Vibrational Energy:

Equipartition Principle: the average energy of quadratic term in the 
energy expression has the same value,        . 
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15E.1(b). Heat Capacities:
Detecting (Phase) Transitions

The internal energy translational, rotational, vibrational and electronic 
contributions:

The heat capacity has contributions from each mode of motion:
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m = translation, rotation
vibration, or electronic

In the case of monoatomic ideal gas, 
the translational energy is the only contribution. 

Valid at room temperature
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When the temperature is so low that only the lowest 
rotational state is occupied,               and there is no 
contribution to the heat capacity from the rotations.

An intermediate values the value of       can be

obtained by differentiating Eq. (15C.6a) 

where b = βhcB.

We can see that the rotational contribution to the 
heat capacity rises from zero                     to kT.
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Temperature dependence 
of the heat capacity of
linear molecules.

Linear Diatomic
Molecules  (Ideal Gas)
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The approximate form of the rotational partition function for a 
linear molecule.

A useful way of expressing the temperature above which the 
approximation is valid to introduce the rotational temperature     
The ‘high temperature’ means            

We can express the temperature for which this expression is valid in 
terms of the characteristic vibrational temperature

In terms of the vibrational, ‘high temperature’ means          
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Figure 15C.3

Figure 15E.1

The temperature dependence of 
the vibrational heat capacity of 
a molecule in the harmonic 
approximation.
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15E.2(e).  Residual Entropies
Some disorder is present in solid even at absolute zero.

The entropy of solid at absolute zero is greater than zero, and is 
called the residual entropy.

The source and magnitude of the residual entropy: 

Example: Consider a crystal composed of molecules AB, where 
A and B are of similar size.





AB AB AB AB

AB BA AB BA
very little energy difference

→ The molecules adopt either orientation at random in the solid.

→ Since solidification is not an infinitely slow process 

(metastable), the random array may be 
frozen in and survive even at absolute zero.
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Suppose that two molecular orientationS are equally probable, and 
that the sample contains N molecules.

2N different ways for each member of ensemble

This predicts a residual entropy of

kB ln 2 = 5.97 x 10-5 eV/K  (per molecule)

for molecules that can adopt either of two orientations at absolute zero.
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Experimentally, entropy measurements
by calorimetry (Chap. 3) or spectroscopic data.
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15F.2.  Equilibrium Constants

Reactants will not dominate in the 
reaction mixture at equilibrium.

Reactants predominate in the 
reaction mixture.

Figs. 15F.2 and 15F.3. The array of energy levels for R and P molecules in 
the equilibrium              , and the dependence of equilibrium on the density 
of states. In classical thermodynamic terms, we need entropy and enthalpy 
to consider.
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At some temperature T, the number of molecules in 
some state i of the joint system

The sum over the states of R is nothing other than the 
molecular partition function for molecule (reactant),      :
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The sum over the states of P is also a partition function, but it is 
not quite the same as the ones met so far because the energies     
are measured from the ground state of the total system, which in 
the present example happens to be the ground state of A.
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Equilibrium constant of the reaction:

This gives a way of calculating the value of K simply from a 
knowledge of the partition function, and therefore from 
spectroscopic data or molecular properties.
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Problems from Chap. 15

D   15A.4

E   15A.1(b)   15A.3(b)   15A.4(b)

D   15B.2

E   15B.1(b)   15B.2(b)   15B.3(b)   15B.10(b)

E   15C.1(b)   15C.5(b)

D   15D.2   15D.4

D   15E.4   15E.6
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