Chapter 20. Chemical Kinetics

Concentrations of Reactants and Products = $function_{\alpha,\beta,\gamma,\dots}$ (time)

The methods of monitoring the concentrations

1. Pressure change

- $2N_{2}O_{5}(g) \rightarrow 4NO_{2}(g) + O_{2}(g) constant-volume \ container$
- The pressure of the system increases during the course of reaction.
- Inappropriate for the reactions that leave the overall pressure unchanged, and for reactions in solution.

2. Spectroscopy

 $\begin{array}{c} \mathrm{H}_{2}(g) + \mathrm{Br}_{2}(g) \to \mathrm{2HBr}(g) \\ \underline{odor} & \underline{toxic} \end{array} \end{array}$

By monitoring the intensity of **absorption** of light hv by the bromine, the progress of the reaction can be monitored.

3. Polarimetry

When the optical activity of a mixture changes in the course of reaction, it can be monitored by measuring the angle of optical rotation.

4. Electrochemical Methods

When a reaction changes the number or nature of ions present in a solution, its course may be followed by monitoring the <u>electrical conductivity or pH</u> of the solution.

5. Characterization Methods <u>mass spectroscopy</u> charge/mass <u>emission spectroscopy</u> hv, electron, ion <u>nuclear-magnetic resonance</u> <u>Raman spectroscopy</u> hv <u>infra-red absorption</u> <u>x-ray absorption</u> hv

<u>x-ray diffraction hv</u>

etc.

Methods of applying these analytical techniques

- **1. Real-Time Analysis**: the composition of the system is analyzed while the reaction is in progress.
- 2. Quenching: the reaction is <u>frozen</u> after it has been allowed to proceed for a certain time, and then the composition is analyzed by any suitable techniques.

The Rates of Reactions

 $A+B \rightarrow P$ (Product)

where [A], [B], [P]: the concentrations of the species, A, B, and P.

The rate of reaction

$$\frac{d[P]}{dt} = -\frac{d[A]}{dt} = -\frac{d[B]}{dt}$$

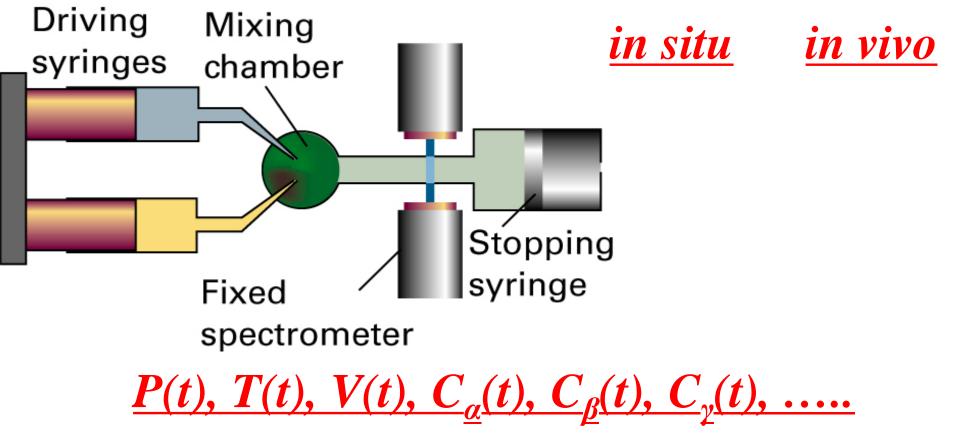


Figure 20A.2. *Real-Time Analysis*

In the stopped-flow technique, the reagents are driven <u>quickly into the mixing</u> chamber by the driving syringes, and then the time dependence of the concentrations is monitored.



20A.2(c). Determination of the Rate Law

A direct method for determining the rate law from the raw kinetic data giving the <u>concentration as a function of time</u> is from the <u>measurement of slopes</u>.*

The reaction between A and B:
$$\mathbf{A} + \mathbf{B} \to \mathbf{P}$$
 (Product)
 $\frac{v = -\frac{d'[A]}{dt} = k[A]^a[B]^b}{\frac{dt}{dt}} = \frac{d'[P]}{\frac{dt}{dt}}$
Reaction Rate
Reaction Order
 $-\left(\frac{d[A]}{dt}\right) = k[A]^a[B]^b$
 $\log\left\{-\left(\frac{d[A(t)]}{dt}\right)\right\} = \log k + a\log[A(t)] + b\log[B(t)]$

A plot of the rate against various concentrations of A and B gives the orders a and b from the slopes, and log k from the intercept.

* Only when the rate constant k is independent of concentration.

 $A+2B \rightarrow 3C+D$

$$v = -\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

The ambiguity in the definition of **Reaction Rate** is avoided if

we define the rate of reaction *v* as

$$v = \frac{1}{v_J} \frac{d[\mathbf{J}]}{dt}$$
(20A.3b)

where $\underline{v_I}$ is the stoichiometric constant of substance J.

20B.1. The First-Order Reactions

 $\mathbf{A} \rightarrow \mathbf{P}$

 $k_1 t$

$$-\frac{d[A]}{dt} = k_1[A]$$

$$-\frac{d[A]}{[A]} = k_1dt$$

$$\int_{[A]_0}^{[A]_t} \left(-\frac{d[A]}{[A]}\right) = \int_0^t k_1dt$$

$$-\left(\ln[A]_t - \ln[A]_0\right) = k_1t$$

$$\ln\frac{[A]_t}{[A]_0} = -k_1t$$

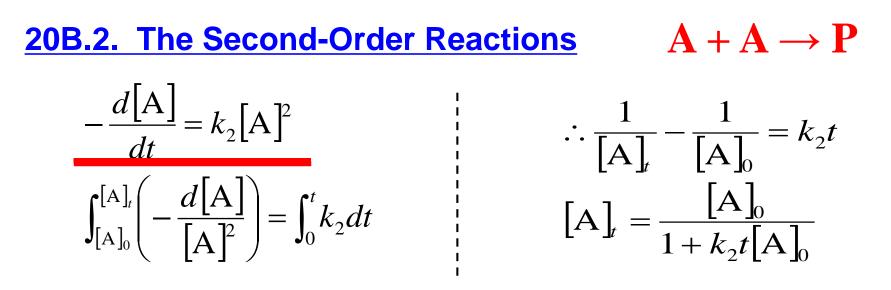
$$\therefore [A]_t = [A]_0 \exp(-k_1t)$$

http://bp.snu.ac.kr

 $\underline{k_1} = \text{rate constant} = \text{independent of concentration}_7$

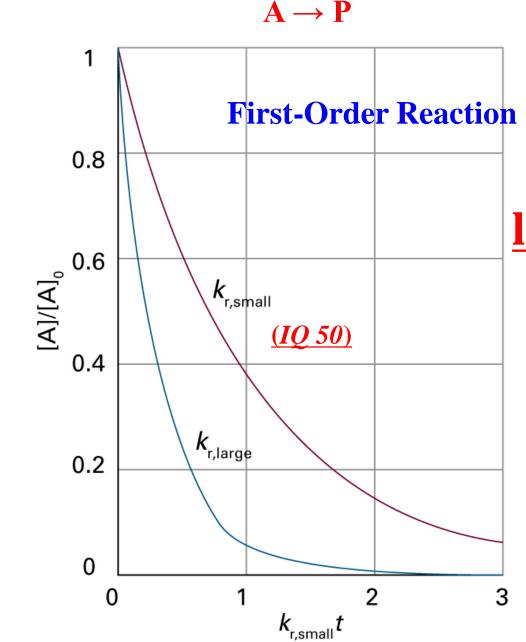
 $[A]_t = [A]_0 \exp(-k_1 t)$ First-Order Reactions

The concentration of A falls <u>exponentially</u> with time with a rate determined by k_1 .



When $\frac{1}{[A]_t}$ is plotted against *t*, a straight line should be obtained and

the slope is second-order rate coefficient k_2 .

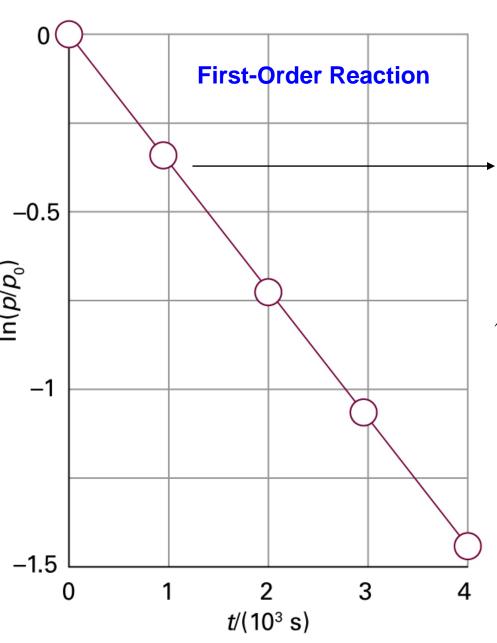


log [A] vs. time

 $[A]_{t} = [A]_{0} \exp(-k_{1}t)$

Figure 20B.1

The **exponential decay** of the reactant in a first-order reaction. The larger the rate constant, the more rapid the decay: here $k_{\text{large}} = 3k_{\text{small}}$.

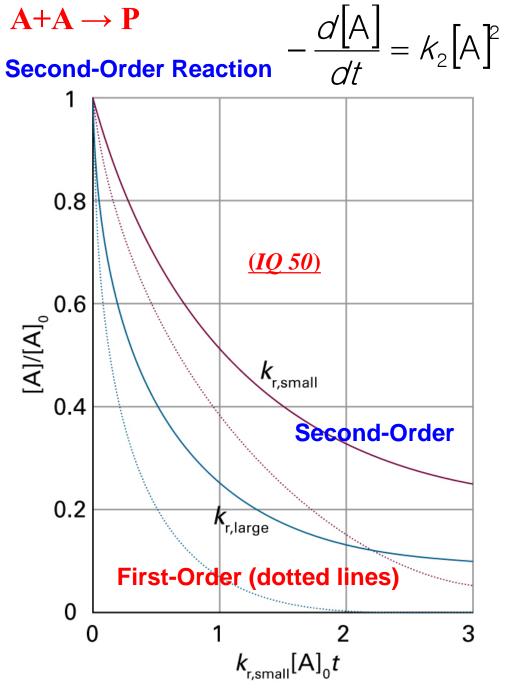


 $[A]_t = [A]_0 \exp(-k_1 t)$ $= [A]_0 \exp(-t/\tau)$ • k1 = First-Order Rate Constant $\tau = \frac{1}{k_1} = \frac{\text{Time Constant}}{\text{Lifetime}}$

= <u>Relaxation Time</u>

Figure 20B.2

The determination of the rate constant of a first-order reaction: a straight line is obtained when $\ln [A]$ (or, as here, $\ln p$) is plotted **against** *t*, and the slope gives *k*.



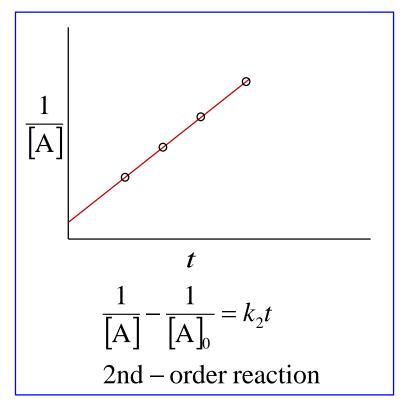


Figure 20B.3

The variation with time of the concentration of a reactant in a secondorder reaction. The dotted line is the corresponding decay in a first-order reaction with the same initial rate. For this illustration, $k_{\text{large}} = 3k_{\text{small}}$.

* Only when the rate constant k is independent of concentration.

Order	Reaction	Rate law*	<i>t</i> _{1/2}
0	$A \rightarrow P$	$v = k_{\rm r}$ $k_{\rm r}t = x \text{ for } 0 \le x \le [A]_0$	$[A]_0/2k_r$
1	$\mathbf{A} \to \mathbf{P}$	$v = k_{\rm r}[A]$ $k_{\rm r}t = \ln \frac{[A]_0}{[A]_0 - x}$	$(\ln 2)/k_{\rm r}$
2	$\mathbf{A} \to \mathbf{P}$	$v = k_{\rm r}[A]^2$ $k_{\rm r}t = \frac{x}{[A]_0([A]_0 - x)}$	$1/k_{\rm r}[{\rm A}]_{0}$
	$A + B \rightarrow P$	$v = k_{\rm r}[{\rm A}][{\rm B}]$ $k_{\rm r}t = \frac{1}{[{\rm B}]_0 - [{\rm A}]_0} \ln \frac{[{\rm A}]_0([{\rm B}]_0 - x)}{([{\rm A}]_0 - x)[{\rm B}]_0}$	
	$A + 2 B \rightarrow P$	$v = k_{\rm r}[{\rm A}][{\rm B}]$ $k_{\rm r}t = \frac{1}{[{\rm B}]_0 - 2[{\rm A}]_0} \ln \frac{[{\rm A}]_0([{\rm B}]_0 - 2x)}{([{\rm A}]_0 - x)[{\rm B}]_0}$	

Order	Reaction	Rate law*	<i>t</i> _{1/2}
	$A \rightarrow P$ with autocatalysis	$v = k_{\rm r}[{\rm A}][{\rm P}]$ $k_{\rm r}t = \frac{1}{[{\rm A}]_0 + [{\rm P}]_0} \ln \frac{[{\rm A}]_0([{\rm P}]_0 + x)}{([{\rm A}]_0 - x)[{\rm P}]_0}$	
3	$A + 2 B \rightarrow P$	$v = k_{\rm r}[{\rm A}][{\rm B}]^2$ $k_{\rm r}t = \frac{2x}{(2[{\rm A}]_0 - [{\rm B}]_0)([{\rm B}]_0 - 2x)[{\rm B}]_0}$	
		$+\frac{1}{(2[A]_0 - [B]_0)^2} \ln \frac{[A]_0([B]_0 - 2x)}{([A]_0 - x)[B]_0}$	
$n \ge 2$	$A \rightarrow P$	$v = k_{\rm r}[{\rm A}]^n k_{\rm r}t = \frac{1}{n-1} \left\{ \frac{1}{([{\rm A}]_0 - x)^{n-1}} - \frac{1}{[{\rm A}]_0^{n-1}} \right\}$	$\frac{2^{n-1}-1}{(n-1)k_{\rm r}[{\rm A}]_0^{n-1}}$
$\star x = [\mathbf{P}]$ and	w = dw/dt		

* x = [P] and v = dx/dt.

20B.1. Half-Life and Time Constant

A simple indication of the rate of a chemical reaction is the time it takes for the concentration of a reagent to fall to <u>half of its initial value</u>: this is called the half-life of the reaction, and is denoted $t_{1/2}$.

First-Order Reaction:

$$[A]_{0} \rightarrow \frac{1}{2} [A]_{0} \text{ at } t_{1/2}$$

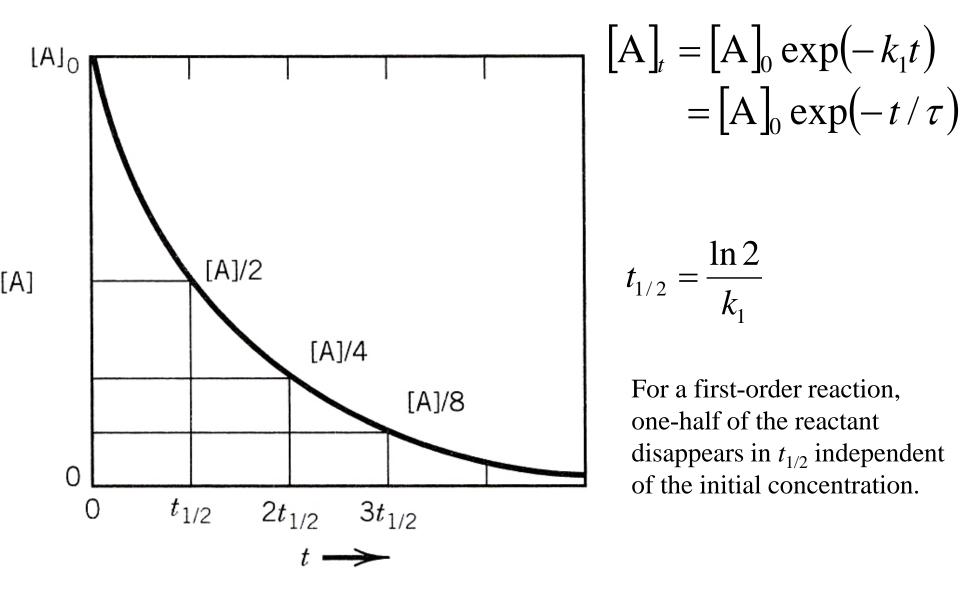
$$-k_{1}t_{1/2} = \ln \frac{\frac{1}{2} [A]_{0}}{[A]_{0}} = -\ln 2$$

$$\therefore t_{1/2} = \frac{\ln 2}{k_{1}}$$

$$\tau = \frac{1}{k_{1}}$$

$$[A]_{t} = [A]_{0} \exp(-k_{1}t)$$
$$= [A]_{0} \exp(-t/\tau)$$

- Time Constant
- Lifetime
- Relaxation Time



20D. Temperature Dependence of Reaction Rates

In many experiments, the temperature dependence of the rate has

been found to fit the expression proposed by **Arrhenius**:

$$k_r = A \exp\left(-\frac{E_a}{RT}\right)$$

Rate Constant

Activation Enthalpy ≈ Activation Energy

where A and E_a are

<u>Pre-Exponential Factor</u>: Independent of temperature

Activation Energy: Determined from a plot of $\ln k_r$ against 1/T

Approximately independent of temperature

$$\ln k_r = \ln A - \frac{E_a}{RT}$$

Reaction Rate $V = \frac{d[P]}{dt} = -k_r [A]^a [B]^b$ $A + B \rightarrow P$

<u>Rate Constant:</u> K_r

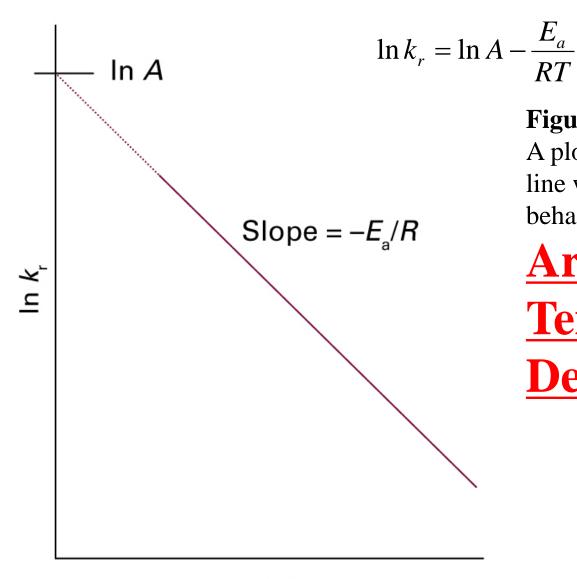


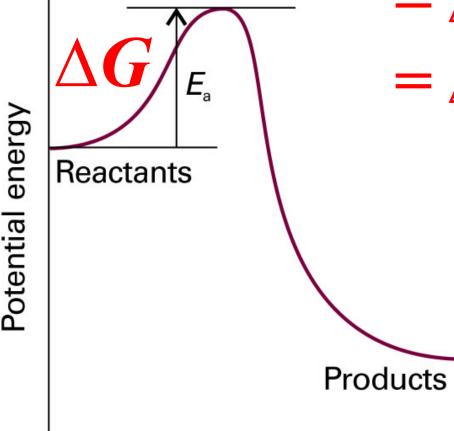
Figure 20D.1

A plot of $\ln k$ against 1/T is a straight line when the reaction follows the behavior described by the

Arrhenius-Type

Temperature

Dependence.



Progress of reaction

$\Delta G = G_{activated} - G_{reactant}$ $= \Delta H - T \Delta S$ $= \Delta E - T \Delta S + P \Delta V$

Figure 20D.3. A potential energy profile for an

<u>exothermic (not always)</u>

reaction. The height of the barrier between the reactants and products is the

activation energy

(activation enthalpy)

of the reaction.

20C.1. First-Order Reactions Approaching Equilibrium

- considering Backward Reaction

$$\frac{d[\mathbf{A}]}{dt} = -k_f[\mathbf{A}] + k_b[\mathbf{B}]$$
(20C.2)

If the initial amount of A is $[A]_0$, and if initially there is no B present, then $\underline{[A]+[B]=[A]_0}$ at all times:

$$\frac{d[A]}{dt} = -k_f[A] + k_b([A]_0 - [A]) = -(k_f + k_b)[A] + k_b[A]_0$$

The solution of this first-order differential equation:

$$\begin{bmatrix} A \end{bmatrix}_{f} = \begin{bmatrix} A \end{bmatrix}_{0} \left\{ \frac{k_{b} + k_{f} \exp\left[-\left(k_{f} + k_{b}\right)t\right]}{k_{f} + k_{b}} \right\}$$
(20C.4)

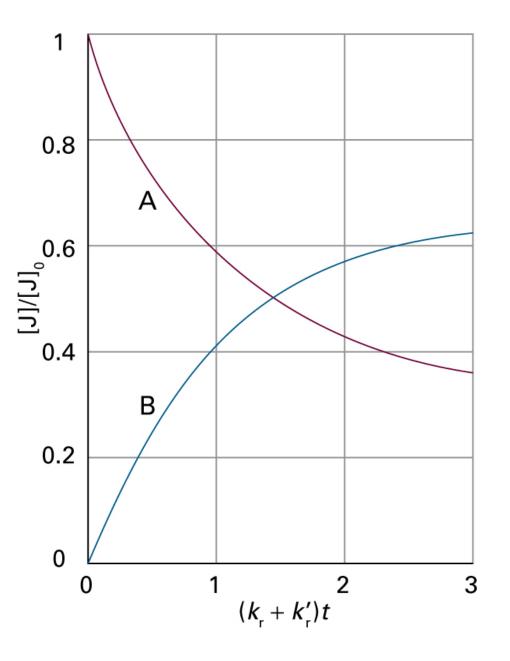
If $k_b = 0$ (no reverse reaction), the equation becomes $[A]_t = [A]_0 \exp(-k_f t)$

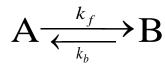
ppt 20-7

http://bp.snu.ac.kr

 $A \xrightarrow{\kappa_f} B$

Sec. 20C.1





 $[A] + [B] = [A]_0$

Figure 20C.1

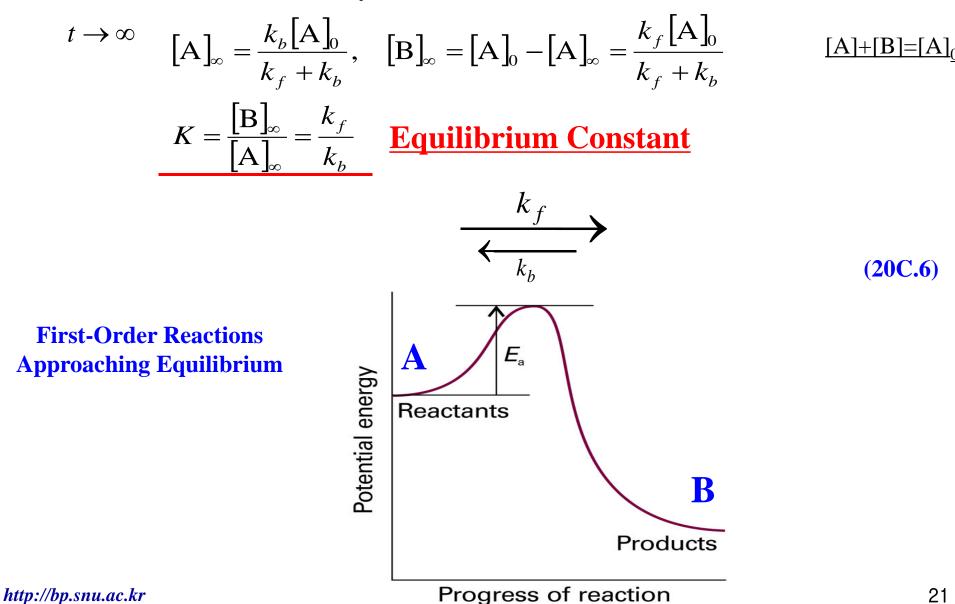
The approach of concentrations to their equilibrium values as predicted by the equation for a reaction $A \rightleftharpoons B$ that is first-order in each direction, and for which $k_f = 2k_b$.

Sec. 20C.1

$$\left[\mathcal{A}\right]_{t} = \left[\mathcal{A}\right]_{0} \left\{ \frac{k_{b} + k_{f} \exp\left[-\left(k_{f} + k_{b}\right)t\right]}{k_{f} + k_{b}} \right\}$$

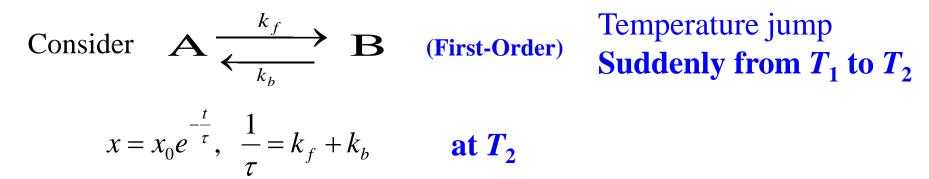
(20C.4)

What is the final state of the system?



20C.2. Relaxation Method

The term relaxation denotes the return of a system to equilibrium. It is used in chemical kinetics to indicate that <u>an externally</u> <u>applied influence</u> has shifted the equilibrium position of a reaction, normally <u>suddenly</u>, and that the reaction is adjusting to the equilibrium composition characteristic of new conditions.



where x_0 is the departure from equilibrium immediately after the temperature jump, and *x* is the departure from equilibrium at the new temperature after a time *t*.

at
$$T_1 \left[\mathcal{A} \right]_t = \left[\mathcal{A} \right]_0 \left\{ \frac{k_b + k_f \exp\left[-\left(k_f + k_b\right)t\right]}{k_f + k_b} \right\}$$

$$k_{f}[A]_{eq} = k_{b}[B]_{eq} \quad at T_{1} \quad \text{Equilibrium Constant} \quad K = \frac{[B]_{\infty}}{[A]_{\infty}} = \frac{k_{f}}{k_{b}}$$

We write the deviation of [A] from its new equilibrium value as x, so **at T_{2}**
[A] = [A]_{eq} + x and [B] = [B]_{eq} - x \text{ at } T_{2}. The concentration of A then changes as:

$$\frac{d[A]}{dt} = -k_f[A] + k_b[B] \quad \text{at } T_2$$
$$= -k_f([A]_{eq} + x) + k_b([B]_{eq} - x)$$
$$\approx -(k_f + k_b)x$$

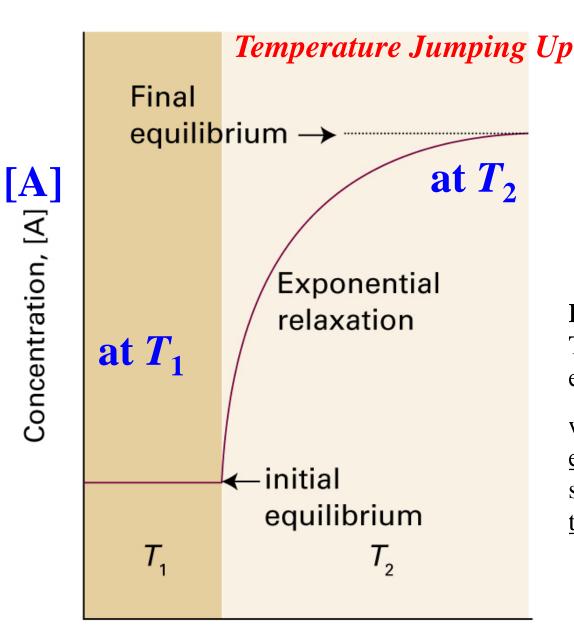
 $k_f(T_2) = k_b(T_2)$ perturbation

Because of d|A|/dt = dx/dt,

$$\frac{\partial x}{\partial t} = -(k_f + k_b)x$$
$$\frac{\partial x}{\partial x} = -(k_f + k_b)\partial t \Longrightarrow \ln \frac{x}{x_0} = -(k_f + k_b)t$$

$$x = x_0 e^{-(k_f + k_b)t} = x_0 e^{-\frac{t}{\tau}}$$
, where $\frac{1}{\tau} = k_f + k_b$

Since $K \approx k_f / k_b$, its value may be combined with the relaxation-time measurement to find the individual k_f and k_b .



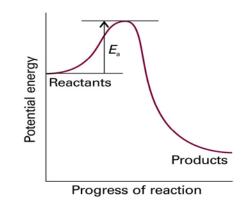


Figure 20C.2 The relaxation to the new equilibrium composition

when a <u>reaction initially at</u> <u>equilibrium at a temperature T_{1} is</u> subjected to a **sudden change** to <u>temperature T_{2} </u>.

20E.2. Consecutive Reactions and the Steady State

$$A \xrightarrow{k_{1}} B \xrightarrow{k'_{1}} C$$
(Assume no backward reaction)
e.g.
$$\stackrel{239}{92} U \xrightarrow{\beta} \stackrel{239}{93} Np \xrightarrow{\beta} \stackrel{239}{94} Pu$$

$$\stackrel{23.5 \text{ min}}{2.35 \text{ days}} \stackrel{\beta}{100} \stackrel{239}{94} Pu$$

$$\frac{d[A]}{dt} = -k_{1}[A], \qquad \frac{d[B]}{dt} = k_{1}[A] - k_{1}'[B], \qquad \frac{d[C]}{dt} = k_{1}'[B]$$

We suppose that <u>only A is present initially</u>, and that its concentration is then $[A]_0$.

$$[\mathbf{A}]_{t} = [\mathbf{A}]_{0} \exp(-k_{1}t)$$
(20E.4a)

If this result is inserted into the equation for B and the condition $[B]_0=0$ imposed, we arrived at

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{t} = \begin{bmatrix} \mathbf{A} \end{bmatrix}_{0} \left\{ \frac{k_{1}}{k_{1}^{'} - k_{1}} \right\} \left(e^{-k_{1}t} - e^{-k_{1}^{'}t} \right)$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{t} + \begin{bmatrix} \mathbf{B} \end{bmatrix}_{t} + \begin{bmatrix} \mathbf{C} \end{bmatrix}_{t} = \begin{bmatrix} \mathbf{A} \end{bmatrix}_{0}$$

$$\begin{bmatrix} \mathbf{C} \end{bmatrix}_{t} = \begin{bmatrix} \mathbf{A} \end{bmatrix}_{0} - \begin{bmatrix} \mathbf{A} \end{bmatrix}_{t} - \begin{bmatrix} \mathbf{B} \end{bmatrix}_{t} = \begin{bmatrix} \mathbf{A} \end{bmatrix}_{0} \left\{ 1 + \left(\frac{1}{k_{1} - k_{1}^{'}} \right) \right\} \left(k_{1}^{'} e^{-k_{1}t} - k_{1} e^{-k_{1}^{'}t} \right)$$
(20E.4b)
$$\begin{bmatrix} \mathbf{C} \end{bmatrix}_{t} = \begin{bmatrix} \mathbf{A} \end{bmatrix}_{0} - \begin{bmatrix} \mathbf{A} \end{bmatrix}_{t} - \begin{bmatrix} \mathbf{B} \end{bmatrix}_{t} = \begin{bmatrix} \mathbf{A} \end{bmatrix}_{0} \left\{ 1 + \left(\frac{1}{k_{1} - k_{1}^{'}} \right) \right\} \left(k_{1}^{'} e^{-k_{1}t} - k_{1} e^{-k_{1}^{'}t} \right)$$
(20E.4c)

(skip)

The solution for [B]

$$A \xrightarrow{k_{1}} B \xrightarrow{k_{1}'} C$$

$$\frac{d[A]}{dt} = -k[A] \qquad (1)$$

$$\frac{d[B]}{dt} = k_{1}[A] - k_{1}'[B] \qquad (2)$$

$$\frac{d[C]}{dt} = k_{1}'[B] \qquad (3)$$

$$[A] = [A]_{0} \exp(-k_{1}t) \qquad (4)$$

$$(4) \rightarrow (2)$$

$$\frac{d[\mathbf{B}]}{dt} = k_1 [\mathbf{A}]_0 \exp(-k_1 t) - k_1' [\mathbf{B}] \qquad (5)$$

)

(skip)

Let
$$Y = [B]e^{k_1't}$$

$$\frac{dY}{dt} = e^{k_1't}\frac{d[B]}{dt} + [B]k_1'e^{k_1't}$$

$$\therefore e^{-k_1't}\frac{dY}{dt} = \frac{d[B]}{dt} + k_1'[B] \qquad (6)$$

Rearranging eq (5)

$$\frac{d[\mathbf{B}]}{dt} + k_1[\mathbf{B}] = k_1[\mathbf{A}]_0 \exp(-k_1 t)$$
(7)

| | |

I

From eqs (6) and (7)

$$e^{-k_1't} \frac{dY}{dt} = k_1 [A]_0 \exp(-k_1 t)$$
$$\frac{dY}{dt} = k_1 [A]_0 e^{(k_1' - k_1)t}$$
$$dY = k_1 [A]_0 e^{(k_1' - k_1)t} dt$$

 $Y_{t} - Y_{0} = \frac{k_{1}[A]_{0}}{k_{1}^{'} - k_{1}} e^{(k_{1}^{'} - k_{1})t} - \frac{k_{1}[A]_{0}}{k_{1}^{'} - k_{1}}$ $[B]e^{k_{1}^{'}} - 0 = \frac{k_{1}[A]_{0}}{k_{1}^{'} - k_{1}} e^{(k_{1}^{'} - k_{1})t} - \frac{k_{1}[A]_{0}}{k_{1}^{'} - k_{1}}$ $[B] = \frac{k_{1}[A]_{0}}{k_{1}^{'} - k_{1}} \left(e^{-k_{1}t} - e^{-k_{1}^{'}t}\right)$

(i) The three equations for [A], [B] and [C] indicate how to analyze a reaction scheme consisting of <u>two consecutive</u> <u>first-order</u> <u>reactions</u>.

(ii) <u>"Rate-Determining Step"</u> {Bottle-Neck Effect} If k_1 '>> k_1 , whenever B molecules is formed, it decays quickly into C.

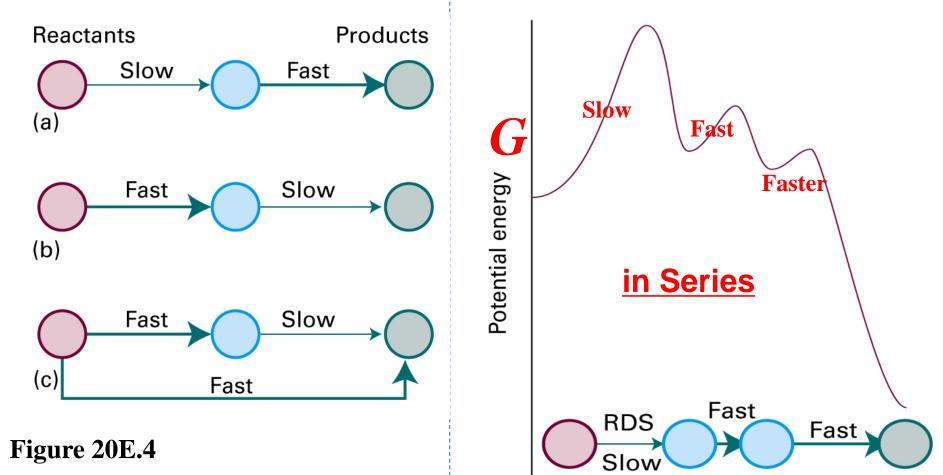
Sec. 20E.4

$$\begin{bmatrix} C \end{bmatrix}_{t} = \begin{bmatrix} A \end{bmatrix}_{0} \left\{ 1 + \left(\frac{1}{k_{1} - k_{1}} \right) \left(k_{1}^{'} e^{-k_{1}t} - k_{1} e^{-k_{1}^{'}t} \right) \right\} \underbrace{\textbf{BRES}}_{\textbf{BRS}}$$
$$\cong \begin{bmatrix} A \end{bmatrix}_{0} \left\{ 1 + \left(\frac{k_{1}^{'}}{k_{1} - k_{1}^{'}} \right) e^{-k_{1}t} \right\} \approx \begin{bmatrix} A \end{bmatrix}_{0} \left(1 - e^{-k_{1}t} \right)$$

The formation of C depends only on the smaller rate coefficient, as anticipated. For this reason, the step with the slowest rate is called **the rate-determining step** of the reaction.

If
$$k_1' \ll k_1$$
,

$$[C]_t \approx [A]_0 (1 - e^{-k_1't}) \qquad A \xrightarrow{k_1} B \xrightarrow{k_1'} C_{28}$$



- (a) The first step is rate determining.
- (b) The second step is rate-determining.
- (c) Although one step is slow, it is not rate-determining step because there is a **fast route that circumvents it**.

<u>낙하산 인사</u>

http://bp.snu.ac.kr

x-axis: Progress of reaction High (10²³) Dimensional Space

Figure 20E.5. Reaction profile for a mechanism in which the first step is rate-determining step.

20E.3. Steady-State Approximation

<u>A couple of kinetic steps</u> <u>can induce</u> <u>mathematical complexity</u>.

The steady-state approximation assumes that during the major part of the reaction,

the <u>concentrations</u> of all reaction intermediates are <u>approximately constant</u>, and

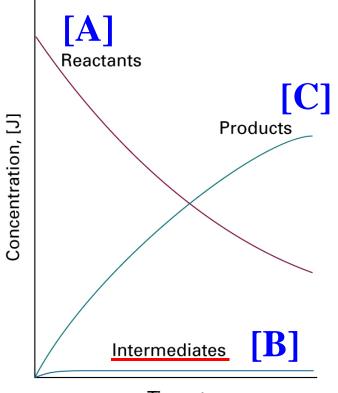
the <u>rates of changes</u> of all reaction intermediates are <u>negligibly small</u>.



$A \xrightarrow{k_1} B \xrightarrow{k_1'} C$

Figure 20E.1

The curves are plots with $k_1 = 10k_1$. <u>If the intermediate B is in fact the</u> <u>desired product</u>, it is important to be able to predict when its concentration is greatest.



Time, *t* Fig. 20E.2 Steady-State Approximation

The concentrations of intermediates remain <u>small</u> and <u>hardly change</u> during most of the course of the reaction.

$$\begin{array}{c} \textbf{Rate-Limiting Step} \\ A \xrightarrow{\downarrow} B \xrightarrow{k_{1}} C \quad (\textbf{ppt 20-27}) \\ [A] = [A]_{0}e^{-k_{1}t}, \quad [B] = \frac{k_{1}[A]_{0}}{k_{1}^{'} - k_{1}}\left(e^{-k_{1}t} - e^{-k_{1}^{'}t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [B] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'} - k_{1}}\left(1 - e^{\left(k_{1} - k_{1}^{'}\right)t}\right) \\ \hline [A] = \frac{k_{1}}{k_{1}^{'}}\left[A\right] < <[A] \\ \hline [A] = \frac{k_{1}}{k_{1}^{'}}\left[A\right] < [A] \\ \hline [A] = \frac{k_{1}}{k_{1}^{'}}\left[A\right] < <[A] \\ \hline [A] = \frac{k_{1}}{k_{1}^{'$$

20E.5. Pre-Equilibrium

The <u>intermediate</u> is in equilibrium with the <u>reactants</u> (approximately).

intermediate

$$A + B \xrightarrow[k_{-1}]{k_{2}} (AB) \xrightarrow[too slow]{k_{1}} C$$

much faster

$$\frac{d[(AB)]}{dt} = k_2[A][B] - k_{-1}[(AB)]$$

Steady-state approximation

$$k_{2}[A]\llbracket B] - k_{-1}[(AB)] \approx 0$$

$$[(AB)] = \frac{k_{2}}{k_{-1}}[A]\llbracket B]$$

$$[(AB)] = K[A]\llbracket B]$$

$$\frac{d[C]}{dt} = k_{1}[AB] = k_{1}K[A]\llbracket B]$$

Therefore, the reaction has <u>overall second-order kinetics</u>. *http://bp.snu.ac.kr*

$$\mathcal{K} = \frac{\left[\text{Product}\right]}{\left[\text{Reactant}\right]} = \frac{\left[\text{B}\right]_{\infty}}{\left[\text{A}\right]_{\infty}} = \frac{k_f}{k_b}$$

(20E.12)

20F.1.
$$\underline{U:S \triangleq \Sigma}$$
 $\underline{U:S \triangleq \Sigma}$ $\underline{U:S \triangleq \Sigma}$

the overall reaction will have the first-order kinetics (by steady-state).

$$\frac{d[A^*]}{dt} = k_a[A]^2 - k_a[A^*][A] - k_b[A^*] \cong 0 \qquad \therefore [A^*] = \frac{k_a[A]^2}{k_b + k_a[A]}$$

$$\therefore \frac{d[\mathbf{P}]}{dt} = k_b[\mathbf{A}^*] = \frac{k_a k_b[\mathbf{A}]^2}{k_b + k_a[\mathbf{A}]} \qquad (*) \text{ (not first-order yet)} \quad (20\text{F.4})$$

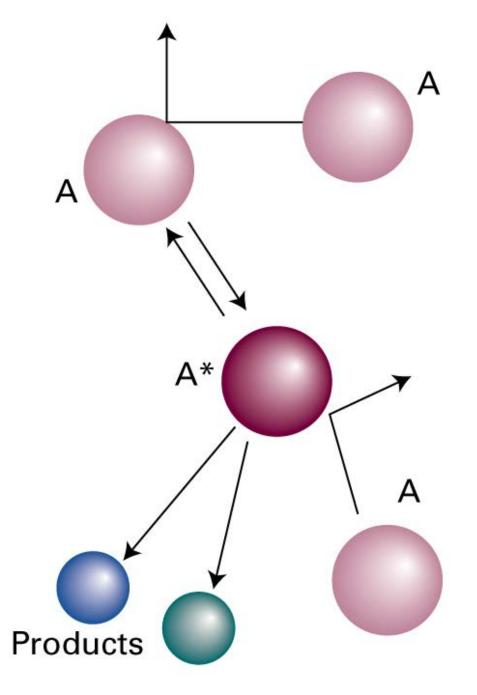


Figure 20F.1 Unimolecular Reactions.

The species A is excited by collision with A, and the excited A molecule (A*) may either be deactivated by a collision with A, or go on to decay by a unimolecular process to form products.

(skip)

$$\frac{d[\mathbf{P}]}{dt} = \frac{k_a k_b [\mathbf{A}]^2}{k_b + k_a [\mathbf{A}]} \qquad (*)$$

If $k_a^{'}[\mathbf{A}^*][\mathbf{A}] >> k_b [\mathbf{A}^*]$, or $k_a^{'}[\mathbf{A}] >> k_b$, then $\frac{d[\mathbf{P}]}{dt} = k[\mathbf{A}]$,
where $k = \frac{k_a k_b}{k_a}$

$$\frac{\text{If } k_a^{'}[\mathbf{A}] << k_b,}{\therefore \frac{d[\mathbf{P}]}{dt} = k_a [\mathbf{A}]^2} \qquad \text{from eq}(*)$$
(20F.6)

Lindemann-Hinshelwood mechanism:

As the concentration (and therefore the partial pressure) of A is reduced, the reaction should <u>switch to overall second-order kinetics</u>. The physical reason for the change of order is that at low pressures the <u>rate-determining step is the bimolecular formation of A*.</u>

Problems from Chap. 20

- E 20A.2(b) 20A.5(b)
- **D** 20**B**.2
- E 20B.4(b)
- P 20B.16
- D 20D.2
- P 20E.3

