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Chapter 4.

Physical Transformations of Pure Substances
The Stability of Phases

Basic Principle:

The tendency of systems slides down to lower chemical potential.
The principle of uniform chemical potential applies.

However, many phases can be in equilibrium.

Temperature dependence of phase stability

m (s), m (l), m (g): the chemical potentials of the solids, liquids, and gas 

phases.

As T rises, the chemical potential falls because Sm is always positive.

The gradient is steeper for gases than for liquids (Sm(g) > Sm(l)), and

steeper for a liquid than the solid (Sm(l) > Sm(s)). 
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The schematic temperature dependence of

the chemical potential of the solid, liquid,

and gas phases of a substance.

The lines should be curved.

The phase with the lowest chemical

potential at the specified T and P is the

most stable.

The transition temperatures, the melting

and boiling temperatures, are the

temperatures at which the chemical

potentials of two phases are equal.
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Figure 4A.4

The general regions of pressure and 

temperature where solid, liquid, or gas is 

stable (that has the lowest chemical 

potential).

The solid phase is the most stable phase 

at low temperatures and high pressures. 
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Figure 4A.3

The vapor pressure of a liquid or 

solid is the pressure exerted by the 

vapor in equilibrium with the 

condensed (L or S) phase. 
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When two or more phases are in 

equilibrium,

Chemical potential of a component
is

the same in each phase, and is the same 

at all points in each phase. 
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(a) A liquid in equilibrium with its vapor.

(b) When a liquid is heated in a sealed 

container, the fraction of vapor phase 

increases and that of liquid decreases 

slightly.

(c) There comes a stage at which the two 

densities are equal, and the interface 

between the fluids disappears.  

The container needs to be strong:  the 

critical temperature of water is 374˚C and 

the vapor pressure is then 218 atm. 
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Phase diagram for carbon dioxide.

As the triple point lies at pressures well 

above atmospheric, liquid carbon dioxide 

does not exist under normal conditions

A pressure of at least 5.11 atm must be 

applied. 
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Figure 4A.9 

Equilibrium Phase Diagram for 

water showing the different solid 

phases of ice. 
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Figure 4A.11 

The phase diagram for helium (4He).

The l-line marks the conditions under which 

the two liquid phases are in equilibrium. 

Helium-II is the superfluid phase.

Note that a pressure of over 20 bar must be 

exerted before solid helium can be obtained. 

Different solid phases:

hcp: hexagonal close packing

bcc: body-centered cubic
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4B.1(b).  Chemical Potential Dependence on Pressure

An increase in pressure raises the chemical potential (because V is certainly 

positive), and increases it much more for gases than either liquids or solids.

The molar volume of gas is ~1000 times larger than that of liquid or solid.

An increase in pressure increases the chemical potential of a liquid slightly more 

than the potential of a solid, resulting in the raising of the freezing point.

Figure 4B.2

The pressure dependence of the chemical 

potential, and its effect on the melting and 

boiling points. 
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The pressure dependence of the chemical potential depends on the molar volume of the 

phase.  In nature, the lines should be curved.

(a)   In general, the molar volume of solid is less than that of the liquid, and m (s) 

increases less than m (l).  As a result, the freezing temperature rises.

(b)   The molar volume is greater for the solid than the liquid (as for Si or water):

m (s) increases more strongly than m (l).

The freezing temperature is lowered. 
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When pressure is applied to a system in which two phases are in equilibrium (at a), 

the equilibrium is disturbed.

It can be restored by changing the temperature, so moving the state of the system to b.  

It follows that there is a relation between dp and dT that ensures that the system 

remains in equilibrium as either variable is changed.
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4B.2(a). Phase Diagrams

The boundaries between two phases lie at the values of p and T

where the two phases can exist.

(1)

(2)

(3)

(4)

Combining Eqs. (1) and (2), we know

Clapeyron equation
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Solid-Liquid Boundary

At the melting point Tf

The molar entropy change of melting

From eq (4)

(5)
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On integrating eq (5), the equation of the solid-liquid equilibrium curve

where p* and T* are the pressure and temperature on some point of 

the equilibrium line.

which is linear in T.

When T is close to T*, the logarithm can be approximated using

(6)
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Figure 4B.5

A typical solid-liquid phase boundary slopes steeply upwards.

This slope implies that, as the pressure is raised, the melting temperature rises. 

Most substances behave in this way.
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Example:

What is the freezing point of water under a pressure of 1500 atm?

Solution:
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DHvap,m : the molar enthalpy of vaporization

DVvap,m : the molar volume change on vaporization

4B.2(c).  The Liquid-Gas Boundary

 is much smaller than in the case of solid-liquid equilibrium.

The slope depends on DVvap,m, and the volume of the gas is sensitive to P. 

Increasing pressure decreases V(g) and therefore DVvap,m also.

The slope          increases as p increases, and this is why the line drawn in Figure 4B.7 curls upwards.
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On rewriting,

Assuming that DHvap,m does not depend on the temperature,

Assuming that the gas behaves ideally, Vm(g) may be replaced by

where p* is the pressure at some temperature T*.

(7)
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A typical liquid-vapor phase boundary.

The boundary can be regarded as a plot of the vapor pressure against T.

The phase boundary terminates at the critical point (not shown).
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4B.2(c). Solid-Vapor

Boundary

DHsub,m: the molar enthalpy of sublimation

Similarly,

usu. DHsub,m > DHvap,m

The slope       is steeper for sublimation than for vaporization. (See Fig. 4B.8)

The Solid-Liquid-Gas Equilibrium

Triple Point:  A point where solid, liquid, and gas can all coexist in 

equilibrium.  It is given by the values of p and T for 

which all three chemical potentials are equal.
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4B.3. More Remarks about Phase Transitions

At the transition point,

Since both DVm and DHm are non-zero, it follows that and can

be different on either side of the transition. In other words, the

derivatives of Gibbs free energy can be discontinuous. This is

the basis of the term the First-Order Phase Transition.

The case in which the first derivative of G is continuous, but the second 

derivative is discontinuous. 

→ the Second-Order Phase Transition.
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True,

all the time.

In general, 

but not all the time.
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A continuous slope of m implies that the entropy and volume (and 

hence the enthalpy) do not change at the transition.

The heat capacity is discontinuous at the transition but does not 

become infinite.

The type of 2nd-order transition may include:

Order-Disorder Transition

Ferromagnetic Transition

Ferroelectric Transition

Fluid-Superfluid Transition

. . . . .

24
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Figure 4B.9

(a) first-order and (b) second-order phase transitions.
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Fig. 4B.11 One version of a second-order phase transition in which (a) a tetragonal phase

expands more rapidly in two directions than a third, and hence becomes a cubic phase, which (b)

expands uniformly in three directions as the temperature is raised.

There is no major rearrangement of atoms at the transition temperature, and hence the

enthalpy of transition may become zero.
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Example: Perovskite Semiconductor
[Cs0.05[{CH(NH2)2}0.83{CH3NH3}0.17]0.95]Pb(I0.83Br0.17)3 = ABX3

Formamidinium

Methylammonium
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Figure 4B.12

Order-Disorder Transition

(a) At T = 0, there is perfect order, with 

different kinds of atoms occupying alternate 

sites.

(b) As the temperature is increased, atoms 

exchange locations and islands of each kind 

of atom form in regions of the solid. Some 

of the original order survives.

(c) At and above the transition temperature, the 

islands occur at random throughout the 

sample.
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A and B atoms like each other,

compared to the A-A or B-B atoms.
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Problems from Chap. 4
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