
CHAPTER 1

Introduction

1.1 BACKGROUND
1.2 THE MECHANICS AND CONTROL OF MECHANICAL MANIPULATORS
1.3 NOTATION

1.1 BACKGROUND

The history of industrial automation is characterized by periods of rapid change in
popular methods. Either as a cause or, perhaps, an effect, such periods of change in
automation techniques seem closely tied to world economics. Use of the industrial
robot, which became identifiable as a unique device in the 1960s [1], along with
computer-aided design (CAD) systems and computer-aided manufacturing (CAM)
systems, characterizes the latest trends in the automation of the manufacturing
process. These technologies are leading industrial automation through another
transition, the scope of which is stifi unknown [2].

In North America, there was much adoption of robotic equipment in the early
1980s, followed by a brief pull-back in the late 1980s. Since that time, the market has
been growing (Fig. 1.1), although it is subject to economic swings, as are all markets.

Figure 1.2 shows the number of robots being installed per year in the major
industrial regions of the world. Note that Japan reports numbers somewhat dif-
ferently from the way that other regions do: they count some machines as robots
that in other parts of the world are not considered robots (rather, they would be
simply considered "factory machines"). Hence, the numbers reported for Japanare
somewhat inflated.

A major reason for the growth in the use of industrial robots is their declining
cost. Figure 1.3 indicates that, through the decade of the 1990s, robot prices dropped
while human labor costs increased. Also, robots are not just getting cheaper, they
are becoming more effective—faster, more accurate, more flexible. If we factor
these quality adjustments into the numbers, the cost of using robots is dropping even
faster than their price tag is. As robots become more cost effective at their jobs,
and as human labor continues to become more expensive, more and more industrial
jobs become candidates for robotic automation. This is the single most important
trend propelling growth of the industrial robot market. A secondary trend is that,
economics aside, as robots become more capable they become able to do more and
more tasks that might be dangerous or impossible for human workers to perform.

The applications that industrial robots perform are gradually getting more
sophisticated, but it is stifi the case that, in the year 2000, approximately 78%
of the robots installed in the US were welding or material-handling robots [3].

1

1200

1100

1000

900

800

700

600

III
500

400

300

200
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

FIGURE 1.1: Shipments of industrial robots in North America in millions of US
dollars [3].

— —. — — — Labour costs

N Robot prices, not quality adj.

40.00- .— —a
Robot prices, quality adjusted -A-—

')fl fin -
— —A

I I I I I I I I I

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

FIGURE 1.3: Robot prices compared with human labor costs in the 1990s [3].

2 Chapter 1 Introduction

Shipments of industrial robots in North America, millions of US dollars

0

0no

I

1995 1996 2 2003 2004

Japan (all types of U United States [1111 European Union All other countries
industrial robots)

FIGURE 1.2: Yearly installations of multipurpose industrial robots for 1995—2000 and
forecasts for 2001—2004 [3].

160.00

140.00

120.00

100.00

80.00

60.00

Section 1.1 Background 3

FIG U RE 1.4: The Adept 6 manipulator has six rotational joints and is popular in many
applications. Courtesy of Adept Tecimology, Inc.

A more challenging domain, assembly by industrial robot, accounted for 10% of
installations.

This book focuses on the mechanics and control of the most important form
of the industrial robot, the mechanical manipulator. Exactly what constitutes an
industrial robot is sometimes debated. Devices such as that shown in Fig. 1.4 are
always included, while numerically controlled (NC) milling machines are usually
not. The distinction lies somewhere in the sophistication of the programmability of
the device—if a mechanical device can be programmed to perform a wide variety
of applications, it is probably an industrial robot. Machines which are for the most
part limited to one class of task are considered fixed automation. For the purposes
of this text, the distinctions need not be debated; most material is of a basic nature
that applies to a wide variety of programmable machines.

By and large, the study of the mechanics and control of manipulators is
not a new science, but merely a collection of topics taken from "classical" fields.
Mechanical engineering contributes methodologies for the study of machines in
static and dynamic situations. Mathematics supplies tools for describing spatial
motions and other attributes of manipulators. Control theory provides tools for
designing and evaluating algorithms to realize desired motions or force applications.
Electrical-engineering techniques are brought to bear in the design of sensors
and interfaces for industrial robots, and computer science contributes a basis for
programming these devices to perform a desired task.

4 Chapter 1 Introduction

12 THE MECHANICS AND CONTROL OF MECHANICAL MANIPULATORS

The following sections introduce some terminology and briefly preview each of the
topics that will be covered in the text.

Description of position and orientation
In the study of robotics, we are constantly concerned with the location of objects in
three-dimensional space. These objects are the links of the manipulator, the parts
and tools with which it deals, and other objects in the manipulator's environment.
At a crude but important level, these objects are described by just two attributes:
position and orientation. Naturally, one topic of immediate interest is the manner
in which we represent these quantities and manipulate them mathematically.

In order to describe the position and orientation of a body in space, we wifi
always attach a coordinate system, or frame, rigidly to the object. We then proceed
to describe the position and orientation of this frame with respect to some reference
coordinate system. (See Fig. 1.5.)

Any frame can serve as a reference system within which to express the
position and orientation of a body, so we often think of transforming or changing
the description of these attributes of a body from one frame to another. Chapter 2
discusses conventions and methodologies for dealing with the description of position
and orientation and the mathematics of manipulating these quantities with respect
to various coordinate systems.

Developing good skifis concerning the description of position and rotation of
rigid bodies is highly useful even in fields outside of robotics.

Forward kinematics of manipulators

Kinematics is the science of motion that treats motion without regard to the forces
which cause it. Within the science of kinematics, one studies position, velocity,

Y

FiGURE 1.5: Coordinate systems or "frames" are attached to the manipulator and to
objects in the environment.

z

Section 1.2 The mechanics and control of mechanical manipulators 5

acceleration, and all higher order derivatives of the position variables (with respect
to time or any other variable(s)). Hence, the study of the kinematics of manipulators
refers to all the geometrical and time-based properties of the motion.

Manipulators consist of nearly rigid links, which are connected by joints that
allow relative motion of neighboring links. These joints are usually instrumented
with position sensors, which allow the relative position of neighboring links to be
measured. In the case of rotary or revolute joints, these displacements are called
joint angles. Some manipulators contain sliding (or prismatic) joints, in which the
relative displacement between links is a translation, sometimes called the joint
offset.

The number of degrees of freedom that a manipulator possesses is the number
of independent position variables that would have to be specified in order to locate
all parts of the mechanism. This is a general term used for any mechanism. For
example, a four-bar linkage has only one degree of freedom (even though there
are three moving members). In the case of typical industrial robots, because a
manipulator is usually an open kinematic chain, and because each joint position is
usually defined with a single variable, the number of joints equals the number of
degrees of freedom.

At the free end of the chain of links that make up the manipulator is the end-
effector. Depending on the intended application of the robot, the end-effector could
be a gripper, a welding torch, an electromagnet, or another device. We generally
describe the position of the manipulator by giving a description of the tool frame,
which is attached to the end-effector, relative to the base frame, which is attached
to the nonmoving base of the manipulator. (See Fig. 1.6.)

A very basic problem in the study of mechanical manipulation is called forward
kinematics. This is the static geometrical problem of computing the position and
orientation of the end-effector of the manipulator. Specifically, given a set of joint

z

x

FIGURE 1.6: Kinematic equations describe the tool frame relative to the base frame
as a function of the joint variables.

01

fTooll

fBasel

y

6 Chapter 1 Introduction

angles, the forward kinematic problem is to compute the position and orientation of
the tool frame relative to the base frame. Sometimes, we think of this as changing
the representation of manipulator position from a joint space description into a
Cartesian space description.' This problem wifi be explored in Chapter 3.

Inverse kinematics of manipulators

In Chapter 4, we wifi consider the problem of inverse kinematics. This problem
is posed as follows: Given the position and orientation of the end-effector of the
manipulator, calculate all possible sets of joint angles that could be used to attain
this given position and orientation. (See Fig. 1.7.) This is a fundamental problem in
the practical use of manipulators.

This is a rather complicated geometrical problem that is routinely solved
thousands of times daily in human and other biological systems. In the case of an
artificial system like a robot, we wifi need to create an algorithm in the control
computer that can make this calculation. In some ways, solution of this problem is
the most important element in a manipulator system.

We can think of this problem as a mapping of "locations" in 3-D Cartesian
space to "locations" in the robot's internal joint space. This need naturally arises
anytime a goal is specified in external 3-D space coordinates. Some early robots
lacked this algorithm—they were simply moved (sometimes by hand) to desired
locations, which were then recorded as a set of joint values (i.e., as a location in
joint space) for later playback. Obviously, if the robot is used purely in the mode
of recording and playback of joint locations and motions, no algorithm relating

Y

FIGURE 1.7: For a given position and orientation of the tool frame, values for the
joint variables can be calculated via the inverse kinematics.

1By Cartesian space, we mean the space in which the position of a point is given with three numbers,
and in which the orientation of a body is given with three numbers. It is sometimes called task space or
operational space.

Z (Tool)

Y g,

x
03

x

Section 1.2 The mechanics and control of mechanical manipulators 7

joint space to Cartesian space is needed. These days, however, it is rare to find an
industrial robot that lacks this basic inverse kinematic algorithm.

The inverse kinematics problem is not as simple as the forward kinematics
one. Because the kinematic equations are nonlinear, their solution is not always
easy (or even possible) in a closed form. Also, questions about the existence of a
solution and about multiple solutions arise.

Study of these issues gives one an appreciation for what the human mind and
nervous system are accomplishing when we, seemingly without conscious thought,
move and manipulate objects with our arms and hands.

The existence or nonexistence of a kinematic solution defines the workspace
of a given manipulator. The lack of a solution means that the manipulator cannot
attain the desired position and orientation because it lies outside of the manipulator's
workspace.

Velocities, static forces, singularities

In addition to dealing with static positioning problems, we may wish to analyze
manipulators in motion. Often, in performing velocity analysis of a mechanism, it is
convenient to define a matrix quantity called the Jacobian of the manipulator. The
Jacobian specifies a mapping from velocities in joint space to velocities in Cartesian
space. (See Fig. 1.8.) The nature of this mapping changes as the configuration of
the manipulator varies. At certain points, called singularities, this mapping is not
invertible. An understanding of the phenomenon is important to designers and users
of manipulators.

Consider the rear gunner in a World War I—vintage biplane fighter plane
(ifiustrated in Fig. 1.9). While the pilot ifies the plane from the front cockpit, the rear
gunner's job is to shoot at enemy aircraft. To perform this task, his gun is mounted
in a mechanism that rotates about two axes, the motions being called azimuth and
elevation. Using these two motions (two degrees of freedom), the gunner can direct
his stream of bullets in any direction he desires in the upper hemisphere.

FIGURE 1.8: The geometrical relationship between joint rates and velocity of the
end-effector can be described in a matrix called the Jacobian.

o1

C,)

8 Chapter 1 Introduction

FIGURE 1 9 A World War I biplane with a pilot and a rear gunner The rear gunner
mechanism is subject to the problem of singular positions.

An enemy plane is spotted at azimuth one o'clock and elevation 25 degrees!
The gunner trains his stream of bullets on the enemy plane and tracks its motion so
as to hit it with a continuous stream of bullets for as long as possible. He succeeds

and thereby downs the enemy aircraft.
A second enemy plane is seen at azimuth one o'clock and elevation 70 degrees!

The gunner orients his gun and begins firing. The enemy plane is moving so as to
obtain a higher and higher elevation relative to the gunner's plane. Soon the enemy
plane is passing nearly overhead. What's this? The gunner is no longer able to keep
his stream of bullets trained on the enemy plane! He found that, as the enemy plane
flew overhead, he was required to change his azimuth at a very high rate. He was
not able to swing his gun in azimuth quickly enough, and the enemy plane escaped!

In the latter scenario, the lucky enemy pilot was saved by a singularity! The
gun's orienting mechanism, while working well over most of its operating range,
becomes less than ideal when the gun is directed straight upwards or nearly so. To
track targets that pass through the position directly overhead, a very fast motion
around the azimuth axis is required. The closer the target passes to the point directly
overhead, the faster the gunner must turn the azimuth axis to track the target. If
the target flies directly over the gunner's head, he would have to spin the gun on its

azimuth axis at infinite speed!
Should the gunner complain to the mechanism designer about this problem?

Could a better mechanism be designed to avoid this problem? It turns out that
you really can't avoid the problem very easily. In fact, any two-degree-of-freedom
orienting mechanism that has exactly two rotational joints cannot avoid having
this problem. In the case of this mechanism, with the stream of bullets directed

Section 1.2 The mechanics and control of mechanical manipulators 9

straight up, their direction aligns with the axis of rotation of the azimuth rotation.
This means that, at exactly this point, the azimuth rotation does not cause a
change in the direction of the stream of bullets. We know we need two degrees
of freedom to orient the stream of bullets, but, at this point, we have lost the
effective use of one of the joints. Our mechanism has become locally degenerate
at this location and behaves as if it only has one degree of freedom (the elevation
direction).

This kind of phenomenon is caused by what is called a singularity of the
mechanism. All mechanisms are prone to these difficulties, including robots. Just
as with the rear gunner's mechanism, these singularity conditions do not prevent
a robot arm from positioning anywhere within its workspace. However, they can
cause problems with motions of the arm in their neighborhood.

Manipulators do not always move through space; sometimes they are also
required to touch a workpiece or work surface and apply a static force. In this
case the problem arises: Given a desired contact force and moment, what set of
joint torques is required to generate them? Once again, the Jacobian matrix of the
manipulator arises quite naturally in the solution of this problem.

Dynamics

Dynamics is a huge field of study devoted to studying the forces required to cause
motion. In order to accelerate a manipulator from rest, glide at a constant end-
effector velocity, and finally decelerate to a stop, a complex set of torque functions
must be applied by the joint actuators.2 The exact form of the required functions of
actuator torque depend on the spatial and temporal attributes of the path taken by
the end-effector and on the mass properties of the links and payload, friction in the
joints, and so on. One method of controlling a manipulator to follow a desired path
involves calculating these actuator torque functions by using the dynamic equations
of motion of the manipulator.

Many of us have experienced lifting an object that is actually much lighter
than we (e.g., getting a container of milk from the refrigerator which
we thought was full, but was nearly empty). Such a misjudgment of payload can
cause an unusual lifting motion. This kind of observation indicates that the human
control system is more sophisticated than a purely kinematic scheme. Rather, our
manipulation control system makes use of knowledge of mass and other dynamic
effects. Likewise, algorithms that we construct to the motions of a robot
manipulator should take dynamics into account.

A second use of the dynamic equations of motion is in simulation. By refor-
mulating the dynamic equations so that acceleration is computed as a function of
actuator torque, it is possible to simulate how a manipulator would move under
application of a set of actuator torques. (See Fig. 1.10.) As computing power
becomes more and more cost effective, the use of simulations is growing in use and
importance in many fields.

In Chapter 6, we develop dynamic equations of motion, which may be used to
control or simulate the motion of manipulators.

2We use joint actuators as the generic term for devices that power a manipulator—for example,
electric motors, hydraulic and pneumatic actuators, and muscles.

10 Chapter 1 Introduction

T3(

FIG URE 1.10: The relationship between the torques applied by the actuators and
the resulting motion of the manipulator is embodied in the dynamic equations of
motion.

Trajectory generation

A common way of causing a manipulator to move from here to there in a smooth,
controlled fashion is to cause each joint to move as specified by a smooth function
of time. Commonly, each joint starts and ends its motion at the same time, so that
the appears coordinated. Exactly how to compute these motion
functions is the problem of trajectory generation. (See Fig. 1.11.)

Often, a path is described not only by a desired destination but also by some
intermediate locations, or via points, through which the manipulator must pass en
route to the destination. In such instances the term spline is sometimes used to refer
to a smooth function that passes through a set of via points.

In order to force the end-effector to follow a straight line (or other geometric
shape) through space, the desired motion must be converted to an equivalent set
of joint motions. This Cartesian trajectory generation wifi also be considered in
Chapter 7.

Manipulator design and sensors

Although manipulators are, in theory, universal devices applicable to many situ-
ations, economics generally dictates that the intended task domain influence the
mechanical design of the manipulator. Along with issues such as size, speed, and
load capability, the designer must also consider the number of joints and their
geometric arrangement. These considerations affect the manipulator's workspace
size and quality, the stiffness of the manipulator structure, and other attributes.

The more joints a robot arm contains, the more dextrous and capable it wifi
be. Of course, it wifi also be harder to build and more expensive. In order to build

Section 1.2 The mechanics and control of mechanical manipulators 11

FIGURE 1.1 1: In order to move the end-effector through space from point A to point
B, we must compute a trajectory for each joint to follow.

a useful robot, that can take two approaches: build a specialized robot for a specific
task, or build a universal robot that would able to perform a wide variety of tasks.
In the case of a specialized robot, some careful thinking will yield a solution for
how many joints are needed. For example, a specialized robot designed solely to
place electronic components on a flat circuit board does not need to have more
than four joints. Three joints allow the position of the hand to attain any position
in three-dimensional space, with a fourth joint added to allow the hand to rotate
the grasped component about a vertical axis. In the case of a universal robot, it is
interesting that fundamental properties of the physical world we live in dictate the
"correct" minimum number of joints—that minimum number is six.

Integral to the design of the manipulator are issues involving the choice and
location of actuators, transmission systems, and internal-position (and sometimes
force) sensors. (See Fig. 1.12.) These and other design issues will be discussed in
Chapter 8.

Linear position control

Some manipulators are equipped with stepper motors or other actuators that can
execute a desired trajectory directly. However, the vast majority of manipulators
are driven by actuators that supply a force or a torque to cause motion of the links.
In this case, an algorithm is needed to compute torques that will cause the desired
motion. The problem of dynamics is central to the design of such algorithms, but
does not in itself constitute a solution. A primary concern of a position control
system is to compensate automatically for errors in knowledge of the parameters
of a system and to suppress disturbances that tend to perturb the system from the
desired trajectory. To accomplish this, position and velocity sensors are monitored
by the control algorithm, which computes torque commands for the actuators. (See

03

A

oi(B
S

12 Chapter 1 Introduction

FIGURE 1.12: The design of a mechanical manipulator must address issues of actuator
choice, location, transmission system, structural stiffness, sensor location, and more.

FIG U RE 1.13: In order to cause the manipulator to follow the desired trajectory, a
position-control system must be implemented. Such a system uses feedback from
joint sensors to keep the manipulator on course.

Fig. 1.13.) In Chapter 9, we wifi consider control algorithms whose synthesis is based
on linear approximations to the dynamics of a manipulator. These linear methods
are prevalent in current industrial practice.

Nonlinear position control

Although control systems based on approximate linear models are popular in current
industrial robots, it is important to consider the complete nonlinear dynamics of
the manipulator when synthesizing control algorithms. Some industrial robots are
now being introduced which make use of nonlinear control algorithms in their

03

01

.

Section 1.2 The mechanics and control of mechanical manipulators 13

controllers. These nonlinear techniques of controlling a manipulator promise better
performance than do simpler linear schemes. Chapter 10 will introduce nonlinear
control systems for mechanical manipulators.

Force control

The ability of a manipulator to control forces of contact when it touches parts,
tools, or work surfaces seems to be of great importance in applying manipulators
to many real-world tasks. Force control is complementary to position control, in
that we usually think of only one or the other as applicable in a certain situation.
When a manipulator is moving in free space, only position control makes sense,
because there is no surface to react against. When a manipulator is touching a
rigid surface, however, position-control schemes can cause excessive forces to build
up at the contact or cause contact to be lost with the surface when it was desired
for some application. Manipulators are rarely constrained by reaction surfaces in
all directions simultaneously, so a mixed or hybrid control is required, with some
directions controlled by a position-control law and remaining directions controlled
by a force-control law. (See Fig. 1.14.) Chapter 11 introduces a methodology for
implementing such a force-control scheme.

A robot should be instructed to wash a window by maintaining a certain
force in the direction perpendicular to the plane of the glass, while following a
motion trajectory in directions tangent to the plane. Such split or hybrid control
specifications are natural for such tasks.

Programming robots

A robot progranuning language serves as the interface between the human user
and the industrial robot. Central questions arise: How are motions through space
described easily by the programmer? How are multiple manipulators programmed

FIG U RE 1.14: In order for a manipulator to slide across a surface while applying a
constant force, a hybrid position—force control system must be used.

14 Chapter 1 Introduction

FIGURE 1.15: Desired motions of the manipulator and end-effector, desired contact
forces, and complex manipulation strategies can be described in a robotprograrnming
language.

so that they can work in parallel? How are sensor-based actions described in a
language?

Robot manipulators differentiate themselves from fixed automation by being
"flexible," which means programmable. Not only are the movements of manipulators
programmable, but, through the use of sensors and communications with other
factory automation, manipulators can adapt to variations as the task proceeds. (See
Fig. 1.15.)

In typical robot systems, there is a shorthand way for a human user to instruct
the robot which path it is to follow. First of all, a special point on the hand
(or perhaps on a grasped tool) is specified by the user as the operational point,
sometimes also called the TCP (for Tool Center Point). Motions of the robot wifi
be described by the user in terms of desired locations of the operational point
relative to a user-specified coordinate system. Generally, the user wifi define this
reference coordinate system relative to the robot's base coordinate system in some
task-relevant location.

Most often, paths are constructed by specifying a sequence of via points. Via
points are specified relative to the reference coordinate system and denote locations
along the path through which the TCP should pass. Along with specifying the via
points, the user may also indicate that certain speeds of the TCP be used over
various portions of the path. Sometimes, other modifiers can also be specified to
affect the motion of the robot (e.g., different smoothness criteria, etc.). From these
inputs, the trajectory-generation algorithm must plan all the details of the motion:
velocity profiles for the joints, time duration of the move, and so on. Hence, input

Section 1.2 The mechanics and control of mechanical manipulators 15

to the trajectory-generation problem is generally given by constructs in the robot
programming language.

The sophistication of the user interface is becoming extremely important
as manipulators and other programmable automation are applied to more and
more demanding industrial applications. The problem of programming manipu-
lators encompasses all the issues of "traditional" computer programming and so
is an extensive subject in itself. Additionally, some particular attributes of the
manipulator-programming problem cause additional issues to arise. Some of these
topics will be discussed in Chapter 12.

Off-line programming and simulation

An off-line programming system is a robot programming environment that has
been sufficiently extended, generally by means of computer graphics, that the
development of robot programs can take place without access to the robot itself. A
common argument raised in their favor is that an off-line programming system wifi
not cause production equipment (i.e., the robot) to be tied up when it needs to be
reprogrammed; hence, automated factories can stay in production mode a greater
percentage of the time. (See Fig. 1.16.)

They also serve as a natural vehicle to tie computer-aided design (CAD) data
bases used in the design phase of a product to the actual manufacturing of the
product. In some cases, this direct use of CAD data can dramatically reduce the
programming time required for the manufacturing process. Chapter 13 discusses the
elements of industrial robot off-line programming systems.

FIGURE 1.16: Off-line programming systems, generally providing a computer graphics
interface, allow robots to be programmed without access to the robot itself during
programming.

16 Chapter 1 Introduction

1.3 NOTATION

Notation is always an issue in science and engineering. In this book, we use the
following conventions:

1. Usually, variables written in uppercase represent vectors or matrices. Lower-
case variables are scalars.

2. Leading subscripts and superscripts identify which coordinate system a quantity
is written in. For example, A P represents a position vector written in coordinate
system {A}, and R is a rotation matrix3 that specifies the relationship between
coordinate systems {A} and {B}.

3. Trailing superscripts are used (as widely accepted) for indicating the inverse
or transpose of a matrix (e.g., R1, RT).

4. Trailing subscripts are not subject to any strict convention but may indicate a
vector component (e.g., x, y, or z) or maybe used as a description—as in
the position of a bolt.

5. We will use many trigonometric fi.mctions. Our notation for the cosine of an
angle may take any of the following forms: cos = c01 = c1.

Vectors are taken to be column vectors; hence, row vectors wifi have the
transpose indicated explicitly.

A note on vector notation in general: Many mechanics texts treat vector
quantities at a very abstract level and routinely use vectors defined relative to
different coordinate systems in expressions. The clearest example is that of addition
of vectors which are given or known relative to differing reference systems. This is
often very convenient and leads to compact and somewhat elegant formulas. For
example, consider the angular velocity, 0w4 of the last body in a series connection
of four rigid bodies (as in the links of a manipulator) relative to the fixed base of the
chain. Because angular velocities sum vectorially, we may write a very simple vector
equation for the angular velocity of the final link:

= + + 2w3 + (1.1)

However, unless these quantities are expressed with respect to a common coordinate
system, they cannot be summed, and so, though elegant, equation (1.1) has hidden
much of the "work" of the computation. For the particular case of the study of
mechanical manipulators, statements like that of (1.1) hide the chore of bookkeeping
of coordinate systems, which is often the very idea that we need to deal with in practice.

Therefore, in this book, we carry frame-of-reference information in the nota-
tion for vectors, and we do not sum vectors unless they are in the same coordinate
system. In this way, we derive expressions that solve the "bookkeeping" problem
and can be applied directly to actual numerical computation.

BIBLIOGRAPHY

[1] B. Roth, "Principles of Automation," Future Directions in Manufacturing Technol-
ogy, Based on the Unilever Research and Engineering Division Symposium held at
Port Sunlight, April 1983, Published by Unilever Research, UK.

3This term wifi be introduced in Chapter 2.

Exercises 17

[2] R. Brooks, "Flesh and Machines," Pantheon Books, New York, 2002.

[3] The International Federation of Robotics, and the United Nations, "World Robotics
2001," Statistics, Market Analysis, Forecasts, Case Studies and Profitability of Robot
Investment, United Nations Publication, New York and Geneva, 2001.

General-reference books

[4] R. Paul, Robot Manipulators, MIT Press, Cambridge, IvIA, 1981.

[5] M. Brady et al., Robot Motion, MIT Press, Cambridge, MA, 1983.

[6] W. Synder, Industrial Robots: Computer Interfacing and Control, Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

[7] Y. Koren, Robotics for Engineers, McGraw-Hill, New York, 1985.

[8] H. Asada and J.J. Slotine, Robot Analysis and Control, Wiley, New York, 1986.

[9] K. Fu, R. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelli-
gence, McGraw-Hill, New York, 1987.

[10] E. Riven, Mechanical Design of Robots, McGraw-Hill, New York, 1988.

[II] J.C. Latombe, Robot Motion Planning, Kiuwer Academic Publishers, Boston, 1991.

[12] M. Spong, Robot Control: Dynamics, Motion Planning, and Analysis, HiEE Press,
New York, 1992.

[13] S.Y. Nof, Handbook of Industrial Robotics, 2nd Edition, Wiley, New York, 1999.

[14] L.W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley,
New York, 1999.

[15] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, 2nd
Edition, Springer-Verlag, London, 2000.

[16] G. Schmierer and R. Schraft, Service Robots, A.K. Peters, Natick, MA, 2000.

General-reference journals and magazines

[17] Robotics World.

[18] IEEE Transactions on Robotics and Automation.

[19] International Journal of Robotics Research (MIT Press).

[20] ASME Journal of Dynamic Systems, Measurement, and Control.

[21] International Journal of Robotics & Automation (lASTED).

EXERCISES

1.1 [20] Make a chronology of major events in the development of industrial robots
over the past 40 years. See Bibliography and general references.

1.2 [20] Make a chart showing the major applications of industrial robots (e.g., spot
welding, assembly, etc.) and the percentage of installed robots in use in each
application area. Base your chart on the most recent data you can find. See
Bibliography and general references.

1.3 [40] Figure 1.3 shows how the cost of industrial robots has declined over the years.
Find data on the cost of human labor in various specific industries (e.g., labor in
the auto industry, labor in the electronics assembly industry, labor in agriculture,
etc.) and create a graph showing how these costs compare to the use of robotics.
You should see that the robot cost curve "crosses" various the human cost curves

18 Chapter 1 Introduction

of different industries at different times. From this, derive approximate dates
when robotics first became cost effective for use in various industries.

1.4 [10] In a sentence or two, define kinematics, workspace, and trajectory.
1.5 [10] In a sentence or two, define frame, degree of freedom, and position control.
1.6 [10] In a sentence or two, define force control, and robot programming language.
1.7 [10] In a sentence or two, define nonlinear control, and off-line programming.
1.8 [20] Make a chart indicating how labor costs have risen over the past 20 years.
1.9 [20] Make a chart indicating how the computer performance—price ratio has

increased over the past 20 years.
1.10 [20] Make a chart showing the major users of industrial robots (e.g., aerospace,

automotive, etc.) and the percentage of installed robots in use in each industry.
Base your chart on the most recent data you can find. (See reference section.)

PROGRAMMING EXERCISE (PART 1)

Familiarize yourself with the computer you will use to do the programming exercises at
the end of each chapter. Make sure you can create and edit files and can compile and
execute programs.

MATLAB EXERCISE 1

At the end of most chapters in this textbook, a MATLAB exercise is given. Generally,
these exercises ask the student to program the pertinent robotics mathematics in
MATLAB and then check the results of the IvIATLAB Robotics Toolbox. The textbook
assumes familiarity with MATLAB and linear algebra (matrix theory). Also, the student
must become familiar with the MATLAB Robotics Toolbox. ForMATLAB Exercise 1,

a) Familiarize yours elf with the MATLAB programming environment if necessary. At
the MATLAB software prompt, try typing demo and help. Using the color-coded
MATLAB editor, learn how to create, edit, save, run, and debug rn-files (ASCII
ifies with series of MATLAB statements). Learn how to create arrays (matrices and
vectors), and explore the built-in MATLAB linear-algebra functions for matrix
and vector multiplication, dot and cross products, transposes, determinants, and
inverses, and for the solution of linear equations. MATLAB is based on the
language C, but is generally much easier to use. Learn how to program logical
constructs and loops in MATLAB. Learn how to use subprograms and functions.
Learn how to use comments (%) for explaining your programs and tabs for easy
readability. Check out www.mathworks.com for more information and tutorials.
Advanced MATLAB users should become familiar with Simulink, the graphical
interface of MATLAB, and with the MATLAB Symbolic Toolbox.

b) Familiarize yourself with the IVIATLAB Robotics Toolbox, a third-party toolbox
developed by Peter I. Corke of CSIRO, Pinjarra Hills, Australia. This product
can be downloaded for free from www.cat.csiro.au/cmst/stafflpic/robot. The source
code is readable and changeable, and there is an international community of
users, at robot-toolbox@lists.rnsa.cmst.csiro.au. Download the MATLAB Robotics
Toolbox, and install it on your computer by using the .zip ifie and following the
instructions. Read the README ifie, and familiarize yourself with the various
functions available to the user. Find the robot.pdf ifie—this is the user manual
giving background information and detailed usage of all of the Toolbox functions.
Don't worry if you can't understand the purpose of these functions yet; they deal
with robotics mathematics concepts covered in Chapters 2 through 7 of this book.

