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2.1 INTRODUCTION

Robotic manipulation, by definition, implies that parts and tools wifi be moved
around in space by some sort of mechanism. This naturally leads to a need for
representing positions and orientations of parts, of tools, and of the mechanism
itself. To define and manipulate mathematical quantities that represent position
and orientation, we must define coordinate systems and develop conventions for
representation. Many of the ideas developed here in the context of position and
orientation will form a basis for our later consideration of linear and rotational
velocities, forces, and torques.

We adopt the philosophy that somewhere there is a universe coordinate system
to which everything we discuss can be referenced. We wifi describe all positions
and orientations with respect to the universe coordinate system or with respect to
other Cartesian coordinate systems that are (or could be) defined relative to the
universe system.

2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES

A description is used to specify attributes of various objects with which a manipula-
tion system deals. These objects are parts, tools, and the manipulator itself. In this
section, we discuss the description of positions, of orientations, and of an entity that
contains both of these descriptions: the frame.
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20 Chapter 2 Spatial descriptions and transformations

Description of a position

Once a coordinate system is established, we can locate any point in the universe with
a 3 x 1 position vector. Because we wifi often define many coordinate systems in
addition to the universe coordinate system, vectors must be tagged with information
identifying which coordinate system they are defined within. In this book, vectors
are written with a leading superscript indicating the coordinate system to which
they are referenced (unless it is clear from context)—for example, Ap This means
that the components of A P have numerical values that indicate distances along the
axes of {A}. Each of these distances along an axis can be thought of as the result of
projecting the vector onto the corresponding axis.

Figure 2.1 pictorially represents a coordinate system, {A}, with three mutually
orthogonal unit vectors with solid heads. A point A P is represented as a vector and
can equivalently be thought of as a position in space, or simply as an ordered set of
three numbers. Individual elements of a vector are given the subscripts x, y, and z:

r 1
. (2.1)

L J

In summary, we wifi describe the position of a point in space with a position vector.
Other 3-tuple descriptions of the position of points, such as spherical or cylindrical
coordinate representations, are discussed in the exercises at the end of the chapter.

Description of an orientation

Often, we wifi find it necessary not only to represent a point in space but also to
describe the orientation of a body in space. For example, if vector Ap in Fig. 2.2
locates the point directly between the fingertips of a manipulator's hand, the
complete location of the hand is still not specified until its orientation is also given.
Assuming that the manipulator has a sufficient number of joints,1 the hand could
be oriented arbitrarily while keeping the point between the fingertips at the same

(AJ

ZA

FIGURE 2.1: Vector relative to frame (example).

1How many are "sufficient" wifi be discussed in Chapters 3 and 4.
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{B}

fA}

Ap

FIGURE 2.2: Locating an object in position and orientation.

position in space. In order to describe the orientation of a body, we wifi attach a
coordinate system to the body and then give a description of this coordinate system
relative to the reference system. In Fig. 2.2, coordinate system (B) has been attached
to the body in a known way. A description of {B} relative to (A) now suffices to give
the orientation of the body.

Thus, positions of points are described with vectors and orientations of bodies
are described with an attached coordinate system. One way to describe the body-
attached coordinate system, (B), is to write the unit vectors of its three principal
axes2 in terms of the coordinate system {A}.

We denote the unit vectors giving the principal directions of coordinate system
(B } as XB, and ZB. 'When written in terms of coordinate system {A}, they are
called A XB, A and A ZB. It will be convenient if we stack these three unit vectors
together as the columns of a 3 x 3 matrix, in the order AXB, AyB, AZB. We will call
this matrix a rotation matrix, and, because this particular rotation matrix describes
{B } relative to {A}, we name it with the notation R (the choice of leading sub-
and superscripts in the definition of rotation matrices wifi become clear in following
sections):

= [AkB Af A2
] = (2.2)

In summary, a set of three vectors may be used to specify an orientation. For
convenience, we wifi construct a 3 x 3 matrix that has these three vectors as its
colunms. Hence, whereas the position of a point is represented with a vector, the

is often convenient to use three, although any two would suffice. (The third can always be recovered
by taking the cross product of the two given.)
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orientation of a body is represented with a matrix. In Section 2.8, we will consider
some other descriptions of orientation that require only three parameters.

We can give expressions for the scalars in (2.2) by noting that the components
of any vector are simply the projections of that vector onto the unit directions of its
reference frame. Hence, each component of in (2.2) can be written as the dot
product of a pair of unit vectors:

rxB•xA YBXA ZB.XA1
AfT A2]_H (2.3)

LXB.ZA YB.ZA ZB.ZAJ

For brevity, we have omitted the leading superscripts in the rightmost matrix of
(2.3). In fact, the choice of frame in which to describe the unit vectors is arbitrary as
long as it is the same for each pair being dotted. The dot product of two unit vectors
yields the cosine of the angle between them, so it is clear why the components of
rotation matrices are often referred to as direcfion cosines.

Further inspection of (2.3) shows that the rows of the matrix are the unit
vectors of {A} expressed in {B}; that is,

BItT

A

Hence, the description of frame {A} relative to {B}, is given by the transpose of
(2.3); that is,

(2.5)

This suggests that the inverse of a rotation matrix is equal to its transpose, a fact
that can be easily verified as

AItT

[AItB AfTB (2.6)

A2T
B

where 13 is the 3 x 3 identity matrix. Hence,

= = (2.7)

Indeed, from linear algebra [1], we know that the inverse of a matrix with
orthonormal columns is equal to its transpose. We have just shown this geometrically.

Description of a frame

The information needed to completely specify the whereabouts of the manipulator
hand in Fig. 2.2 is a position and an orientation. The point on the body whose
position we describe could be chosen arbitrarily, however. For convenience, the
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point whose position we will describe is chosen as the origin of the body-attached
frame. The situation of a position and an orientation pair arises so often in robotics
that we define an entity called a frame, which is a set of four vectors giving position
and orientation information. For example, in Fig. 2.2, one vector locates the fingertip
position and three more describe its orientation. Equivalently, the description of a
frame can be thought of as a position vector and a rotation matrix. Note that a frame
is a coordinate system where, in addition to the orientation, we give a position vector
which locates its origin relative to some other embedding frame. For example, frame
{B} is described by and A where ApBORG is the vector that locates the
origin of the frame {B}:

{B} = (2.8)

In Fig. 2.3, there are three frames that are shown along with the universe coordinate
system. Frames {A} and {B} are known relative to the universe coordinate system,
and frame {C} is known relative to frame {A}.

In Fig. 2.3, we introduce a graphical representation of frames, which is conve-
nient in visualizing frames. A frame is depicted by three arrows representing unit
vectors defining the principal axes of the frame. An arrow representing a vector is
drawn from one origin to another. This vector represents the position of the origin
at the head of the arrow in tenns of the frame at the tail of the arrow. The direction
of this locating arrow tells us, for example, in Fig. 2.3, that {C} is known relative to
{A} and not vice versa.

In summary, a frame can be used as a description of one coordinate system
relative to another. A frame encompasses two ideas by representing both position
and orientation and so may be thought of as a generalization of those two ideas.
Positions could be represented by a frame whose rotation-matrix part is the identity
matrix and whose position-vector part locates the point being described. Likewise,
an orientation could be represented by a frame whose position-vector part was the
zero vector.

id

zu Yc

xc

FIGURE 2.3: Example of several frames.
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2.3 MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME

In a great many of the problems in robotics, we are concerned with expressing the
same quantity in terms of various reference coordinate systems. The previous section
introduced descriptions of positions, orientations, and frames; we now consider the
mathematics of mapping in order to change descriptions from frame to frame.

Mappings involving translated frames

In Fig. 2.4, we have a position defined by the vector We wish to express this
point in space in terms of frame {A}, when {A} has the same orientation as {B}. In
this case, {B} differs from {A} only by a translation, which is given by ApBORG, a
vector that locates the origin of {B} relative to {A}.

Because both vectors are defined relative to frames of the same orientation,
we calculate the description of point P relative to {A}, Ap, by vector addition:

A _B A
— + BORG (2.9)

Note that only in the special case of equivalent orientations may we add vectors that
are defined in terms of different frames.

In this simple example, we have illustrated mapping a vector from one frame
to another. This idea of mapping, or changing the description from one frame to
another, is an extremely important concept. The quantity itself (here, a point in
space) is not changed; only its description is changed. This is illustrated in Fig. 2.4,
where the point described by B P is not translated, but remains the same, and instead
we have computed a new description of the same point, but now with respect to
system {A}.

FIGURE 2.4: Translational mapping.
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We say that the vector A defines this mapping because all the informa-
tion needed to perform the change in description is contained in A (along
with the knowledge that the frames had equivalent orientation).

Mappings involving rotated frames

Section 2.2 introduced the notion of describing an orientation by three unit vectors
denoting the principal axes of a body-attached coordinate system. For convenience,
we stack these three unit vectors together as the columns of a 3 x 3 matrix. We wifi
call this matrix a rotation matrix, and, if this particular rotation matrix describes {B}
relative to {A}, we name it with the notation

Note that, by our definition, the columns of a rotation matrix all have unit
magnitude, and, further, that these unit vectors are orthogonal. As we saw earlier, a
consequence of this is that

= = (2.10)

Therefore, because the columns of are the unit vectors of {B} written in {A}, the
rows of are the unit vectors of {A} written in {B}.

So a rotation matrix can be interpreted as a set of three column vectors or as a
set of three row vectors, as follows:

Bkr

(2.11)

B2T
A

As in Fig. 2.5, the situation wifi arise often where we know the definition of a vector
with respect to some frame, {B}, and we would like to know its definition with
respect to another frame, (A}, where the origins of the two frames are coincident.

(B] (A]

XA

FIGURE 2.5: Rotating the description of a vector.
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This computation is possible when a description of the orientation of {B} is known
relative to {A}. This orientation is given by the rotation matrix whose columns
are the unit vectors of {B} written in {A}.

In order to calculate A P, we note that the components of any vector are simply
the projections of that vector onto the unit directions of its frame. The projection is
calculated as the vector dot product. Thus, we see that the components of Ap may
be calculated as

= . Bp,

. Bp (2.12)

= B2A . Bp

In order to express (2.13) in terms of a rotation matrix multiplication, we note
from (2.11) that the rows of are BXA ByA and BZA. So (2.13) may be written
compactly, by using a rotation matrix, as

APARBP (2.13)

Equation 2.13 implements a mapping—that is, it changes the description of a
vector—from Bp which describes a point in space relative to {B}, into Ap, which is
a description of the same point, but expressed relative to {A}.

We now see that our notation is of great help in keeping track of mappings
and frames of reference. A helpful way of viewing the notation we have introduced
is to imagine that leading subscripts cancel the leading superscripts of the following
entity, for example the Bs in (2.13).

EXAMPLE 2.1

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about Z by
30 degrees. Here, Z is pointing out of the page.

FIGURE 2.6: (B} rotated 30 degrees about 2.

Bp

(B)
(A)
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Writing the unit vectors of {B} in terms of {A} and stacking them as the cohmms
of the rotation matrix, we obtain

r 0.866 —0.500 0.000 1
= 0.500 0.866 0.000 . (2.14)

Lo.000 0.000 1.000]

Given
[0.0 1

Bp = 2.0 , (2.15)

L 0.0]

we calculate A p as
[—1.0001

Ap = AR Bp
= 1.732 . (2.16)

L 0.000]

Here, R acts as a mapping that is used to describe B P relative to frame {A},
Ap As was introduced in the case of translations, it is important to remember that,
viewed as a mapping, the original vector P is not changed in space. Rather, we
compute a new description of the vector relative to another frame.

Mappings involving general frames

Very often, we know the description of a vector with respect to some frame {B}, and
we would like to know its description with respect to another frame, {A}. We now
consider the general case of mapping. Here, the origin of frame {B} is not coincident
with that of frame {A} but has a general vector offset. The vector that locates {B}'s
origin is called A Also {B} is rotated with respect to {A}, as described by
Given Bp we wish to compute Ap as in Fig. 2.7.

tAl

Ap

XA

YB

FIGURE 2.7: General transform of a vector.
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We can first change B P to its description relative to an intermediate frame
that has the same orientation as {A}, but whose origin is coincident with the origin
of {B}. This is done by premultiplying by as in the last section. We then account
for the translation between origins by simple vector addition, as before, and obtain

Ap = Bp + ApBQRG (2.17)

Equation 2.17 describes a general transformation mapping of a vector from its
description in one frame to a description in a second frame. Note the following
interpretation of our notation as exemplified in (2.17): the B's cancel, leaving all
quantities as vectors written in terms of A, which may then be added.

The form of (2.17) is not as appealing as the conceptual form

AP_ATBP (2.18)

That is, we would like to think of a mapping from one frame to another as an
operator in matrix form. This aids in writing compact equations and is conceptually
clearer than (2.17). In order that we may write the mathematics given in (2.17) in
the matrix operator form suggested by (2.18), we define a 4 x 4 matrix operator and
use 4 x 1 position vectors, so that (2.18) has the structure

[Ap1[ APBQRG1[Bpl
(2.19)L1J [0 0 0 1 ]L 1 j

In other words,

1. a "1" is added as the last element of the 4 x 1 vectors;
2. a row "[0001]" is added as the last row of the 4 x 4 matrix.

We adopt the convention that a position vector is 3 x 1 or 4 x 1, depending on
whether it appears multiplied by a 3 x 3 matrix or by a 4 x 4 matrix. It is readily
seen that (2.19) implements

Ap = Bp + ApBQRQ

1 = 1. (2.20)

The 4 x 4 matrix in (2.19) is called a homogeneous transform. For our purposes,
it can be regarded purely as a construction used to cast the rotation and translation
of the general transform into a single matrix form. In other fields of study, it can be
used to compute perspective and scaling operations (when the last row is other than
"[0 0 0 1]" or the rotation matrix is not orthonormal). The interested reader should
see [2].

Often, we wifi write an equation like (2.18) without any notation indicating
that it is a homogeneous representation, because it is obvious from context. Note
that, although homogeneous transforms are useful in writing compact equations, a
computer program to transform vectors would generally not use them, because of
time wasted multiplying ones and zeros. Thus, this representation is mainly for our
convenience when thinking and writing equations down on paper.
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Just as we used rotation matrices to specify an orientation, we will use
transforms (usually in homogeneous representation) to specify a frame. Observe
that, although we have introduced homogeneous transforms in the context of
mappings, they also serve as descriptions of frames. The description of frame {B}
relative to (A} is

EXAMPLE 2.2

Figure 2.8 shows a frame {B}, which is rotated relative to frame (A} about 2 by 30
degrees, translated 10 units in XA, and translated 5 units in Find Ap, where
Bp = [307000]T

The definition of frame (B) is

0.866 —0.500 0.000 10.0
A 0.500 0.866 0.000 5.0

2 21BT = 0.000 0.000 1.000 0.0
0 0 0 1

Given
[3.0 1

Bp = I
7.0 , (2.22)

L 0.0]
we use the definition of (B } just given as a transformation:

[ 9.098 1
12.562 . (2.23)

L 0.000]

Ap = Bp =

Bp

Ap

(A}

AD
BORG

XA

FIGURE 2.8: Frame {B} rotated and translated.
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2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

The same mathematical forms used to map points between frames can also be
interpreted as operators that translate points, rotate vectors, or do both. This section
illustrates this interpretation of the mathematics we have already developed.

Translational operators

A translation moves a point in space a finite distance along a given vector direc-
tion. With this interpretation of actually translating the point in space, only one
coordinate system need be involved. It turns out that translating the point in space
is accomplished with the same mathematics as mapping the point to a second
frame. Almost always, it is very important to understand which interpretation of
the mathematics is being used. The distinction is as simple as this: When a vector is
moved "forward" relative to a frame, we may consider either that the vector moved
"forward" or that the frame moved "backward." The mathematics involved in the
two cases is identical; only our view of the situation is different. Figure 2.9 indicates
pictorially how a vector A P1 is translated by a vector A Here, the vector A gives
the information needed to perform the translation.

The result of the operation is a new vector A P2, calculated as
Ap2 = Ap1 + AQ

To write this translation operation as a matrix operator, we use the notation
Ap2 = DQ(q) Ap1

(2.24)

(2.25)

where q is the signed magnitude of the translation along the vector direction
The DQ operator may be thought of as a homogeneous transform of a special

FIGURE 2.9: Translation operator.

A)

ZA

Ar,

AQ
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simple form:
1 0 0

DQ(q) = , (2.26)

000 1
where and are the components of the translation vector Q and q =
1/q2 + + q2. Equations (2.9) and (2.24) implement the same mathematics. Note

that, if we had defined BpAORG (instead of ApBORG) in Fig. 2.4 and had used it in
(2.9), then we would have seen a sign change between (2.9) and (2.24). This sign
change would indicate the difference between moving the vector "forward" and
moving the coordinate system "backward." By defining the location of {B} relative
to {A} (with A we cause the mathematics of the two interpretations to be
the same. Now that the "DQ" notation has been introduced, we may also use it to
describe frames and as a mapping.

Rotational operators

Another interpretation of a rotation matrix is as a rotational operator that operates
on a vector A P1 and changes that vector to a new vector, A P2, by means of a rotation,
R. Usually, when a rotation matrix is shown as an operator, no sub- or superscripts
appear, because it is not viewed as relating two frames. That is, we may write

APRAP (2.27)

Again, as in the case of translations, the mathematics described in (2.13) and in
(2.27) is the same; only our interpretation is different. This fact also allows us to see
how to obtain rotational matrices that are to be used as operators:

The rotation matrix that rotates vectors through some rotation, R, is the same as
the rotation matrix that describes a frame rotated by R relative to the reference frame.

Although a rotation matrix is easily viewed as an operator, we will also define
another notation for a rotational operator that clearly indicates which axis is being
rotated about:

Ap2 = RK(O)
Ap1 (2.28)

In this notation, "RK (0)" is a rotational operator that performs a rotation about
the axis direction K by 0 degrees. This operator can be written as a homogeneous
transform whose position-vector part is zero. For example, substitution into (2.11)
yields the operator that rotates about the Z axis by 0 as

cos0 —sinG 0 0
= [sinG cos0

(2.29)

Of course, to rotate a position vector, we could just as well use the 3 x 3 rotation-
matrix part of the homogeneous transform. The "RK" notation, therefore, may be
considered to represent a 3 x 3 or a 4 x 4 matrix. Later in this chapter, we will see
how to write the rotation matrix for a rotation about a general axis K.
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FIGURE 2.10: The vector Ap1 rotated 30 degrees about 2.

EXAMPLE 2.3

Figure 2.10 shows a vector A P1. We wish to compute the vector obtained by rotating
this vector about 2 by 30 degrees. Call the new vector

The rotation matrix that rotates vectors by 30 degrees about 2 is the same as
the rotation matrix that describes a frame rotated 30 degrees about Z relative to the
reference frame. Thus, the correct rotational operator is

[0.866 —0.500 0.000 1
= I

0.500 0.866 0.000
I

. (2.30)
[0.000 0.000 1.000]

Given
[0.0 1

Ap1 = 2.0 , (2.31)

L 0.0]

we calculate Ap2 as

r—i.000l
Ap2 = Ap1 = 1.732 . (2.32)

[ 0.000]

Equations (2.13) and (2.27) implement the same mathematics. Note that, if we
had defined R (instead of R) in (2.13), then the inverse of R would appear in (2.27).
This change would indicate the difference between rotating the vector "forward"
versus rotating the coordinate system "backward." By defining the location of {B}
relative to {A} (by R), we cause the mathematics of the two interpretations to be
the same.

Ap,

p1

IAI
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Transformation operators

As with vectors and rotation matrices, a frame has another interpretation as
a transformation operator. In this interpretation, only one coordinate system is
involved, and so the symbol T is used without sub- or superscripts. The operator T
rotates and translates a vector A P1 to compute a new vector,

AP_TAP (2.33)

Again, as in the case of rotations, the mathematics described in (2.18) and in (2.33)
is the same, only our interpretation is different. This fact also allows us to see how
to obtain homogeneous transforms that are to be used as operators:

The transform that rotates by R and translates by Q is the same as the transform
that describes afraine rotated by Rand translated by Q relative to the reference frame.

A transform is usually thought of as being in the form of a homogeneous
transform with general rotation-matrix and position-vector parts.

EXAMPLE 2.4

Figure 2.11 shows a vector A P1. We wish to rotate it about 2 by 30 degrees and
translate it 10 units in XA and 5 units in Find Ap2 where Ap1 = [3.0 7.0 0•01T•

The operator T, which performs the translation and rotation, is

0.866 —0.500 0.000 10.0
0.500

T = 0.000
0.866 0.000
0.000 1.000

5.0
0.0

0 0 0 1

(2.34)

IAI
Ap1

AQ

XA

FIGURE 2.11: The vector Ap1 rotated and translated to form Ap2



34 Chapter 2 Spatial descriptions and transformations

Given
r 3.0 1

Ap1
= 7.0 (2.35)

L0.0]

we use T as an operator:

r 9.0981
Ap2 = T Ap1 = 12.562 . (2.36)

[ 0.000]

Note that this example is numerically exactly the same as Example 2.2, but the
interpretation is quite different.

2.5 SUMMARY OF INTERPRETATIONS

We have introduced concepts first for the case of translation only, then for the
case of rotation only, and finally for the general case of rotation about a point
and translation of that point. Having understood the general case of rotation and
translation, we wifi not need to explicitly consider the two simpler cases since they
are contained within the general framework.

As a general tool to represent frames, we have introduced the homogeneous
transform, a 4 x 4 matrix containing orientation and position information.

We have introduced three interpretations of this homogeneous transform:

1. It is a description of a frame. describes the frame {B} relative to the frame
{A}. Specifically, the colunms of are unit vectors defining the directions of
the principal axes of {B}, and A locates the position of the origin of {B}.

2. It is a transform mapping. maps Bp -÷ Ap

3. It is a transform operator. T operates on Ap1 to create Ap2

From this point on, the terms frame and transform wifi both be used to refer
to a position vector plus an orientation. Frame is the term favored in speaking of a
description, and transform is used most frequently when function as a mapping or
operator is implied. Note that transformations are generalizations of (and subsume)
translations and rotations; we wifi often use the term transform when speaking of a
pure rotation (or translation).

2.6 TRANSFORMATION ARITHMETIC

In this section, we look at the multiplication of transforms and the inversion of
transforms. These two elementary operations form a functionally complete set of
transform operators.

Compound transformations

In Fig. 2.12, we have Cp and wish to find Ap
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FIGURE 2.12: Compound frames: Each is known relative to the previous one.

Frame {C} is known relative to frame {B}, and frame {B} is known relative to
frame (A}. We can transform Cp into Bp as

then we can transform B P into A P as

Bp = Cp; (2.37)

Ap = Bp

Combining (2.37) and (2.38), we get the (not unexpected) result

(2.38)

Consider a frame {B} that is known with respect to a frame {A}—that is, we know
the value of Sometimes we will wish to invert this transform, in order to get a
description of {A} relative to {B}—that is, T. A straightforward way of calculating
the inverse is to compute the inverse of the 4 x 4 homogeneous transform. However,
if we do so, we are not taking full advantage of the structure inherent in the
transform. It is easy to find a computationally simpler method of computing the
inverse, one that does take advantage of this structure.

zI3

Yc

x13

APATBTCP (2.39)

from which we could define
AT_ATBT
C BC•

Again, note that familiarity with the sub- and superscript notation makes these
manipulations simple. In terms of the known descriptions of {B} and {C}, we can
give the expression for as

AT[ (2.41)
C [0 0 0 1 ]

Inverting a transform
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To find we must compute and BPAORG from and A First,
recall from our discussion of rotation matrices that

(2.42)

Next, we change the description of A into {B} by using (2.13):

BAp _BRAp Bp 243BORGYA BORG+ AORG

The left-hand side of (2.43) must be zero, so we have

B — BRAp — A TAp 44BORG__BR BORG 2.

Using (2.42) and (2.44), we can write the form of T as

r ART ARTAP 1
BT = B B BORG

(2.45)
A

LU 0 0 1 j
Note that, with our notation,

BT _AT_i
A B

Equation (2.45) is a general and extremely useful way of computing the inverse of a
homogeneous transform.

EXAMPLE 2.5

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about Z by 30
degrees and translated four units in XA and three units in Thus, we have a
description of Find

The frame defining {B} is

0.866 —0.500 0.000 4.0
A
BT

0.500
0.000
0

0.866
0.000
0

0.000
1.000
0

3.0
0.0
1

(2.46)

{Bj

(A}

XB

xA

FIGURE 2.13: {B} relative to {A}.
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0.866 0.500 0.000
B —0.500 0.866 0.000
AT = 0.000 0.000 1.000

0 0 0

Figure 2.14 indicates a situation in which a frame {D} can be expressed as products
of transformations in two different ways. First,

second;

UT — UT AT.
D A D

UT — UT BT CT
D B C D

(2.48)

(2.49)

We can set these two descriptions of equal to construct a transform

UTAT — UT BT CT
A D B C D

FIGURE 2.14: Set of transforms forming a loop.

(2.50)

—4.964
—0.598

0.0
1

2.7 TRANSFORM EQUATIONS

(2.47)

equation:

(A}

(D}
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Transform equations can be used to solve for transforms in the case of n unknown
transforms and n transform equations. Consider (2.50) in the case that all transforms
are known except Here, we have one transform equation and one unknown
transform; hence, we easily find its solution to be

BT — UT_i UT AT CT—i
C B A D D (2.51)

Figure 2.15 indicates a similar situation.
Note that, in all figures, we have introduced a graphical representation of

frames as an arrow pointing from one origin to another origin. The arrow's direction
indicates which way the frames are defined: In Fig. 2.14, frame {D} is defined relative
to [A}; in Fig. 2.15, frame {A} is defined relative to {D}. In order to compound frames
when the arrows line up, we simply compute the product of the transforms. If an
arrow points the opposite way in a chain of transforms, we simply compute its
inverse first. In Fig. 2.15, two possible descriptions of {C} are

and

UT — UT DT-i D
C A A C

FIGURE 2.15: Example of a transform equation.

(2.52)

(2.53)UT — UT B
C B C

(AJ

(DJ

LU)
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(TJ

Again, we might equate (2.52) and (2.53) to solve for, say,

EXAMPLE 2.6

= (2.54)

Assume that we know the transform T in Fig. 2.16, which describes the frame at
the manipulator's fingertips {T} relative to the base of the manipulator, {B}, that
we know where the tabletop is located in space relative to the manipulator's base
(because we have a description of the frame {S} that is attached to the table as
shown, T), and that we know the location of the frame attached to the bolt lying
on the table relative to the table frame—that is, Calculate the position and
orientation of the bolt relative to the manipulator's hand, T.

Guided by our notation (and, it is hoped, our understanding), we compute the
bolt frame relative to the hand frame as

TT — BT-_l BT ST
G T S

2.8 MORE ON REPRESENTATION OF ORIENTATION

(2.55)

So far, our only means of representing an orientation is by giving a 3 x 3 rotation
matrix. As shown, rotation matrices are special in that all columns are mutually
orthogonal and have unit magnitude. Further, we wifi see that the determinant of a

FIGURE 2.16: Manipulator reaching for a bolt.
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rotation matrix is always equal to +1. Rotation matrices may also be called proper
orthonormal matrices, where "proper" refers to the fact that the determinant is +1
(nonproper orthonormal matrices have the determinant —1).

It is natural to ask whether it is possible to describe an orientation with fewer
than nine numbers. A result from linear algebra (known as Cayley's formula for
orthonormal matrices [3]) states that, for any proper orthonormal matrix R, there
exists a skew-symmetric matrix S such that

R = (13 — + 5), (2.56)

where 13 is a 3 x 3 unit matrix. Now a skew-symmetric matrix (i.e., S = _ST) of
dimension 3 is specified by three parameters (si, as

0 sy 1
S = 0 . (2.57)

0 J

Therefore, an immediate consequence of formula (2.56) is that any 3 x 3 rotation
matrix can be specified by just three parameters.

Clearly, the nine elements of a rotation matrix are not all independent. In fact,
given a rotation matrix, R, it is easy to write down the six dependencies between the
elements. Imagine R as three columns, as originally introduced:

R = {X 2]. (2.58)

As we know from Section 2.2, these three vectors are the unit axes of some frame
written in terms of the reference frame. Each is a unit vector, and all three must be
mutually perpendicular, so we see that there are six constraints on the nine matrix
elements:

iic' 1= 1,

(2.59)

.2=0.

It is natural then to ask whether representations of orientation can be devised such
that the representation is conveniently specified with three parameters. This section
will present several such representations.

Whereas translations along three mutually perpendicular axes are quite easy
to visualize, rotations seem less intuitive. Unfortunately, people have a hard time
describing and specifying orientations in three-dimensional space. One difficulty is
that rotations don't generally commute. That is, is not•the same as
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EXAMPLE 2.7

Consider two rotations, one about 2 by 30 degrees and one about by 30 degTees:

r 0.866 —0.500 0.000 1
= 0.500 0.866 0.000

I
(2.60)

[0.000 0.000 1.000]

r 1.000 0.000 0.000 1
= I

0.000 0.866 —0.500 (2.61)

L 0.000 0.500 0.866]

r 0.87 —0.43 0.25
= 0.50 0.75 —0.43

[0.00 0.50 0.87

r 0.87 —0.50 0.00 1
= 0.43 0.75 —0.50

I
(2.62)

L 0.25 0.43 0.87]

The fact that the order of rotations is important should not be surprising; further-
more, it is captured in the fact that we use matrices to represent rotations, because
multiplication of matrices is not commutative in general.

Because rotations can be thought of either as operators or as descriptions of
orientation, it is not surprising that different representations are favored for each
of these uses. Rotation matrices are useful as operators. Their matrix form is such
that, when multiplied by a vector, they perform the rotation operation. However,
rotation matrices are somewhat unwieldy when used to specify an orientation. A
human operator at a computer terminal who wishes to type in the specification
of the desired orientation of a robot's hand would have a hard time inputting a
nine-element matrix with orthonormal colunms. A representation that requires only
three numbers would be simpler. The following sections introduce several such
representations.

X—Y—Z fixed angles

One method of describing the orientation of a frame (B} is as follows:

Start with the frame coincident with a known reference frame {A}.
Rotate {B} first about XA by an angle y, then about by an angle
and, finally, about 2A by an angle a.

Each of the three rotations takes place about an axis in the fixed reference
frame {A}. We will call this convention for specifying an orientation X—Y—Z fixed
angles. The word "fixed" refers to the fact that the rotations are specified about
the fixed (i.e., nonmoving) reference frame (Fig. 2.17). Sometimes this convention
is referred to as roll, pitch, yaw angles, but care must be used, as this name is often
given to other related but different conventions.
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ZA

FIGURE 2.17: X—Y—Z fixed angles. Rotations are performed in the order
Rz(a).

The derivation of the equivalent rotation matrix, (y, fi, a), is straight-
forward, because all rotations occur about axes of the reference frame; that is,

a) =

° ° i
= sa ca 0 0 1 0 0 cy —sy , (2.63)

L 0 0 1] [—sfi 0 c,8j [0 sy cy ]
where ca is shorthand for cos a, sa for sin a, and so on. It is extremely important to
understand the order of rotations used in (2.63). Thinking in terms of rotations as
operators, we have applied the rotations (from the right) of (y), then (p), and

then Multiplying (2.63) out, we obtain

r cac,8 cas,8sy—sacy casficy+sasyl
a) = sac,8 + cacy — casy . (2.64)

[ —s,8 c,Bsy c18cy ]
Keep in mind that the definition given here specifies the order of the three rotations.
Equation (2.64) is correct only for rotations performed in the order: about XA by y,
about by $, about ZA by a.

The inverse problem, that of extracting equivalent X—Y—Z fixed angles from
a rotation matrix, is often of interest. The solution depends on solving a set of
transcendental equations: there are nine equations and three unknowns if (2.64) is
equated to a given rotation matrix. Among the nine equations are six dependencies,
so, essentially, we have three equations and three unknowns. Let

r r11 r12 r13 1
a) = r21 ifl (2.65)

L r32 r33 ]

From (2.64), we see that, by taking the square root of the sum of the squares
of and we can compute cos Then, we can solve for with the arc tangent

ZB

YB

XI'

A

XB
XB
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of over the computed cosine. Then, as long as cfi 0, we can solve for a by
taking the arc tangent of r21/c,8 over r11/c13 and we can solve for y by taking the arc
tangent of r32/c,8 over

In summary,

= +

a = r11/c,8), (2.66)

y =

where Atan2(y, x) is a two-argument arc tangent function.3
Although a second solution exists, by using the positive square root in the

formula for we always compute the single solution for which —90.0° < 90.00.
This is usually a good practice, because we can then define one-to-one mapping
functions between various representations of orientation. However, in some cases,
calculating all solutions is important (more on this in Chapter 4). If = ±90.0° (so
that = 0), the solution of (2.67) degenerates. In those cases, only the sum or
the difference of a and y can be computed. One possible convention is to choose
a = 0.0 in these cases, which has the results given next.

If = 90.0°, then a solution can be calculated to be

= 90.0°,

a = 0.0, (2.67)

= r22).

If = —90.0°, then a solution can be calculated to be

= —90.0°,

a = 0.0, (2.68)

y = —Atan2(r12, r92).

Z—Y--X Euler angles

Another possible description of a frame (B] is as follows:

Start with the frame coincident with a known frame {A}. Rotate {B} first
about ZB by an angle a, then about by an angle and, finally, about
XB by an angle y.

In this representation, each rotation is performed about an axis of the moving
system (B] rather than one of the fixed reference {A}. Such sets of three rotations

3Atan2(y, x) computes tan1 but uses the signs of both x and y to identify the quadrant in which
the resulting angle lies. For example, Atan 2(—2.0, —2.0) = —135°, whereas Atan 2(2.0, 2.0) = 45°, a
distinction which would be lost with a single-argument arc tangent function. We are frequently computing
angles that can range over a full 360°, so we will make use of the Atan2 function regularly. Note that
Atan2 becomes undefflied when both arguments are zero. It is sometimes called a "4-quadrant arc
tangent," and some programming-language libraries have it predeSned.
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are called Euler angles. Note that each rotation takes place about an axis whose
location depends upon the preceding rotations. Because the three rotations occur
about the axes Z, Y, and X, we wifi call this representation Z—Y—X Euler angles.

Figure 2.18 shows the axes of {B} after each Euler-angle rotation is applied.
Rotation about Z causes X to rotate into X', Y to rotate into Y', and so on. An
additional "prime" gets added to each axis with each rotation. A rotation matrix
which is parameterized by Z—Y—X Euler angles wifi be indicated by the notation

y). Note that we have added "primes" to the subscripts to indicate
that this rotation is described by Euler angles.

With reference to Fig. 2.18, we can use the intermediate frames {B'} and {B"}
in order to give an expression for y). Thinking of the rotations as
descriptions of these frames, we can immediately write

Ap_AQB'QB"R
B B' B" B '

where each of the relative descriptions on the right-hand side of (2.69) is given by
the statement of the Z—Y--X-Euler-angle convention. Namely, the final orientation
of {B} is given relative to {A} as

=

0 0

0 1 0 0

0 0 cy ]
where ca = cosa, sa = sina, and so on. Multiplying out, we obtain

[cac,8 — sacy + sasy 1
$, y) = sac,8 sas,Bsy + cacy — casy . (2.71)

L
c,6cy J

Note that the result is exactly the same as that obtained for the same three rotations
taken in the opposite order about fixed axes! This somewhat nonintuitive result holds

ZA

ZR
ZR

XE

FIGURE 2.18: Z—Y—X Euler angles.
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in general: three rotations taken about fixed axes yield the same final orientation
as the same three rotations taken in opposite order about the axes of the moving
frame.

Because (2.71) is equivalent to (2.64), there is no need to repeat the solution
for extracting Z—Y—X Euler angles from a rotation matrix. That is, (2.66) can also
be used to solve for Z—Y—X Euler angles that correspond to a given rotation matrix.

Z—Y—Z Euler angles

Another possible description of a frame {B} is

Start with the frame coincident with a known frame {A}. Rotate {B} first
about ZB by an angle a, then about by an angle and, finally, about
Zb by an angle y.

Rotations are described relative to the frame we are moving, namely, {B}, so
this is an Euler-angle description. Because the three rotations occur about the axes
Z, Y, and Z, we will call this representation Z—Y—Z Euler angles.

Following the development exactly as in the last section, we arrive at the
equivalent rotation matrix

T cac,8cy — sasy — sacy cask 1

fi, y) = + casy —sac,Bsy + cacy sas,8 J. (2.72)

[ —s,Bcy cfi ]
The solution for extracting Z—Y--Z Euler angles from a rotation matrix is

stated next.
Given

r17
AD (

—
L r31 r33

then, if sin 0, it follows that

= + '33),

a = Atan2(r23/sfl, r13/s$), (2.74)

y = Atan2(r32/s$,

Although a second solution exists (which we find by using the positive square root in
the formula for we always compute the single solution for which 0.0 < < 180.00.

If = 0.0 or 180.0°, the solution of (2.74) degenerates. In those cases, only the sum
or the difference of a and y may be computed. One possible convention is to choose
a = 0.0 in these cases, which has the results given next.

If = 0.0, then a solution can be calculated to be

= 0.0,

a = 0.0, (2.75)

y = Atan2(—r12, r11).
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If = 180.0°, then a solution can be calculated to be

= 180.0°,

a = 0.0, (2.76)

y = Atan2(r12,

Other angle-set conventions

In the preceding subsections we have seen three conventions for specifying orienta-
tion: X—Y—Z fixed angles, Z—Y—X Euler angles, and Z—Y—Z Euler angles. Each
of these conventions requires performing three rotations about principal axes in a
certain order. These conventions are examples of a set of 24 conventions that we
will call angle-set conventions. Of these, 12 conventions are for fixed-angle sets,
and 12 are for Euler-angle sets. Note that, because of the duality of fixed-angle
sets with Euler-angle sets, there are really only 12 unique parameterizations of a
rotation matrix by using successive rotations about principal axes. There is often
no particular reason to favor one convention over another, but various authors
adopt different ones, so it is useful to list the equivalent rotation matrices for all 24
conventions. Appendix B (in the back of the book) gives the equivalent rotation
matrices for all 24 conventions.

Equivalent angle—axis representation

With the notation Rx (30.0) we give the description of an orientation by giving an
axis, X, and an angle, 30.0 degrees. This is an example of an equivalent angle—axis
representation. If the axis is a general direction (rather than one of the unit directions)
any orientation may be obtained through proper axis and angle selection. Consider
the following description of a frame {B}:

Start with the frame coincident with a known frame {A}; then rotate {B}
about the vector AK by an angle 9 according to the right-hand rule.

Vector K is sometimes called the equivalent axis of a finite rotation. A general
orientation of {B} relative to {A} may be written as 9) or RK(O) and wifi
be called the equivalent angle—axis representation.4 The specification of the vector
AK requires only two parameters, because its length is always taken to be one. The
angle specifies a third parameter. Often, we wifi multiply the unit direction, K, with
the amount of rotation, 9, to form a compact 3 x 1 vector description of orientation,
denoted by K (no "hat"). See Fig. 2.19.

When the axis of rotation is chosen from among the principal axes of {A}, then
the equivalent rotation matrix takes on the familiar form of planar rotations:

[1 1 0

Rx(8) = 0 cos9 —sin9 , (2.77)

L0 sin9 cos9 ]

4That such a k and 0 exist for any orientation of (B} relative to was shown originally by Euler
and is known as Euler's theorem on rotation [3].
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ZA Ak

Yu

XB

(B)

XA

FIG U RE 2.19: Equivalent angle— axis representation.

r 0 sinol
= 0 1 0 , (2.78)

0 coso]

[cos9 —sib

Rz(9) = sin0 cos9 0 . (2.79)

[ 0 0 1]
If the axis of rotation is a general axis, it can be shown (as in Exercise 2.6) that the
equivalent rotation matrix is

r
RK(O)= I , (2.80)

]
where c9 = cos9, sO = sin9, vO = 1— cos0, and = The sign of 9 is
determined by the right-hand rule, with the thumb pointing along the positive sense
of

Equation (2.80) converts from angle—axis representation to rotation-matrix
representation. Note that, given any axis of rotation and any angular amount, we
can easily construct an equivalent rotation matrix.

The inverse problem, namely, that of computing K and 0 from a given rotation
matrix, is mostly left for the exercises (Exercises 2.6 and 2.7), but a partial result is
given here [3]. If

r 1
RK (9) = r21 r23 , (2.81)

L r32 r33 J

then

0 = Acos
(ru + r22± r33 1)
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and

1
K = 2 sinG

r13 —
. (2.82)

L r21 — J

This solution always computes a value of 0 between 0 and 180 degrees. For any
axis—angle pair (AK, 0), there is another pair, namely, (_AK, —0), which results in
the same orientation in space, with the same rotation matrix describing it. Therefore,
in converting from a rotation-matrix into an angle—axis representation, we are faced
with choosing between solutions. A more serious problem is that, for small angular
rotations, the axis becomes ill-defined. Clearly, if the amount of rotation goes to
zero, the axis of rotation becomes completely undefined. The solution given by
(2.82) fails if 0 = 00 or 0 = 180°.

EXAMPLE 2.8

A frame {B)is described as initially coincident with {A}. We then rotate {B} about
the vector A K = [0.7070 7070 0]T (passing through the origin) by an amount 0 = 30

degrees. Give the frame description of {B}.
Substituting into (2.80) yields the rotation-matrix part of the frame description.

There was no translation of the origin, so the position vector is [0, 0, Hence,

0.933 0.067 0.354 0.0
A 0.067 0.933 —0.354 0.0

2 83BT = —0.354 0.354 0.866 0.0
0.0 0.0 0.0 1.0

Up to this point, all rotations we have discussed have been about axes that pass
through the origin of the reference system. If we encounter a problem for which
this is not true, we can reduce the problem to the "axis through the origin" case by
defining additional frames whose origins lie on the axis and then solving a transform
equation.

EXAMPLE 2.9

A frame {B} is described as initially coincident with {A). We then rotate {B} about
the vector AK = [0.707 0.707 001T (passing through the point Ap = [1.0 2.0 3.0])
by an amount 0 = 30 degrees. Give the frame description of {B}.

Before the rotation, (A} and {B} are coincident. As is shown in Fig. 2.20, we
define two new frames, {A'} and {B'}, which are coincident with each other and have
the same orientation as {A} and {B} respectively, but are translated relative to {A}
by an offset that places their origins on the axis of rotation. We wifi choose

1.0 0.0 0.0 1.0
A 0.0 1.0 0.0 2.0 2 84AlT = 0.0 0.0 1.0 3.0

0.0 0.0 0.0 1.0
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K

FIGURE 2.20: Rotation about an axis that does not pass through the origin of {A}.
Initially, {B} was coincident with {A}.

Similarly, the description of {B} in terms of {B'} is

1.0 0.0 0.0 —1.0
B' 0.0 1.0 0.0 —2.0

2 85B
T = 0.0 0.0 1.0 —3.0

0.0 0.0 0.0 1.0

Now, keeping other relationships fixed, we can rotate {B'} relative to {A'}. This is a
rotation about an axis that passes through the origin, so we can use (2.80) to compute
{B'} relative to {A'}. Substituting into (2.80) yields the rotation-matrix part of the
frame description. There was no translation of the origin, so the position vector is
[0, 0, OjT. Thus, we have

0.933 0.067 0.354 0.0
0.067 0.933 —0.354 0.0

2 86—0.354 0.354 0.866 0.0
0.0 0.0 0.0 1.0

Finally, we can write a transform equation to compute the desired frame,

= (2.87)

which evaluates to

0.933 0.067 0.354 —1.13
A 0.067 0.933 —0.354 1.13

2 88BT = —0.354 0.354 0.866 0.05
0.000 0.000 0.000 1.00

A rotation about an axis that does not pass through the origin causes a change in
position, plus the same final orientation as if the axis had passed through the origin.

(B')

Ap

(A)

(B)
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Note that we could have used any definition of {A'} and {B'} such that their origins
were on the axis of rotation. Our particular choice of orientation was arbitrary, and
our choice of the position of the origin was one of an infinity of possible choices
lying along the axis of rotation. (See also Exercise 2.14.)

Euler parameters

Another representation of orientation is by means of four numbers called the Euler
parameters. Although complete discussion is beyond the scope of the book, we state
the convention here for reference.

In terms of the equivalent axis K = and the equivalent angle 8, the
Euler parameters are given by

8
€1

= icy sin -, (2.89)

€3 = sin

8
€4 = cos

It is then clear that these four quantities are not independent:

+ + + = 1 (2.90)

must always hold. Hence, an orientation might be visualized as a point on a unit
hypersphere in four-dimensional space.

Sometimes, the Euler parameters are viewed as a 3 x 1 vector plus a scalar.
However, as a 4 x 1 vector, the Euler parameters are known as a unit quaternion.

The rotation matrix that is equivalent to a set of Euler parameters is

1 — 2(ElE7 — E3E4) 2(E1e3 + E7E4)

RE = 2(E1E2 + E3E4) 1 — — 2(e2E3 — (2.91)

2(E1e3 — E2E4) 2(E263 + E1E4) 1 — —

Given a rotation matrix, the equivalent Euler parameters are

— r32 — r23
El

-tE4

€2
= r13 — (2.92)

4E4

— r21 — r12
€3 —

4E4

€4 = + r11 + r22 + r33.
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Note that (2.92) is not useful in a computational sense if the rotation matrix
represents a rotation of 180 degrees about some axis, because c4 goes to zero.
However, it can be shown that, in the limit, all the expressions in (2.92) remain finite
even for this case. In fact, from the definitions in (2.88), it is clear that all e, remain
in the interval [—1, 1].

Taught and predefined orientations

In many robot systems, it wifi be possible to "teach" positions and orientations
by using the robot itself. The manipulator is moved to a desired location, and this
position is recorded. A frame taught in this manner need not necessarily be one to
which the robot wifi be commanded to return; it could be a part location or a fixture
location. In other words, the robot is used as a measuring tool having six degrees
of freedom. Teaching an orientation like this completely obviates the need for the
human programmer to deal with orientation representation at all. In the computer,
the taught point is stored as a rotation matrix (or however), but the user never has
to see or understand it. Robot systems that allow teaching of frames by using the
robot are thus highly recommended.

Besides teaching frames, some systems have a set of predefined orientations,
such as "pointing down" or "pointing left." These specifications are very easy
for humans to deal with. However, if this were the only means of describing and
specifying orientation, the system would be very limited.

2.9 TRANSFORMATION OF FREE VECTORS

We have been concerned mostly with position vectors in this chapter. In later
chapters, we wifi discuss velocity and force vectors as well. These vectors will
transform differently because they are a different type of vector.

In mechanics, one makes a distinction between the equality and the equivalence
of vectors. Two vectors are equal if they have the same dimensions, magnitude, and
direction. Two vectors that are considered equal could have different lines of
action—for example, the three equal vectors in Fig 2.21. These velocity vectors
have the same dimensions, magnitude, and direction and so are equal according to
our definition.

Two vectors are equivalent in a certain capacity if each produces the very same
effect in this capacity. Thus, if the criterion in Fig. 2.21 is distance traveled, all three
vectors give the same result and are thus equivalent in this capacity. If the criterion is
height above the xy plane, then the vectors are not equivalent despite their equality.
Thus, relationships between vectors and notions of equivalence depend entirely on
the situation at hand. Furthermore, vectors that are not equal mightcause equivalent
effects in certain cases.

We wifi define two basic classes of vector quantities that might be helpful.
The term line vector refers to a vector that is dependent on its line of action,

along with direction and magnitude, for causing its effects. Often, the effects of a
force vector depend upon its line of action (or point of application), so it would then
be considered a line vector.

A free vector refers to a vector that may be positioned anywhere in space with-
out loss or change of meaning, provided that magnitude and direction are preserved.
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z

/
x

V3

FIG URE 2.21: Equal velocity vectors.

For example, a pure moment vector is always a free vector. If we have a
moment vector BN that is known in terms of {B}, then we calculate the same
moment in terms of frame {A} as

AN_ARBN (2.93)

In other words, all that counts is the magnitude and direction (in the case of a free
vector), so only the rotation matrix relating the two systems is used in transforming.
The relative locations of the origins do not enter into the calculation.

Likewise, a velocity vector written in {B}, B v, is written in {A} as

AV = BV (2.94)

The velocity of a point is a free vector, so all that is important is its direction and
magnitude. The operation of rotation (as in (2.94)) does not affect the magnitude,
yet accomplishes the rotation that changes the description of the vector from {B}
to {A). Note that A which would appear in a position-vector transformation,
does not appear in a velocity transform. For example, in Fig. 2.22, if B v = 5X, then
AV =

Velocity vectors and force and moment vectors wifi be introduced more fully
in Chapter 5.

2.10 COMPUTATIONAL CONSIDERATIONS

The availability of inexpensive computing power is largely responsible for the
growth of the robotics industry; yet, for some time to come, efficient computation
will remain an important issue in the design of a manipulation system.

The homogeneous representation is useful as a conceptual entity, but trans-
formation software typically used in industrial manipulation systems does not make
use of it directly, because the time spent multiplying by zeros and ones is wasteful.

V2

V1

y
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FIGURE 2.22: Transforming velocities.

Usually, the computations shown in (2.41) and (2.45) are performed, rather than the
direct multiplication or inversion of 4 x 4 matrices.

The order in which transformations are applied can make a large difference
in the amount of computation required to compute the same quantity. Consider
performing multiple rotations of a vector, as in

APARBRCRDP (2.95)

One choice is to first multiply the three rotation matrices together, to form in
the expression

Ap =

R from its three constituents requires 54 multiplications and 36 additions.
Performing the final matrix-vector multiplication of (2.96) requires an additional
9 multiplications and 6 additions, bringing the totals to 63 multiplications and 42
additions.

If, instead, we transform the vector through the matrices one at a time, that is,

Ap — AR BR CR Dp
B C D

APARBRCP (2.97)

Ap = Bp

Ap = Ap

then the total computation requires only 27 multiplications and 18 additions, fewer
than half the computations required by the other method.

Of course, in some cases, the relationships and are constant, while
there are many Dp. that need to be transformed into Ap. In such a case, it is more
efficient to calculate once, and then use it for all future mappings. See also
Exercise 2.16.

(B
YB

V

ZB
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EXAMPLE 2.10

Give a method of computing the product of two rotation matrices, R R, that uses
fewer than 27 multiplications and 18 additions.

Where L. are the columns of and C, are the three columns of the result,
compute

C1 =

(2.98)

= C'1 x

which requires 24 multiplications and 15 additions.
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EXERCISES

2.1 [15] A vector Ap is rotated about ZA by 9 degrees and is subsequently rotated
about XA by degrees. Give the rotation matrix that accomplishes these rotations
in the given order.

2.2 [15] A vector Ap is rotated about by 30 degrees and is subsequently rotated
about XA by 45 degrees. Give the rotation matrix that accomplishes these rotations
in the given order.

2.3 [16] A frame {B} is located initially coincident with a frame {A}. We rotate {B}
about ZB by 9 degrees, and then we rotate the resulting frame about XB by 0
degrees. Give the rotation matrix that will change the descriptions of vectors from
Bp to Ap

2.4 [16] A frame {B} is located initially coincident with a frame {A}. We rotate {B}
about ZB by 30 degrees, and then we rotate the resulting frame about XB by 45
degrees. Give the rotation matrix that will change the description of vectors from
B p to A p.

2.5 [13] R is a 3 x 3 matrix with eigenvalues 1, and e_W, where i = What

is the physical meaning of the eigenvector of R associated with the eigenvalue 1?
2.6 [21] Derive equation (2.80).
2.7 [24] Describe (or program) an algorithm that extracts the equivalent angle and

axis of a rotation matrix. Equation (2.82) is a good start, but make sure that your
algorithm handles the special cases 8 = 0° and 9 = 180°.
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2.8 [29] Write a subroutine that changes representation of orientation from rotation-
matrix form to equivalent angle—axis form. A Pascal-style procedure declaration
would begin

Procedure RNTOAA (VAR R:mat33; VAR K:vec3; VAR theta: real);
Write another subroutine that changes from equivalent angle—axis representation
to rotation-matrix representation:

Procedure AATORN(VAR K:vec3; VAR theta: real: VAR R:nat33);
Write the routines in C if you prefer.
Run these procedures on several cases of test data back-to-back and verify that
you get back what you put in. Include some of the difficult cases!

2.9 [27] Do Exercise 2.8 for roll, pitch, yaw angles about fixed axes.
2.10 [27] Do Exercise 2.8 for Z—Y—Z Euler angles.
2.11 [10] Under what condition do two rotation matrices representing finite rotations

commute? A proof is not required.
2.12 [14] A velocity vector is given by

r 10.0
Bv1200

L 30.0

Given
0.866 —0.500 0.000 11.0

A 0.500 0.866 0.000 —3.0
BT = 0.000 0.000 1.000 9.0

0 0 0 1

compute A
2.13 [21] The following frame definitions are given as known:

r 0.866 —0.500 0.000 11.0
u I

0.500 0.866 0.000 —1.0
AT = I

0.000 0.000 1.000 8.0
Lo 0 0 1

1.000 0.000 0.000 0.0
B 0.000 0.866 —0.500 10.0
AT = 0.000 0.500 0.866 —20.0

0 0 0 1

r 0.866 —0.500 0.000 —3.0
c I

0.433 0.750 —0.500 —3.0
= I

0.250 0.433 0.866 3.0
Lo 0 0 1

Draw a frame diagram (like that of Fig. 2.15) to show their arrangement qualita-
tively, and solve for

2.14 [31] Develop a general formula to obtain T, where, starting from initial coinci-
dence, {B} is rotated by about where passes through the point Ap (not
through the origin of {A} in general).

2.15 [34] {A} and {B) are frames differing only in orientation. {B} is attained as
follows: starting coincident with {A}, (B] is rotated by radians about unit vector
K—that is,

=
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Show that
AR —
B —

where
[ 0 ky

K=I k, 0
0

2.16 [22] A vector must be mapped through three rotation matrices:

Ap = Dp

One choice is to first multiply the three rotation matrices together, to form in
the expression

Ap = Dp

Another choice is to transform the vector through the matrices one at a time—that
is,

Ap = Dp

APARBRCP

Ap = Bp,

Ap Ap

D P is changing at 100 Hz, we would have to recalculate A P at the same rate.
However, the three rotation matrices are also changing, as reported by a vision
system that gives us new values for R, R, and at 30 Hz. What is the best way
to organize the computation to minimize the calculation effort (multiplications
and additions)?

2.17 [16] Another familiar set of three coordinates that can be used to describe a point
in space is cylindrical coordinates. The three coordinates are defined as illustrated
in Fig. 2.23. The coordinate 0 gives a direction in the xy plane along which to
translate radially by an amount r. Finally, z is given to specify the height above
the xy plane. Compute the Cartesian coordinates of the point A P in terms of the
cylindrical coordinates 9, r, and z.

2.18 [18] Another set of three coordinates that can be used to describe a point in
space is spherical coordinates. The three coordinates are defined as illustrated
in Fig. 2.24. The angles a and can be thought of as describing azimuth and
elevation of a ray projecting into space. The third coordinate, r, is the radial
distance along that ray to the point being described. Calculate the Cartesian
coordinates of the point A p in terms of the spherical coordinates a, and r.

2.19 [24] An object is rotated about its X axis by an amount and then it is rotated
about its new axis by an amount i/i. From our study of Euler angles, we know
that the resulting orientation is given by

whereas, if the two rotations had occurred about axes of the fixed reference frame,
the result would have been



//
FIG U RE 2.23: Cylindrical coordinates.

FIGURE 2.24: Spherical coordinates.

It appears that the order of multiplication depends upon whether rotations are
described relative to fixed axes or those of the frame being moved. It is more
appropriate, however, to realize that, in the case of specifying a rotation about
an axis of the frame being moved, we are specifying a rotation in the fixed system
given by (for this example)

This similarity transform [1], multiplying the original on the left, reduces to
the resulting expression in which it looks as if the order of matrix multiplication
has been reversed. Taldng this viewpoint, give a derivation for the form of the

(AJ
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rotation matrix that is equivalent to the Z—Y—Z Euler-angle set (ci, $, y). (The
result is given by (2.72).)

2.20 [2011 Imagine rotating a vector Q about a vector K by an amount 6 to form a new
vector, Q'—that is,

Q' =

Use (2.80) to derive Rodriques's formula,

Q' = Qcos6 + sin0(1 x Q) + (1— C058)(le.

2.21 [15] For rotations sufficiently small that the approximations sin 8 = 6, cos 6 = 1,

and 62 = 0 hold, derive the rotation-matrix equivalent to a rotation of 8 about a
general axis, Start with (2.80) for your derivation.

2.22 [20] Using the result from Exercise 2.21, show that two infinitesimal rotations
commute (i.e., the order in which the rotations are performed is not important).

2.23 [25] Give an algorithm to construct the definition of a frame T from three points
Up1 Up2 and Up3 where the following is known about these points:

1 Up1 js at the origin of {A};
2. Up2 lies somewhere on the positive X axis of {A};

3• Up3 lies near the positive axis in the XY plane of {A).

2.24 [45] Prove Cayley's formula for proper orthonormal matrices.
2.25 [30] Show that the eigenvalues of a rotation matrix are 1, and where

=
2.26 [33] Prove that any Euler-angle set is sufficient to express all possible rotation

matrices.
2.27 [15] Referring to Fig. 2.25, give the value
2.28 [15] Referring to Fig. 2.25, give the value
2.29 [15] Referring to Fig. 2.25, give the value of T.

2.30 [15] Referring to Fig. 2.25, give the value of T.

2.31 [15] Referring to Fig. 2.26, give the value of T.

FIGURE 2.25: Frames at the corners of a wedge.

________

3
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I

FIGURE 2.26: Frames at the corners of a wedge.

2.32 [15] Referring to Fig. 2.26, give the value
2.33 [15] Referring to Fig. 2.26, give the value of T.

2.34 [15] Referring to Fig. 2.26, give the value of
2.35 [20] Prove that the determinant of any rotation matrix is always equal to 1.
2.36 [36] A rigid body moving in a plane (i.e., in 2-space) has three degrees of freedom.

A rigid body moving in 3-space has six degrees of freedom. Show that a body in
N-space has (N2 + N) degrees of freedom.

2.37 [15] Given
0.25 0.43 0.86 5.0

A 0.87 —0.50 0.00 —4.0
BT — 0.43 0.75 —0.50 3.0

0 0 0 1

what is the (2,4) element of T?
2.38 [25] Imagine two unit vectors, v1 and v2, embedded in a rigid body. Note that, no

matter how the body is rotated, the geometric angle between these two vectors is
preserved (i.e., rigid-body rotation is an "angle-preserving" operation). Use this
fact to give a concise (four- or five-line) proof that the inverse of a rotation matrix
must equal its transpose and that a rotation matrix is orthonormal.

2.39 [37] Give an algorithm (perhaps in the form of a C program) that computes the
unit quaternion corresponding to a given rotation matrix. Use (2.91) as starting
point.

2.40 [33] Give an algorithm (perhaps in the form of a C program) that computes the
Z—X—Z Euler angles corresponding to a given rotation matrix. See Appendix B.

2.41 [33] Give an algorithm (perhaps in the form of a C program) that computes the
X—Y—X fixed angles corresponding to a given rotation matrix. See Appendix B.

PROGRAMMING EXERCISE (PART 2)

1. If your function library does not include an Atan2 function subroutine, write one.
2. To make a friendly user interface, we wish to describe orientations in the planar

world by a single angle, 9, instead of by a 2 x 2 rotation matrix. The user wifi always

3
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communicate in terms of angle 9, but internally we will need the rotation-matrix
form. For the position-vector part of a frame, the user will specify an x and a
y value. So, we want to allow the user to specify a frame as a 3-tuple: (x, y, 9).
Internally, we wish to use a 2 x 1 position vector and a 2 x 2 rotation matrix, so we
need conversion routines. Write a subroutine whose Pascal definition would begin

Procedure UTOI (VAR uforni: vec3; VAR iform: frame);

where "UTOI" stands for "User form TO Internal form." The first argument is
the 3-tuple (x, y, 0), and the second argument is of type "frame," consists of a
(2 x 1) position vector and a (2 x 2) rotation matrix. If you wish, you may represent
the frame with a (3 x 3) homogeneous transform in which the third row is [0 0 1].
The inverse routine will also be necessary:

Procedure IT{JU (VAR if orm: frame; VAR uform: vec3);

3. Write a subroutine to multiply two transforms together. Use the following proce-
dure heading:

Procedure TMULT (VAR brela, creib, crela: frame);

The first two arguments are inputs, and the third is an output. Note that the names
of the arguments document what the program does (brela =

4. Write a subroutine to invert a transform. Use the following procedure heading:

Procedure TINVERT (VAR brela, areib: frame);

The first argument is the input, the second the output. Note that the names of the
arguments document what the program does (brela T).

5. The following frame definitions are given as known:

= [x y 9] = [11.0 1.0 30.0],

=[xy0]=z[0.07.0 45.0],

gT = [x y 9] = [—3.0 —3.0 —30.0].

These frames are input in the user representation [x, y, 9] (where 9 is in degrees).
Draw a frame diagram (like Fig. 2.15, only in 2-D) that qualitatively shows their
arrangement. Write a program that calls TMIJLT and TINVERT (defined in
programming exercises 3 and 4) as many times as needed to solve for T. Then
print out T in both internal and user representation.

MATLAB EXERCISE 2A

a) Using the Z—Y—X (a y) Euler angle convention, write a MATLAB program
to calculate the rotation matrix R when the user enters the Euler angles a —y.

Test for two examples:

i) a = 10°, = 20°, y = 30°.

ii) a = 30°, = 90°, y = —55°.

For case (i), demonstrate the six constraints for unitary orthonormal rotation
matrices (i.e., there are nine numbers in a 3 x 3 matrix, but only three are
independent). Also, demonstrate the beautiful property, = =
for case i.
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b) Write a MATLAB program to calculate the Euler angles a—$—y when the user
enters the rotation matrix R (the inverse problem). Calculate both possible
solutions. Demonstrate this inverse solution for the two cases from part (a). Use
a circular check to verify your results (i.e., enter Euler angles in code a from part
(a); take the resulting rotation matrix and use this as the input to code b; you
get two sets of answers—one should be the original user input, and the second can
be verified by once again using the code in part (a).

e) For a simple rotation of about the Y axis only, for $ = 200 and B P = {1 0 1 }T,
calculate A F; demonstrate with a sketch that your results are correct.

d) Check all results, by means of the Corke MATLAB Robotics Toolbox. Try the
functions rp y2tr() , tr2rpyQ, rotxQ, and rotzQ.

MATLAB EXERCISE 2B

a) Write a MATLAB program to calculate the homogeneous transformation matrix
T when the user enters Z— V —x Euler angles a — — y and the position vector

A Test for two examples:

i) a=10°, fl=20°, y=300,andAPB={1 2 3}T.

ii) For ,8 = 20° (a =j, = 00), A '3B = (3 0 1 }T•

b) For8 =200 (a = y =0°),APB ={3 0 1}T,andBP ={1 0 1}T,115eMATLABt0
calculate A P; demonstrate with a sketch that your results are correct. Also, using
the same numbers, demonstrate all three interpretations of the homogeneous
transformation matrix—the (b) assignment is the second interpretation, transform
mapping.

c) Write a MATLAB program to calculate the inverse homogeneous transformation

matrix T1 = T, using the symbolic formula. Compare your result with a

numerical MATLAB function (e.g., mv). Demonstrate that both methods yield
correct results (i.e., = 14). Demonstrate this for examples (i)
and (ii) from (a) above.

d) Define to be the result from (a)(i) and to be the result from (a)(ii).

i) Calculate T, and show the relationship via a transform graph. Do the same

ii) Given and from (d)(i)—assume you don't know calculate it, and

compare your result with the answer you know.

iii) Given T and T from (d)(i) —assume you don't know T, calculate it, and

compare your result with the answer you know.

e) Check all results by means of the Corke MATLAB Robotics Toolbox. Try
functions rpy2tr() and translQ.




