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3.1 INTRODUCTION

Kinematics is the science of motion that treats the subject without regard to the
forces that cause it. Within the science of kinematics, one studies the position, the
velocity, the acceleration, and all higher order derivatives of the position variables
(with respect to time or any other variable(s)). Hence, the study of the kinematics of
manipulators refers to all the geometrical and time-based properties of the motion.
The relationships between these motions and the forces and torques that cause them
constitute the problem of dynamics, which is the subject of Chapter 6.

In this chapter, we consider position and orientation of the manipulator
linkages in static situations. In Chapters 5 and 6, we wifi consider the kinematics
when velocities and accelerations are involved.

In order to deal with the complex geometry of a manipulator, we wifi affix
frames to the various parts of the mechanism and then describe the relationships
between these frames. The study of manipulator kinematics involves, among other
things, how the locations of these frames change as the mechanism articulates. The
central topic of this chapter is a method to compute the position and orientation of
the manipulator's end-effector relative to the base of the manipulator as a function
of the joint variables.

3.2 LINK DESCRIPTION

A manipulator may be thought of as a set of bodies connected in a chain by joints.
These bodies are called links. Joints form a connection between a neighboring pair
of links. The term lower pair is used to describe the connection between a pair of
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FIGURE 3.1: The six possible lower-pair joints.

bodies when the relative motion is characterized by two surfaces sliding over one
another. Figure 3.1 shows the six possible lower pair joints.

Mechanical-design considerations favor manipulators' generally being con-
structed from joints that exhibit just one degree of freedom. Most manipulators
have revolute joints or have sliding joints called prismatic joints. In the rare case
that a mechanism is built with a joint having n degrees of freedom, it can be modeled
as n joints of one degree of freedom connected with n — 1 links of zero length.
Therefore, without loss of generality, we wifi consider only manipulators that have
joints with a single degree of freedom.

The links are numbered starting from the immobile base of the arm, which
might be called link 0. The first moving body is link 1, and so on, out to the free
end of the arm, which is link n. In order to position an end-effector generally in
3-space, a minimum of six joints is required.1 Typical manipulators have five or six
joints. Some robots are not actually as simple as a single kinematic chain—these
have parallelogram linkages or other closed kinematic structures. We wifi consider
one such manipulator later in this chapter.

A single link of a typical robot has many attributes that a mechanical designer
had to consider during its design: the type of material used, the strength and stiffness

1This makes good intuitive sense, because the description of an object in space requires six parame-
ters—three for position and three for orientation.

Revolute Prismatic

Cylindrical Planar

Screw Spherical
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Axisi—1 Axisi

FIGURE 3.2: The kinematic function of a link is to maintain a fixed relationship
between the two joint axes it supports. This relationship can be described with two
parameters: the link length, a, and the link twist, a.

of the link, the location and type of the joint bearings, the external shape, the
weight and inertia, and more. However, for the purposes of obtaining the kinematic
equations of the mechanism, a link is considered only as a rigid body that defines
the relationship between two neighboring joint axes of a manipulator. Joint axes are
defined by lines in space. Joint axis i is defined by a line in space, or a vector
direction, about which link i rotates relative to link i 1. It turns out that, for
kinematic purposes, a link can be specified with two numbers, which define the
relative location of the two axes in space.

For any two axes in 3-space, there exists a well-defined measure of distance
between them. This distance is measured along a line that is mutually perpendicular
to both axes. This mutual perpendicular always exists; it is unique except when
both axes are parallel, in which case there are many mutual perpendiculars of equal
length. Figure 3.2 shows link i — 1 and the mutually perpendicular line along which
the link length, is measured. Another way to visualize the link parameter
is to imagine an expanding cylinder whose axis is the joint i — 1 axis—when it just
touches joint axis i, the radius of the cylinder is equal to

The second parameter needed to define the relative location of the two
axes is called the link twist. If we imagine a plane whose normal is the mutually
perpendicular line just constructed, we can project the axes i — 1 and i onto this
plane and measure the angle between them. This angle is measured from axis i — 1

to axis i in the right-hand sense about a1_1.2 We wifi use this definition of the twist

this case, is given the direction pointing from axis i — ito axis t•
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of link i — 1, In Fig. 3.2, is indicated as the angle between axis i — 1 and
axis i. (The lines with the triple hash marks are parallel.) In the case of intersecting
axes, twist is measured in the plane containing both axes, but the sense of is
lost. In this special case, one is free to assign the sign of a1_1 arbitrarily.

You should convince yourself that these two parameters, length and twist, as
defined above, can be used to define the relationship between any two lines (in this
case axes) in space.

EXAMPLE 3.1

Figure 3.3 shows the mechanical drawings of a robot link. If this link is used in a
robot, with bearing "A" used for the lower-numbered joint, give the length and
twist of this link. Assume that holes are centered in each bearing.

By inspection, the common perpendicular lies right down the middle of
the metal bar connecting the bearings, so the link length is 7 inches. The end view
actually shows a projection of the bearings onto the plane whose normal is the mutual
perpendicular. Link twist is measured in the right-hand sense about the common
perpendicular from axis i — 1 to axis i, so, in this example, it is clearly +45 degrees.

3.3 LINK-CONNECTION DESCRIPTION

The problem of connecting the links of a robot together is again one filled with
many questions for the mechanical designer to resolve. These include the strength
of the joint, its lubrication, and the bearing and gearing mounting. However, for
the investigation of kinematics, we need only worry about two quantities, which wifi
completely specify the way in which links are connected together.

Bearing "A" Bearing "B"

I
,A

2in. / 2in.

,>
,

H—2mn. 5in. 2in.—H

FIGURE 3.3: A simple link that supports two revolute axes.
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FIGURE 3.4: The link offset, d, and the joint angle, 9, are two parameters that may be
used to describe the nature of the connection between neighboring links.

Intermediate links in the chain

Neighboring links have a common joint axis between them. One parameter of
interconnection has to do with the distance along this common axis from one link
to the next. This parameter is called the link offset. The offset at joint axis i is called

The second parameter describes the amount of rotation about this common axis
between one link and its neighbor. This is called the joint angle,

Figure 3.4 shows the interconnection of link i 1 and link i. Recall that at_i
is the mutual perpendicular between the two axes of link i — 1. Likewise, is the
mutual perpendicular defined for link i. The first parameter of interconnection is the
link offset, which is the signed distance measured along the axis of joint i from
the point where intersects the axis to the point where intersects the axis. The
offset is indicated in Fig. 3.4. The link offset is variable if joint i is prismatic.
The second parameter of interconnection is the angle made between an extension
of and measured about the axis of joint i. This is indicated in Fig. 3.4, where
the lines with the double hash marks are parallel. This parameter is named and is
variable for a revolute joint.

First and last links in the chain

Link length, and link twist, depend on joint axes i and i + 1. Hence, a1 through
a,,4 and through are defined as was discussed in this section. At the ends
of the chain, it wifi be our convention to assign zero to these quantities. That is,
a0 = a,, = 0.0 and = ct,, = Link offset, and joint angle, are well defined

fact, a,, and do not need to be defined at all.

Link i 1

a1
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for joints 2 through n — 1 according to the conventions discussed in this section. If
joint 1 is revolute, the zero position for may be chosen arbitrarily; d1 = 0.0 will
be our convention. Similarly, if joint 1 is prismatic, the zero position of d1 may be
chosen arbitrarily; = 0.0 wifi be our convention. Exactly the same statements
apply to joint n.

These conventions have been chosen so that, in a case where a quantity could
be assigned arbitrarily, a zero value is assigned so that later calculations wifi be as
simple as possible.

Link parameters

Hence, any robot can be described kinematically by giving the values of four
quantities for each link. Two describe the link itself, and two describe the link's
connection to a neighboring link. In the usual case of a revolute joint, is called
the joint variable, and the other three quantities would be fixed link parameters.
For prismatic joints, d1 is the joint variable, and the other three quantities are fixed
link parameters. The definition of mechanisms by means of these quantities is a
convention usually called the Denavit—Hartenberg notation Other methods of
describing mechanisms are available, but are not presented here.

At this point, we could inspect any mechanism and determine the
Denavit—Hartenberg parameters that describe it. For a six-jointed robot, 18 num-
bers would be required to describe the fixed portion of its kinematics completely.
In the case of a six-jointed robot with all revolute joints, the 18 numbers are in the
form of six sets of di).

EXAMPLE 3.2

Two links, as described in Fig. 3.3, are connected as links 1 and 2 of a robot. Joint 2
is composed of a "B" bearing of link 1 and an "A" bearing of link 2, arranged so
that the flat surfaces of the "A" and "B" bearings lie flush against each other. What
is d2?

The link offset d2 is the offset at joint 2, which is the distance, measured along
the joint 2 axis, between the mutual perpendicular of link 1 and that of link 2. From
the drawings in Fig. 3.3, this is 2.5 inches.

Before introducing more examples, we wifi define a convention for attaching
a frame to each link of the manipulator.

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

In order to describe the location of each link relative to its neighbors, we define a
frame attached to each link. The link frames are named by number according to the
link to which they are attached. That is, frame {i } is attached rigidly to link i.

4Note that many related conventions go by the name Denavit—Hartenberg, but differ in a few details.
For example, the version used in this book differs from some of the robotic literature in the manner of
frame numbering. Unlike some other conventions, in this book frame {i} is attached to link i and has its
origin lying on joint axis i.
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Intermediate links in the chain

The convention we wifi use to locate frames on the links is as follows: The 2-axis
of frame {i}, called Z1, is coincident with the joint axis i. The origin of frame {i} is
located where the perpendicular intersects the joint i axis. X1 points along a1 in
the direction from joint ito joint i + 1.

In the case of a1 = 0, X1 is normal to the plane of Z1 and We define a1 as

being measured in the right-hand sense about and so we see that the freedom of
choosing the sign of in this case corresponds to two choices for the direction of

is formed by the right-hand rule to complete the ith frame. Figure 3.5 shows
the location of frames {i — 1} and {i I for a general manipulator.

First and last links in the chain

We attach a frame to the base of the robot, or link 0, called frame {0}. This
frame does not move; for the problem of arm kinematics, it can be considered the
reference frame. We may describe the position of all other link frames in terms of
this frame.

Frame {0} is arbitrary, so it always simplifies matters to choose Z0 along axis 1
and to locate frame {0} so that it coincides with frame {1} when joint variable 1 is
zero. Using this convention, we wifi always have a0 = 0.0, a0 = 0.0. Additionally,
this ensures that d1 = 0.0 if joint 1 is revolute, or 01 = 0.0 if joint 1 is prismatic.

For joint n revolute, the direction of XN is chosen so that it aligns with XN_j
when = 0.0, and the origin of frame {N} is chosen so that = 0.0. For joint n
prismatic, the direction of XN is chosen so that = 0.0, and the origin of frame {N}
is chosen at the intersection of XN.1 and joint axis n when d,, = 0.0.

FIGURE 3.5: Link frames are attached so that frame {i} is attached rigidly to link i.

Link i — 1

N

a1
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Summary of the link parameters in terms of the link frames

If the link frames have been attached to the links according to our convention, the
following definitions of the link parameters are valid:

= the distance from Z1 to measured along

= the angle from to measured about

= the distance from to measured along and

=the angle from to measured about Z•

We usually choose a1 > 0, because it corresponds to a distance; however,
and are signed quantities.

A final note on uniqueness is warranted. The convention outlined above does
not result in a unique attachment of frames to links. First of all, when we first align
the Z, axis withjoint axis i, there are two choices of direction in which to point
Z. Furthermore, in the case of intersecting joint axes (i.e., = 0), there are two
choices for the direction of corresponding to the choice of signs for the normal
to the plane containing 2, and 2i+1• When axes i and i + 1 are parallel, the choice
of origin location for {i } is arbitrary (though generally chosen in order to cause d1 to
be zero). Also, when prismatic joints are present, there is quite a bit of freedom in
frame assignment. (See also Example 3.5.)

Summary of link-frame attachment procedure

The following is a summary of the procedure to follow when faced with a new
mechanism, in order to properly attach the link frames:

1. Identify the joint axes and imagine (or draw) infinite lines along them.
steps 2 through 5 below, consider two of these neighboring lines (at axes i and
i + 1).

2. Identify the common perpendicular between them, or point of intersection.
At the point of intersection, or at the point where the common perpendicular
meets the ith axis, assign the link-frame origin.

3. Assign the Z1 axis pointing along the ith joint axis.
4. Assign the axis pointing along the common perpendicular, or, if the axes

intersect, assign k1 to be normal to the plane containing the two axes.
5. Assign the axis to complete a right-hand coordinate system.
6. Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an

origin location and XN direction freely, but generally so as to cause as many
linkage parameters as possible to become zero.

EXAMPLE 3.3

Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute,
this manipulator is sometimes called an RRR (or 3R) mechanism. Fig. 3.6(b) is a
schematic representation of the same manipulator. Note the double hash marks
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FIGURE 3.6: A three-link planar arm. On the right, we show the same manipulator
by means of a simple schematic notation. Hash marks on the axes indicate that they
are mutually parallel.

indicated on each of the three axes, which indicate that these axes are parallel.
Assign link frames to the mechanism and give the Denavit—Hartenberg parameters.

We start by defining the reference frame, frame {O}. It is fixed to the base and
aligns with frame {i} when the first joint variable (9k) is zero. Therefore, we position
frame {O} as shown in Fig. 3.7 with Z0 aligned with the joint-i axis. For this arm,
all joint axes are oriented perpendicular to the plane of the arm. Because the arm

Y1

FIGURE 3.7: Link-frame assignments.

(a) (b)

x3

Yo

xo
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d1 Bj

1 o o 0

0 0

0 0

FIGURE 3.8: Link parameters of the three-link planar manipulator.

lies in a plane with all 2 axes parallel, there are no link offsets—all are zero. All
joints are rotational, so when they are at zero degrees, all X axes must align.

With these comments in mind, it is easy to find the frame assignments shown
in Fig. 3.7. The corresponding link parameters are shown in Fig. 3.8.

Note that, because the joint axes are all parallel and all the Z axes are taken as
pointing out of the paper, all a very simple mechanism.
Note also that our kinematic analysis always ends at a frame whose origin lies on
the last joint axis; therefore, 13 does not appear in the link parameters. Such final
offsets to the end-effector are dealt with separately later.

EXAMPLE 3.4

Figure 3.9(a) shows a robot having three degrees of freedom and one prismatic joint.
This manipulator can be called an "RPR mechanism," in a notation that specifies
the type and order of the joints. It is a "cylindrical" robot whose first two joints
are analogous to polar coordinates when viewed from above. The last joint (joint 3)
provides "roll" for the hand. Figure 3.9(b) shows the same manipulator in schematic

Joint 2 Joint 3

_____

Joint 1

(a) (b)

FIGURE 3.9: Manipulator having three degrees of freedom and one prismatic joint.
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z3

FIGURE 3.10: Link-frame assignments.

form. Note the symbol used to represent prismatic joints, and note that a "dot" is
used to indicate the point at which two adjacent axes intersect. Also, the fact that
axes 1 and 2 are orthogonal has been indicated.

Figure 3.10(a) shows the manipulator with the prismatic joint at minimum
extension; the assignment of link frames is shown in Fig. 3.10(b).

Note that frame {0} and frame {1} are shown as exactly coincident in this figure,
because the robot is drawn for the position = 0. Note that frame {0}, although not
at the bottom of the flanged base of the robot, is nonetheless rigidly affixed to link 0,
the nonmoving part of the robot. Just as our link frames are not used to describe the
kinematics all the way out to the hand, they need not be attached all the way back
to the lowest part of the base of the robot. It is sufficient that frame {O} be attached
anywhere to the nonmoving link 0, and that frame {N}, the final frame, be attached
anywhere to the last link of the manipulator. Other offsets can be handled later in a
general way.

Note that rotational joints rotate about the Z axis of the associated frame, but
prismatic joints slide along Z. In the case where joint i is prismatic, is a fixed
constant, and is the variable. If d1 is zero at minimum extension of the link, then
frame {2} should be attached where shown, so that d2 wifi give the true offset. The
link parameters are shown in Fig. 3.11.

Note that 87 is zero for this robot and that d7 is a variable. Axes 1 and 2
intersect, so a1 is zero. Angle must be 90 degrees in order to rotate so as to
align with 1, (about X1).

EXAMPLE 3.5

Figure 3.12(a) shows a three-link, 3R manipulator for which joint axes 1 and 2
intersect and axes 2 and 3 are parallel. Figure 3.12(b) shows the kinematic schematic
of the manipulator. Note that the schematic includes annotations indicating that the
first two axes are orthogonal and that the last two are parallel.

Demonstrate the nonuniqueness of frame assignments and of the Denavit—
Hartenberg parameters by showing several possible correct assignments of frames
(1}and{2}.

(a) (b)
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i a1_1 0j—1 d1

0 0 0

0 0

0 0 L7 03

FIGURE 3.11: Link parameters for the RPR manipulator of Example 3.4.

FIGURE 3.12: Three-link, nonpianar manipulator.

Figure 3.13 shows two possible frame assignments and corresponding param-
eters for the two possible choices of direction of Z2.

In general, when 2, and 2j+1 intersect, there are two choices for In this
example, joint axes 1 and 2 intersect, so there are two choices for the direction of
X1. Figure 3.14 shows two more possible frame assignments, corresponding to the
second choice of X1.

In fact, there are four more possibilities, corresponding to the preceding four
choices, but with Z1 pointing downward.

3.5 MANIPULATOR KINEMATICS

In this section, we derive the general form of the transformation that relates
the frames attached to neighboring links. We then concatenate these individual
transformations to solve for the position and orientation of link n relative to link 0.

L1

(a) (b)
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FIGURE 3.13: Two possible frame assignments.

FIGURE 3.14: Two more possible frame assignments.

Derivation of link transformations

We wish to construct the transform that defines frame {i } relative to the frame {i — 1}.
In general, this transformation will be a function of the four link parameters. For
any given robot, this transformation wifi be a function of only one variable, the other
three parameters being fixed by mechanical design. By defining a frame for each
link, we have broken the kinematics problem into a subproblems. In order to solve
each of these subproblems, namely we will further break each subproblem
into four subsubproblems. Each of these four transformations will be a function of
one link parameter oniy and will be simple enough that we can write down its form
by inspection. We begin by defining three intermediate frames for each link—{P},
{Q}, and {R}.

Figure 3.15 shows the same pair of joints as before with frames {P}, {Q}, and
{R} defined. Note that only the X and Z axes are shown for each frame, to make
the drawing clearer. Frame {R} differs from frame {i 1} only by a rotation of

a1 a1 0 L7

a1 0 a2 =

a1 = 0 a2 = 0

a1 90 a2 = 0 02 =

d1=0 d1=0
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=

1

Section 3.5 Manipulator kinematics 75

Adsi

FIGURE 3.15: Location of intermediate frames {P}, {Q}, and {R}.

Frame (Q} differs from {R} by a translation Frame {P} differs from {Q} by a
rotation and frame {i} differs from {P} by a translation d1. If we wish to write the
transformation that transforms vectors defined in {i} to their description in {i —

we may write
i—lp = RT (3.1)

or
(3.2)

(3.3)

Considering each of these transformations, we see that (3.3) may be written

= (3.4)

or
= (3.5)

where the notation ScrewQ (r, q') stands for the combination of a translation along an

axis by a distance r and a rotation about the same axis by an angle Multiplying
out (3.4), we obtain the general form of

(3.6)

0

0 0 0 1.
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EXAMPLE 3.6

Using the link parameters shown in Fig. 3.11 for the robot of Fig. 3.9, compute the
individual transformations for each link.

Substituting the parameters into (3.6), we obtain

c91 0 0

0T—
s81 c91 00

1 — 0 0 10'
0 0 01

=

(3.7)

c93 —sO3 0 0

2T—
503 c03 0 0

3 — 0 0 112
0 0 01

Once having derived these link transformations, we wifi find it a good idea to check
them against common sense. For example, the elements of the fourth column of
each transform should give the coordinates of the origin of the next higher frame.

Concatenating link transformations

Once the link frames have been defined and the corresponding link parameters
found, developing the kinematic equations is straightforward. From the values of the
link parameters, the individual link-transformation matrices can be computed. Then,
the link transformations can be multiplied together to find the single transformation
that relates frame [N} to frame {0}:

(3.8)

This transformation, T, wifi be a function of all ii joint variables. If the robot's
joint-position sensors are queried, the Cartesian position and orientation of the last
link can be computed by

3.6 ACTUATOR SPACE, JOINT SPACE, AND CARTESIAN SPACE

The position of all the links of a manipulator of n degrees of freedom can be
specified with a set of n joint variables. This set of variables is often referred to as
the a x 1 joint vector. The space of all such joint vectors is referred to as joint space.
Thus far in this chapter, we have been concerned with computing the Cartesian
space description from knowledge of the joint-space description. We use the term
Cartesian space when position is measured along orthogonal axes and orientation
is measured according to any of the conventions outlined in Chapter 2. Sometimes,
the terms task-oriented space and operational space are used for what we will call
Cartesian space.



Section 3.7 Examples: kinematics of two industrial robots 77

'H'
Actuator Joint Cartesian

space space space

FIG U RE 3.16: Mappings between kinematic descriptions.

So far, we have implicitly assumed that each kinematic joint is actuated directly
by some sort of actuator. However, in the case of many industrial robots, this is not so.
For example, sometimes two actuators work together in a differential pair to move a
single joint, or sometimes a linear actuator is used to rotate a revolute joint, through
the use of a four-bar linkage. In these cases, it is helpful to consider the notion of
actuator positions. The sensors that measure the position of the manipulator are
often located at the actuators, so some computations must be performed to realize
the joint vector as a function of a set of actuator values, or actuator vector.

As is indicated in Fig. 3.16, there are three representations of a manipulator's
position and orientation: descriptions in actuator space, in joint space, and in
Cartesian space. In this chapter, we are concerned with the mappings between
representations, as indicated by the solid arrows in Fig. 3.16. In Chapter 4, we will
consider the inverse mappings, indicated by the dashed arrows.

The ways in which actuators might be connected to move a joint are quite
varied; they might be catalogued, but we wifi not do so here. For each robot we
design or seek to analyze, the correspondence between actuator positions and joint
positions must be solved. In the next section, we will solve an example problem for
an industrial robot.

3.7 EXAMPLES: KINEMATICS OF TWO INDUSTRIAL ROBOTS

Current industrial robots are available in many different kinematic configurations [2],
[3]. In this section, we work out the kinematics of two typical industrial robots. First
we consider the Unimation PUMA 560, a rotary-joint manipulator with six degrees
of freedom. We will solve for the kinematic equations as functions of the joint angles.
For this example, we wifi skip the additional problem of the relationship between
actuator space and joint space. Second, we consider the Yasukawa Motoman L-3, a
robot with five degrees of freedom and rotary joints. This example is done in detail,
including the actuator-to-joint transformations. This example may be skipped on
first reading of the book.

The PUMA 560

The Unimation PUMA 560 (Fig. 3.17) is a robot with six degrees of freedom
and all rotational joints (i.e., it is a 6R mechanism). It is shown in Fig. 3.18, with
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FIGURE 3.17: The Unimation PUMA 560. Courtesy of Unimation Incorporated,
Shelter Rock Lane, Danbury, Conn.

link-frame assignments in the position corresponding to all joint angles equal to
zero.5 Figure 3.19 shows a detail of the forearm of the robot.

Note that the frame {0} (not shown) is coincident with frame [1} when is

zero. Note also that, for this robot, as for many industrial robots, the joint axes
of joints 4, 5, and 6 all intersect at a common point, and this point of intersection
coincides with the origin of frames {4}, {5}, and {6}. Furthermore, the joint axes 4, 5,
and 6 are mutually orthogonal. This wrist mechanism is ifiustrated schematically in
Fig. 3.20.

The link parameters corresponding to this placement of link frames are shown
in Fig. 3.21. In the case of the PUMA 560, a gearing arrangement in the wrist of
the manipulator couples together the motions of joints 4, 5, and 6. What this means
is that, for these three joints, we must make a distinction between joint space and
actuator space and solve the complete kinematics in two steps. However, in this
example, we will consider only the kinematics from joint space to Cartesian space.

5Unimation has used a slightly different assignment of zero location of the joints, such that =
03 1800, where is the position of joint 3 in Unimation's convention.
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FIG U RE 3.18: Some kinematic parameters and frame assignments for the PUMA 560

FIG U RE 3.19: Kinematic parameters and frame assignments for the forearm of the
PUMA 560 manipulator.

manipulator.

z4
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i a,—1 d1 Oi

1 0 0 0

0 0

0 a7 d3 63

4 —90° a3 d4 04

5 900 0 0

6 0 0 06

FIGURE 3.21: Link parameters of the PUMA 560.

65

FIGURE 3.20: Schematic of a 3R wrist in which all three axes intersect at a point and
are mutually orthogonal. This design is used in the PUMA 560 manipulator and
many other industrial robots.
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Using (3.6), we compute each of the link transformations:

6Depending on the amount of space available to show expressions, we use any of the following three
forms: cos 95, C95, or c5.

0T—
1 —

c91 —sO1 0 0

0 0

0 0

0 0
10

0 0 01
0

0 0

0 0

0 0 01
0

0 0

0 0
0

0 0
0 0

0 0

0 0

0 0

0 0
0 0 01

(3.9)

We now form by matrix multiplication of the individual link matrices.
While forming this product, we wifi derive some subresults that wifi be useful when
solving the inverse kinematic problem in Chapter 4. We start by multiplying and

that is,

c5c6 —c5s6 —s5 0

= 4T 5T =
6 0

0 0 01
where c5 is shorthand for cos 05, S5 for sin and so on.6 Then we have

(3.11)= =
C4C5C6 — C4C5S6 — S4C6 —C4S5

s5C6 C5
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Because joints 2 and 3 are always parallel, multiplying and first and then
applying sum-of-angle formulas wifi yield a somewhat simpler final expression. This
can be done whenever two rotational joints have parallel axes and we have

where we have used the sum-of-angle formulas (from Appendix A):

Then we have

C23 = C2C3 —

S23 = C2S3 +

1. 1.
113

— 1T 3T — 121 1r22 1r23
6 3 6 — 1.

1

1.

1

133
1

1

r21

r32 r330001

= =

C23 0 a2c2
0 0 1 d3

0 00

where

ipx
ipy
ipz

1

(3.12)

(3.13)

= c73[c4c5c6 — —

= —S4C5c6 — c4S6,

= —s23[c4c5c6 — s4s6] — c23s5c6,

= —c23[c4c5s6 + s4c6] + s23s5s6,

= S4C5S6 — C4C6,

= s93[c4c5s6 + s4c6] + c23s5s6,

= —C23C4S5 —

S23C4S5 — C23C5,

a2c2 + a3 C23 d4s73,

d3,

= —a3s23 — a2s2 — d4c23.

Finally, we obtain the product of all six link transforms:
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Here,

= — s4s5) — s23s5c5] + s1(s4c5c6 + c4s6),

= s4s6) — s23s5c6 — c1(s4c5c6 + c4s6),

r31 = —s23(c4c5c6 — s4s6) — c23s5c6,

= c1[c23(—c4c5s6 — s4c6) + s23s5s6] + s1(c4c6 — s4c5s6),

r22 = s1[c23(—c4c5s6 — s4c6) + s23s5s6] c1(c4c6 — s4c5s6),

r32 = —s23(—c4c5s5 — s4c6) + c23s5s6,

r13 = —c1(c23c4s5 + s23c5) — s1s4s5,

r23 = —sj(c23c4s5 + s23c5) + c1s4s5,

r33 = 523C4S5 —

= + a3c23 — d4s23] — d3s1,

P) = s1[a2c2 + a3c23 — d4s23] + d3c1,

= —a3s23 — a2s2 — d4c23. (3.14)

Equations (3.14) constitute the kinematics of the PUMA 560. They specify how to
compute the position and orientation of frame {6} relative to frame {O} of the robot.
These are the basic equations for all kinematic analysis of this manipulator.

The Yasukawa Motoman L-3

The Yasukawa Motoman L-3 is a popular industrial manipulator with five degrees
of freedom (Fig. 3.22). Unlike the examples we have seen thus far, the Motoman
is not a simple open kinematic chain, but rather makes use of two linear actuators
coupled to links 2 and 3 with four-bar linkages. Also, through a chain drive, joints 4
and 5 are operated by two actuators in a differential arrangement.

In this example, we wifi solve the kinematics in two stages. First, we wifi solve
for joint angles from actuator positions; second, we will solve for Cartesian position
and orientation of the last link from joint angles. In this second stage, we can treat
the system as if it were a simple open-kinematic-chain SR device.

Figure 3.23 shows the linkage mechanism that connects actuator number 2 to
links 2 and 3 of the robot. The actuator is a linear one that directly controls the
length of the segment labeled DC. Triangle ABC is ftxed, as is the length BD. Joint
2 pivots about point B, and the actuator pivots slightly about point C as the linkage
moves. We give the following names to the constants (lengths and angles) associated
with actuator 2:

= AB, = AC, a2 = BC,

= BD, c�, = LJBD, 12 = BJ,
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FIGURE 3.22: The Yasukawa Motoman L-3. Courtesy of Yasukawa.

we give the following names to the variables:

= —LJBQ, = /CBD, g2 = DC.

Figure 3.24 shows the linkage mechanism that connects actuator number 3 to
links 2 and 3 of the robot. The actuator is a linear one that directly controls the
length of the segment labeled HG. Triangle EFG is fixed, as is the length FH. Joint
3 pivots about point J, and the actuator pivots slightly about point G as the linkage
moves. We give the following names to the constants (lengths and angles) associated
with actuator 3:

= EF, = EG, a3 = GF,

= HF, 13 = JK.

We give the following names to the variables:

03 = LPJK, 1/13 = LGFH, g3 = GH.

This arrangement of actuators and linkages has the following functional effect.
Actuator 2 is used to position joint 2; while it is doing so, link 3 remains in the
same orientation relative to the base of the robot. Actuator 3 is used to adjust
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FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

the orientation of link 3 relative to the base of the robot (rather than relative to
the preceding link as in a serial-kinematic-chain robot). One purpose of such a
linkage arrangement is to increase the structural rigidity of the main linkages of
the robot. This often pays off in terms of an increased ability to position the robot
precisely.

The actuators for joints 4 and 5 are attached to link 1 of the robot with their axes
aligned with that ofjoint 2 (points B and F in Figs. 3.23 and 3.24). They operate the
wrist joints through two sets of chains—one set located interior to link 2, the second
set interior to link 3. The effect of this transmission system, along with its interaction
with the actuation of links 2 and 3, is described functionally as follows: Actuator 4
is used to position joint 4 relative to the base of the robot, rather than relative to the
preceding link 3. This means that holding actuator 4 constant wifi keep link 4 at a
constant orientation relative to the base of the robot, regardless of the positions of
joints 2 and 3. Finally, actuator 5 behaves as if directly connected to joint 5.

We now state the equations that map a set of actuator values (A1) to the
equivalent set of joint values (0,). In this case, these equations were derived by
straightforward plane geometry—mostly just application of the "law of cosines."7

71f a triangle's angles are labeled a, b, and c, where angle a is opposite side A, and so on, then
A2 = B2 + C2 — 2BC cos a.
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FIGURE 3.24: Kinematic details of th3 Yasukawa actuator-3 linkage.

Appearing in these equations are scale (k1) and offset constants for each
actuator. For example, actuator 1 is directly connected to joint axis 1, and so the
conversion is simple; it is just a matter of a scale factor plus an offset. Thus,

= k1A1 + x1,

1(1 4 \2 2 a2
2 2 + tan1 + Q2 — 2700,

Y2

93 —cos
—

94= —k4A4—92—03+A4+180°,

95 = k5A5 + A5.

— + tan1 — 90°,
\ /

(3.15)

Figure 3.25 shows the attachment of the link frames. In this figure, the manipula-
tor is shown in a position corresponding to the joint vector 0 = (0, —90°, 90°, 90°, 0).
Figure 3.26 shows the link parameters for this manipulator. The resulting link-
transformation matrices are



c81 —s91 0 0

0T—
s91 c91 00

1 — 0 0 10'
0 0 01
c92 —sO2 0 0

0 0 10
2 — —sO, —c02 0 0

0 0 01
CO3 —SO3 0 12

2T—
503 c03 0 0

3 0 0 10'
0 0 01

CO4 —504 0 13

3T—
sO4 c04 0 0

4 0 0 10'
0 0 01

c05 0 0
0 0

0 0 01
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(3.16)

z4

FIGURE 3.25: Assignment of link frames for the Yasukawa L-3.
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i a1—1 d1

0 0 0

0 0

0 0

0 0

0 0 05

FIGURE 3.26: Link parameters of the Yasukawa L-3 manipulator.

Forming the product to obtain T, we obtain

r11 r12 r13
= r21 Py

r39 r330001
where

r11 = c1c234c5

r21 = S1C234C5 + C1S5,

r31 = —s234c5,

r12 = —c1c234s5 —

= S1C234S5 + C1C5,

=

r13 = C1S234,

=

/33 =
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= + 13c23),

= s1(12c7 + 13c23),

Pz = — 13s93. (3.17)

We developed the kinematic equations for the Yasukawa Motoman in two
steps. In the first step, we computed a joint vector from an actuator vector; in the
second step, we computed a position and orientation of the wrist frame from the
joint vector. If we wish to compute only Cartesian position and not joint angles, it
is possible to derive equations that map directly from actuator space to Cartesian
space. These equations are somewhat simpler computationally than the two-step
approach. (See Exercise 3.10.)

3.8 FRAMES WITH STANDARD NAMES

As a matter of convention, it wifi be helpful if we assign specific names and locations
to certain "standard" frames associated with a robot and its workspace. Figure 3.27
shows a typical situation in which a robot has grasped some sort of tool and is
to position the tool tip to a user-defined location. The five frames indicated in
Fig. 3.27 are so often referred to that we will define names for them. The naming
and subsequent use of these five frames in a robot programming and control system
facilitates providing general capabilities in an easily understandable way. All robot
motions will be described in terms of these frames.

Brief definitions of the frames shown in Fig. 3.27 follow.

The base frame, {B}

{B} is located at the base of the manipulator. It is merely another name for frame
{0}. It is affixed to a nonmoving part of the robot, sometimes called link 0.

FIGURE 3.27: The standard frames.
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The station frame, {S}

{S} is located in a task-relevant location. In Fig. 3.28, it is at the corner of a table
upon which the robot is to work. As far as the user of this robot system is concerned,
{S} is the universe frame, and all actions of the robot are performed relative to it.
It is sometimes called the task frame, the world frame, or the universe frame. The
station frame is always specified with respect to the base frame, that is,

The wrist frame, {W}

{W} is affixed to the last link of the manipulator. It is another name for frame {N}, the
link frame attached to the last link of the robot. Very often, {W} has its origin fixed
at a point called the wrist of the manipulator, and {W} moves with the last link of
the manipulator. It is defined relative to the base frame—that is, {W} = =

The tool frame, {T}

{T} is affixed to the end of any tool the robot happens to be holding. When the
hand is empty, {T} is usually located with its origin between the fingertips of
the robot. The tool frame is always specified with respect to the wrist frame. In
Fig. 3.28, the tool frame is defined with its origin at the tip of a pin that the robot is
holding.

FIGURE 3.28: Example of the assignment of standard frames.

Tool frame

\

Base frame \
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The goal frame, {G}

{G} is a description of the location to which the robot is to move the tool. Specifically
this means that, at the end of the motion, the tool frame should be brought to
coincidence with the goal frame. {G} is always specified relative to the station frame.
In Fig. 3.28, the goal is located at a hole into which we want the pin to be inserted.

All robot motions may be described in terms of these frames without loss
of generality. Their use helps to give us a standard language for talking about
robot tasks.

3.9 WHERE IS THE TOOL?

One of the first capabilities a robot must have is to be able to calculate the position
and orientation of the tool it is holding (or of its empty hand) with respect to a
convenient coordinate system. That is, we wish to calculate the value of the tool
frame, {T}, relative to the station frame, {S}. Once has been computed via the
kinematic equations, we can use Cartesian transforms, as studied in Chapter 2, to
calculate {T} relative to {S}. Solving a simple transform equation leads to

= T1 (3.18)

Equation (3.18) implements what is called the WHERE function in some robot
systems. It computes "where" the arm is. For the situation in Fig. 3.28, the output of
WHERE would be the position and orientation of the pin relative to the table top.

Equation (3.18) can be thought of as generalizing the kinematics. T computes
the kinematics due to the geometry of the linkages, along with a general transform
(which might be considered a fixed link) at the base end T) and another at the
end-effector These extra transforms allow us to include tools with offsets and
twists and to operate with respect to an arbitrary station frame.

3.10 COMPUTATIONAL CONSIDERATIONS

In many practical manipulator systems, the time required to perform kinematic
calculations is a consideration. In this section, we briefly discuss various issues
involved in computing manipulator kinematics, as exemplified by (3.14), for the case
of the PUMA 560.

One choice to be made is the use of fixed- or floating-point representation
of the quantities involved. Many implementations use floating point for ease of
software development, because the programmer does not have to be concerned
with scaling operations capturing the relative magnitudes of the variables. However,
when speed is crucial, fixed-point representation is quite possible, because the
variables do not have a large dynamic range, and these ranges are fairly well known.
Rough estimations of the number of bits needed in fixed-point representation seem
to indicate that 24 are sufficient [4].

By factoring equations such as (3.14), it is possible to reduce the number of
multiplications and additions—at the cost of creating local variables (usually a good
trade-off). The point is to avoid computing common terms over and over throughout
the computation. There has been some application of computer-assisted automatic
factorization of such equations [5].
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The major expense in calculating kinematics is often the calculation of the
transcendental functions (sine and cosine). When these functions are available as
part of a standard library, they are often computed from a series expansion at
the cost of many multiply times. At the expense of some required memory, many
manipulation systems employ table-lookup implementations of the transcendental
functions. Depending on the scheme, this reduces the amount of time required to
calculate a sine or cosine to two or three multiply times or less [6].

The computation of the kinematics as in (3.14) is redundant, in that nine
quantities are calculated to represent orientation. One means that usually reduces
computation is to calculate only two columns of the rotation matrix and then to
compute a cross product (requiring only six multiplications and three additions)
to compute the third column. Obviously, one chooses the two least complicated
columns to compute.
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EXERCISES

3.1 [15] Compute the kinematics of the planar arm from Example 3.3.
3.2 [37] Imagine an arm like the PUMA 560, except that joint 3 is replaced with

a prismatic joint. Assume the prismatic joint slides along the direction of X1 in
Fig. 3.18; however, there is still an offset equivalent to d3 to be accounted for.
Make any additional assumptions needed. Derive the kinematic equations.

3.3 [25] The arm with three degrees of freedom shown in Fig. 3.29 is like the one in
Example 3.3, except that joint l's axis is not parallel to the other two. Instead,
there is a twist of 90 degrees in magnitude between axes 1 and 2. Derive link
parameters and the kinematic equations for Note that no 13 need be defined.

3.4 [22] The arm with three degrees of freedom shown in Fig. 3.30 has joints 1
and 2 perpendicular and joints 2 and 3 parallel. As pictured, all joints are at
their zero location. Note that the positive sense of the joint angle is indicated.
Assign link frames {0} through {3} for this arm—that is, sketch the arm, showing
the attachment of the frames. Then derive the transformation matrices



FIGURE 3.29: The 3R nonpianar arm (Exercise 3.3).
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FIGURE 3.30: Two views of a 3R manipulator (Exercise 3.4).

3.5 [26] Write a subroutine to compute the kinematics of a PUMA 560. Code for
speed, trying to minimize the number of multiplications as much as possible. Use
the procedure heading (or equivalent in C)

Procedure KIN(VAR theta: vec6; VAR wreib: frame);

Count a sine or cosine evaluation as costing 5 multiply times. Count additions
as costing 0.333 multiply times and assignment statements as 0.2 multiply times.

02

L1

01

{T}

ZT

xs
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Count a square-root computation as costing 4 multiply times. How many multiply
times do you need?

3.6 [2011 Write a subroutine to compute the kinematics of the cylindrical arm in
Example 3.4. Use the procedure heading (or equivalent in C)

Procedure KIN(VAR jointvar: vec3; VAR wreib: frames);

Count a sine or cosine evaluation as costing 5 multiply times. Count additions
as costing 0.333 multiply times and assignment statements as 0.2 multiply times.
Count a square-root computation as costing 4 multiply times. How many multiply
times do you need?

3.7 [22] Write a subroutine to compute the kinematics of the arm in Exercise 3.3. Use
the procedure heading (or equivalent in C)

Procedure KIN(VAR theta: vec3; VAR wreib: frame);

Count a sine or cosine evaluation as costing 5 multiply times. Count additions
as costing 0.333 multiply times and assignment statements as 0.2 multiply times.
Count a square-root computation as costing 4 multiply times. How many multiply
times do you need?

3.8 [13] In Fig. 3.31, the location of the tool, T, is not accurately known. Using force
control, the robot feels around with the tool tip until it inserts it into the socket
(or Goal) at location T. Once in this "calibration" configuration (in which {G}
and {T) are coincident), the position of the robot, is figured out by reading
the joint angle sensors and computing the kinematics. Assuming T and T are
known, give the transform equation to compute the unknown tool frame, T.

FIGURE 3.31: Determination of the tool frame (Exercise 3.8).

{B }
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Tip

FIGURE 3.32: Two-link arm with frame assignments (Exercise 3.9).

3.9 [11] For the two-link manipulator shown in Fig. 3.32(a), the link-transformation
matrices, and were constructed. Their product is

c91c02 —c91s92 11c01

0T
s01c92 —s01s02 —c01 11s01

2 — sO2 c02 0 0
0 0 0 1

The link-frame assignments used are indicated in Fig. 3.32(b). Note that frame
{0) is coincident with frame {1} when 01 = 0. The length of the second link is 12.
Find an expression for the vector 0 which locates the tip of the arm relative
to the {0} frame.

3.10 [39] Derive kinematic equations for the Yasukawa Motoman robot (see
Section 3.7) that compute the position and orientation of the wrist frame directly
from actuator values, rather than by first computing the joint angles. A solution
is possible that requires only 33 multiplications, two square roots, and six sine or
cosine evaluations.

3.11 [17] Figure 3.33 shows the schematic of a wrist which has three intersecting axes
that are not orthogonal. Assign link frames to this wrist (as if it were a 3-DOF
manipulator), and give the link parameters.

3.12 [08] Can an arbitrary rigid-body transformation always be expressed with four
parameters (a, a, d, 0) in the form of equation (3.6)?

3.13 [15] Show the attachment of link frames for the 5-DOF manipulator shown
schematically in Fig. 3.34.

3.14 [20] As was stated, the relative position of any two lines in space can be given
with two parameters, a and a, where a is the length of the common perpendicular
joining the two and a is the angle made by the two axes when projected onto
a plane normal to the common perpendicular. Given a line defined as passing
through point p with unit-vector direction th and a second passing through point
q with unit-vector direction ii, write expressions for a and a.

3.15 [15] Show the attachment of link frames for the 3-DOF manipulator shown
schematically in Fig. 3.35.

3.16 [15] Assign link frames to the RPR planar robot shown in Fig. 3.36, and give the
linkage parameters.

3.17 [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.37.

(a) (b)



[15] Show the attachment of link frames on the three-link robot shown in Fig. 3.38.
[15] Show the attachment of link frames on the three-link robot shown in Fig. 3.39.
[15] Show the attachment of link frames on the three-link robot shown in Fig. 3.40.
[15] Show the attachment of link frames on the three-link robot shown in Fig. 3.41.
[18] Show the attachment of link frames on the P3R robot shown in Fig. 3.42.
Given your frame assignments, what are the signs of d2, d3, and a2?
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FIGURE 3.33: 3R nonorthogonal-axis robot (Exercise 3.11).

S/\
/ \

/

FIGURE 3.34: Schematic of a 2RP2R manipulator (Exercise 3.13).

3.18
3.19
3.20
3.21
3.22



FIGURE 3.35: Schematic of a 3R manipulator (Exercise 3.15).

FIGURE 3.36: RPR planar robot (Exercise 3.16).
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FIGURE 3.37: Three-link RRP manipulator (Exercise 3.17).
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--fl---

FIGURE 3.38: Three-link RRR manipulator (Exercise 3.18).

d7

FIGURE 3.39: Three-link RPP manipulator (Exercise 3.19).

d1

FIGURE 3.40: Three-link PRR manipulator (Exercise 3.20).
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FIGURE 3.42: Schematic of a P3R manipulator (Exercise 3.22).

PROGRAMMING EXERCISE (PART 3)

1. Write a subroutine to compute the kinematics of the planar 3R robot in Exam-
ple 3.3—that is, a routine with the joint angles' values as input, and a frame (the
wrist frame relative to the base frame) as output. Use the procedure heading (or
equivalent in C)

Proceduie KIN(VAR theta: vec3; VAR wreib: franie);

where "wreib" is the wrist frame relative to the base frame, The type "frame"
consists of a 2 x 2 rotation matrix and a 2 x 1 position vector. If desired, you may
represent the frame with a 3 x 3 homogeneous transform in which the third row is
[0 0 1]. (The manipulator data are 11 = 12 = 0.5 meters.)

d3

FIGURE 3.41: Three-link PPP manipulator (Exercise 3.21).

'I
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2. Write a routine that calculates where the tool is, relative to the station frame. The
input to the routine is a vector of joint angles:

Procedure WHERE(VAR theta: vec3; VAR trels: frame);

Obviously, WI-IFRE must make use of descriptions of the tool frame and the
robot base frame in order to compute the location of the tool relative to the station
frame. The values of T and T should be stored in global memory (or, as a
second choice, you may pass them as arguments in 'WHERE).

3. A tool frame and a station frame for a certain task are defined as follows by the
user:

=[xy9]=[0.1 0.2 30.0],

= [x y 9] = [—0.1 0.3 0.0].

Calculate the position and orientation of the tool relative to the station frame for
the following three configurations (in units of degrees) of the arm:

93] = [0.0 90.0 —90.0],

93] = [—23.6 —30.3 48.0],

[°i 03] = [130.0 40.0 12.0].

MATLAB EXERCISE 3

This exercise focuses on DII parameters and on the forward-pose (position and orien-
tation) kinematics transformation for the planar 3-DOF, 3R robot (of Figures 3.6 and
3.7). The following fixed-length parameters are given: L1 = 4, L7 = 3, and L3 = 2 (m).

a) Derive the DH parameters. You can check your results against Figure 3.8.
b) Derive the neighboring homogeneous transformation matrices i = 1, 2, 3.

These are functions of the joint-angle variables i = 1, 2, 3. Also, derive the
constant by inspection: The origin of {H} is in the center of the gripper fingers,
and the orientation of {H} is always the same as the orientation of {3}.

c) Use Symbolic MATLAB to derive the forward-pose kinematics solution T and
T symbolically (as a function of Abbreviate your answer, using s1 = sin(91),

cos(01), and so on. Also, there is a + + 93) simplification, by using sum-
of-angle formulas, that is due to the parallel Z1 axes. Calculate the forward-pose
kinematics results (both and via MATLAB for the following input cases:

i) e = 91T = {0 0 O}T•

ii) 0 = {10° 20° 300}T

iii) 0 = {90° 90°

For all three cases, check your results by sketching the manipulator configuration
and deriving the forward-pose kinematics transformation by inspection. (Think of
the definition of °HT in terms of a rotation matrix and a position vector.) Include
frames {H}, {3), and {0} in your sketches.

d) Check all your results by means of the Corke MATLAB Robotics Toolbox. Try
functions link() , robotQ, and fkineQ.




