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INTRODUCTION

Armed with the previous material, we now have the means to calculate joint-
position time histories that correspond to desired end-effector motions through
space. In this chapter, we begin to discuss how to cause the manipulator actually to
perform these desired motions.

The control methods that we will discuss fall into the class called linear-control
systems. Strictly speaking, the use of linear-control techniques is valid only when
the system being studied can be modeled mathematically by linear differential
equations. For the case of manipulator control, such linear methods must essentially
be viewed as approximate methods, for, as we have seen in Chapter 6, the dynamics
of a manipulator are more properly represented by a nonlinear differential equation.
Nonetheless, we will see that it is often reasonable to make such approximations,
and it also is the case that these linear methods are the ones most often used in
current industrial practice.

Finally, consideration of the linear approach will serve as a basis for the
more complex treatment of nonlinear control systems in Chapter 10. Although we
approach linear control as an approximate method for manipulator control, the
justification for using linear controllers is not only empirical. In Chapter 10, we
will prove that a certain linear controller leads to a reasonable control system
even without resorting to a linear approximation of manipulator dynamics. Readers
familiar with linear-control systems might wish to skip the first four sections of the
current chapter.
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Section 9.2 Feedback and closed-loop control 263
9.2 FEEDBACK AND CLOSED-LOOP CONTROL

We will model a manipulator as a mechanism that is instrumented with sensors
at each joint to measure the joint angle and that has an actuator at each joint to
apply a torque on the neighboring (next higher) link.!. Although other physical
arrangements of sensors are sometimes used, the vast majority of robots have a
position sensor at each joint. Sometimes velocity sensors (tachometers) are also
present at the joints. Various actuation and transmission schemes are prevalent in
industrial robots, but many of these can be modeled by supposing that there is a
single actuator at each joint.

We wish to cause the manipulator joints to follow prescribed position trajec-
tories, but the actuators are commanded in terms of torque, so we must use some
kind of control system to compute appropriate actuator commands that will realize
this desired motion. Almost always, these torques are determined by using feedback
from the joint sensors to compute the torque required.

Figure 9.1 shows the relationship between the trajectory generator and the
physical robot. The robot accepts a vector of joint torques, 7, from the control
system. The manipulator’s sensors allow the controller to read the vectors of joint
positions, ©, and joint velocities, ®. All signal lines in Fig. 9.1 carry N x 1 vectors
(where N is the number of joints in the manipulator).

Let’s consider what algorithm might be implemented in the block labeled
“control system” in Fig. 9.1. One possibility is to use the dynamic equation of the
robot (as studied in Chapter 6) to calculate the torques required for a particular
trajectory. We are given ®,, ®,, and @d by the trajectory generator, so we could
use (6.59) to compute

T=M(0,)0,+V(@,,0,) +GO,). 9.1)

This computes the torques that our model dictates would be required to realize
the desired trajectory. If our dynamic model were complete and accurate and no
“noise” or other disturbances were present, continuous use of (9.1) along the desired
trajectory would realize the desired trajectory. Unfortunately, imperfection in the
dynamic model and the inevitable presence of disturbances make such a scheme
impractical for use in real applications. Such a control technique is termed an open-
loop scheme, because there is no use made of the feedback from the joint sensors

6,0

Trajectory 84(9) Control 7
generator 6.0 - system

r 3

1D

|-

Robot

FIGURE 9.1: High-level block diagram of a robot-control system.

I Remember, all remarks made concerning rotational joints hold analogously for linear joints, and vice
versa . :
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(ie., (9.1) is a function only of the desired trajectory, ®,, and its derivatives, and not
a function of ®, the actual trajectory).

Generally, the only way to build a high-performance control system is to make
use of feedback from joint sensors, as indicated in Fig. 9.1. Typically, this feedback
is used to compute any servo error by finding the difference between the desired
and the actual position and that between the desired and the actual velocity:

E —_—-®d—®,
E=0,-06. (9.2)

The control system can then compute how much torque to require of the actuators
as some function of the servo error. Obviously, the basic idea is to compute actuator
torques that would tend to reduce servo errors. A control system that makes use of
feedback is called a closed-loop system. The “loop” closed by such a control system
around the manipulator is apparent in Fig. 9.1.

The central problem in designing a control system is to ensure that the resulting
closed-loop system meets certain performance specifications. The most basic such
criterion is that the system remain stable. For our purposes, we will define a system
to be stable if the errors remain “small” when executing various desired trajectories
even in the presence of some “moderate” disturbances. It should be noted that an
improperly designed control system can sometimes result in unstable performance,
in which servo errors are enlarged instead of reduced. Hence, the first task of a
control engineer is to prove that his or her design yields a stable system; the second
is to prove that the closed-loop performance of the system is satisfactory. In practice,
such “proofs” range from mathematical proofs based on certain assumptions and
models to more empirical results, such as those obtained through simulation or
experimentation.

Figure 9.1, in which all signals lines represent N x 1 vectors, summarizes the fact
that the manipulator-control problem is a multi-input, multi-output (MIMO) control
problem. In this chapter, we take a simple approach to constructing a control system
by treating each joint as a separate system to be controlled. Hence, for an N-jointed
manipulator, we will design N independent single-input, single-output (SISO)
control systems. This is the design approach presently adopted by most industrial-
robot suppliers. This independent joint control approach is an approximate method
in that the equations of motion (developed in Chapter 6) are not independent, but
rather are highly coupled. Later, this chapter will present justification for the linear
approach, at least for the case of highly geared manipulators.

9.3 SECOND-ORDER LINEAR SYSTEMS

Before considering the manipulator control problem, let’s step back and start by
considering a simple mechanical system. Figure 9.2 shows a block of mass m attached
to a spring of stiffness k and subject to friction of coefficient b. Figure 9.2 also indicates
the zero position and positive sense of x, the block’s position. Assuming a frictional
force proportional to the block’s velocity, a free-body diagram of the forces acting
on the block leads directly to the equation of motion,

mx +bx +kx=0. : (9.3)
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FIGURE 9.2: Spring—mass system with friction.

Hence, the open-loop dynamics of this one-degree-of-freedom system are described
by a second-order linear constant-coefficient differential equation [1]. The solution
to the differential equation (9.3) is a time function, x(z), that specifies the motion
of the block. This solution will depend on the block’s initial conditions—that is, its
initial position and velocity.

We will use this simple mechanical system as an example with which to review
some basic control system concepts. Unfortunately, it is impossible to do justice to
the field of control theory with only a brief introduction here. We will discuss the
control problem, assuming no more than that the student is familiar with simple
differential equations. Hence, we will not use many of the popular tools of the
control-engineering trade. For example, Laplace transforms and other common
techniques neither are a prerequisite nor are introduced here. A good reference for
the field is [4]. .

Intuition suggests that the system of Fig. 9.2 might exhibit several different
characteristic motions. For example, in the case of a very weak spring (i.e., k small)
and very heavy friction (i.e., b large) one imagines that, if the block were perturbed,
it would return to its resting position in a very slow, sluggish manner. However,
with a very stiff spring and very low friction, the block might oscillate several times
before coming to rest. These different possibilities arise because the character of the
solution to (9.3) depends upon the values of the parameters m, b, and k.

From the study of differential equations [1], we know that the form of the
solution to an equation of the form of (9.3) depends on the roots of its characteristic
equation,

ms? +bs+k=0. 9.4)

This equation has the roots

b . Vb? — dmk

2m 2m
. b Vb2 —dmk ©.5)
27 T om 2m ' ’

The location of s; and s, (sometimes called the poles of the system) in the
real-imaginary plane dictate the nature of the motions of the system. If 5; and s,
are real, then the behavior of the system is sluggish and nonoscillatory. If sy and s,
are complex (i.e., have an imaginary component) then the behavior of the system is
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oscillatory. If we include the special limiting case between these two behaviors, we
have three classes of response to study:

1. Real and Unequal Roots. This is the case when b2 > 4 mk; that is, friction
dominates, and sluggish behavior results. This response is called overdamped.

2. Complex Roots. This is the case when b2 < 4 mk; that is, stiffness dominates,
and oscillatory behavior results. This response is called underdamped.

3. Real and Equal Roots. This is the special case when b*> = 4 mk; that is,
friction and stiffness are “balanced,” yielding the fastest possible nonoscillatory
response. This response is called critically damped.

The third case (critical damping) is generally a desirable situation: the system
nulls out nonzero initial conditions and returns to its nominal position as rapidly as
possible, yet without oscillatory behavior.

Real and unequal roots

Tt can easily be shown (by direct substitution into (9.3)) that the solution, x(t), giving
the motion of the block in the case of real, unequal roots has the form

x(t) = et + cpe®, (9.6)

where s; and s, are given by (9.5). The coefficients ¢; and c, are constants that can
be computed for any given set of initial conditions (i.e., initial position and velocity
of the block).

Figure 9.3 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and unequal, the system exhibits sluggish or overdamped motion.

In cases where one of the poles has a much greater magnitude than the other,
the pole of larger magnitude can be neglected, because the term corresponding
to it will decay to zero rapidly in comparison to the other, dominant pole. This
same notion of dominance extends to higher order systems—for example, often a

Im {s} x()

5 53 Refs} t

FIGURE 9.3: Root location and response to initial conditions for an overdamped
system.



Section 9.3 Second-order linear systems 267

third-order system can be studied as a second-order system by considering only two
dominant poles.

EXAMPLE 9.1

Determine the motion of the system in Fig. 9.2 if parameter valuesarem =1,b =5,
and k = 6 and the block (initially at rest) is released from the position x = —1.
The characteristic equation is

52455 +6=0, (9.7)
which has the roots s; = —2 and 5, = —3. Hence, the response has the form
x(t) = cre™? + cye (9.8)
We now use the given initial conditions, x(0) = —1 and %(0) = 0, to compute ¢; and
¢,. To satisfy these conditions at = 0, we must have
€1 +ecp=-1
and
—2C1 - 3C2 = O, (99)
which are satisfied by ¢; = —3 and ¢, = 2. So, the motion of the system for > 0 is
given by
x(t) = =3¢ 4 273 B (9.10)

Complex roots

For the case where the characteristic equation has complex roots of the form
§1 =A4 ui,
8y = A — i, (9.11)
it is still the case that the solution has the form
x(t) = i€ + cye’, (9.12)

However, equation (9.12) is difficult to use directly, because it involves imaginary
numbers explicitly. It can be shown (see Exercise 9.1) that Enler’s formula,

¢* = cosx +isinx, (9.13)
allows the solution (9.12) to be manipulated into the form
(@) = cle“ cos(ut) + c2e“ sin(ut). (9.14)

As before, the coefficients ¢; and ¢, are constants that can be computed for any
given set of initial conditions (i.e., initial position and velocity of the block). If we
write the constants ¢; and c, in the form

¢, =rcosé,

¢y =rsing, : (9.15)



268 Chapter 9 Linear control of manipulators

then (9.14) can be written in the form
x(t) = reM cos(ut — 8), (9.16)

where

_ |22
= cl-l—cz,

5= Atanz(CZ, Cl) (917)

In this form, it is easier to see that the resulting motion is an oscillation whose
amplitude is exponentially decreasing toward zero.

Another common way of describing oscillatory second-order systems is in
terms of damping ratio and natural frequency. These terms are defined by the
parameterization of the characteristic equation given by

52 42t w,s + wi =0, (9.18)

where ¢ is the damping ratio (a dimensionless number between 0 and 1) and
w, is the natural frequency.? Relationships between the pole locations and these
parameters are

A=—lw,

w=w,/1—1C2 (9.19)

In this terminology, u, the imaginary part of the poles, is sometimes called the
damped natural frequency. For a damped spring—mass system such as the one in
Fig. 9.2, the damping ratio and natural frequency are, respectively,

and

b
2Vkm' ,
k/m. (9.20)

=

When no damping is present (b = 0 in our example), the damping ratio becomes
zero; for critical damping (b* = 4km), the damping ratio is 1.

Figure 9.4 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are complex, the system exhibits oscillatory or underdamped motion.

EXAMPLE 9.2

Find the motion of the system in Fig. 9.2 if parameter values are m = 1, b =1, and
=1 and the block (initially at rest) is released from the pos1t1on x=-L
The characteristic equation is

s24+s5+1=0, (9.21)

2The terms damping ratio and natural frequency can also be applied to overdamped systems, in which
case ¢ > 1.0.
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FIGURE 9.4: Root location and response to initial conditions for an underdamped
system.

which has the roots s; = —% + JTi i. Hence, the response has the form
: 3 3
x@)=¢e"1 (01 cos —\g——t + ¢y sin %t) . (9.22)
We now use the given initial conditions, x(0) = —1 and (0) = 0, to compute

¢1 and c,. To satisfy these conditions at 7 = 0, we must have

Cl = —1
and
1 V3
—Ecl - 76‘2 = O, (923)
which are satisfied by ¢; = -1 and ¢, = JTi . S0, the motion of the system for r > 0
is given by
: 3 3 3
x(t)=e"Z|—cos £t - £ sin £t . (9.24)
2 3 2
This result can also be put in the form of (9.16), as
24/3 4 3
x(t) = %—e_i cos (%t + 120°> . (9.25)

Real and equal roots

By substitution into (9.3), it can be shown that, in the case of real and equal roots
(i.e., repeated roots), the solution has the form

x(1) = cie®1’ + cyte®, . (9.26)
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FIGURE 9.5: Root location and response to initial conditions for a critically damped
system.

where, in this case, §; = 5§, = —%, 50 (9.26) can be written
x(t)=(c; + czt)e_%r. (9.27)

In case it is not clear, a quick application of PHopital’s rule [2] shows that, for
any ¢y, ¢y, and a,
lim (¢; + ct)e” ™ =0. (9.28)
t—>00 =

Figure 9.5 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and equal, the system exhibits critically damped motion, the fastest possible
nonoscillatory response.

EXAMPLE 9.3

Work out the motion of the system in Fig. 9.2 if parameter values arem =1, b = 4,
and k = 4 and the block (initially at rest) is released from the position x = —1.
The characteristic equation is

s> +4s+4=0, (9.29)
which has the roots s; = s, = —2. Hence, the response has the form
x(t) =(c; + czt)e_zt. (9.30)
We now use the given initial conditions, x(0) = —1 and x(0) = 0, to calculate
¢, and ¢,. To satisfy these conditions at # = 0, we must have
Cl = —1
and
—2C1 + C2 = 0, (9.31)
which are satisfied by ¢; = —1 and ¢, = —2. So, the motion of the system for t > 0
is given by

x(t) = (=1 —21)e™ . (9.32)
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In Examples 9.1 through 9.3, all the systems were stable. For any passive
physical system like that of Fig. 9.2, this will be the case. Such mechanical systems
always have the properties

m > 0,
b=>0, (9.33)
k> 0.

In the next section, we will see that the action of a control system is, in effect, to
change the value of one or more of these coefficients. It will then be necessary to
consider whether the resulting system is stable.

9.4 CONTROL OF SECOND-ORDER SYSTEMS

Suppose that the natural response of our second-order mechanical system is not
what we wish it to be. Perhaps it is underdamped and oscillatory, and we would like
it to be critically damped; or perhaps the spring is missing altogether (k = 0), so the
system never returns to x = 0 if disturbed. Through the use of sensors, an actuator,
and a control system, we can modify the system’s behavior as desired.

Figure 9.6 shows a damped spring~mass system with the addition of an actuator
with which it is possible to apply a force f to the block. A free-body diagram leads
to the equation of motion, _

mx + bi + kx = f. (9.34)

Let’s also assume that we have sensors capable of detecting the block’s position and
velocity. We now propose a control law which computes the force that should be
applied by the actuator as a function of the sensed feedback:

f=~kyx —kyi. (9.35)

Figure 9.7 is a block diagram of the closed-loop system, where the portion to the left
of the dashed line is the control system (usually implemented in a computer) and
that to the right of the dashed line is the physical system. Implicit in the figure are
interfaces between the control computer and the output actuator commands and
the input sensor information.

The control system we have proposed is a position-regulation system-—it
simply attempts to maintain the position of the block in one fixed place regardless

\
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FIGURE 9.6: A damped spring—mass system with an actuator.
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FIGURE 9.7: A closed-loop control system. The control computer (to the left of the
dashed line) reads sensor input and writes actuator output commands.

of disturbance forces applied to the block. In a later section, we will construct a
trajectory-following control system, which can cause the block to follow a desired
position trajectory.

By equating the open-loop dynamics of (9.34) with the control law of (9.35),
we can derive the closed-loop dynamics as

mi 4+ bi +kx = —k,x — k%, (9.36)

or
mi + (b +ky)x + (k+ky)x = 0, (9.37)

or
mi+b'i +kx =0, (9.38)

where b’ = b + k, and k' = k + k,. From (9.37) and (9.38), it is clear that, by setting
the control gains, &, and k,, we can cause the closed-loop system to appear to have
any second system behavior that we wish. Often, gains would be chosen to obtain
critical damping (i.e., b’ = 2+/mk’) and some desired closed-loop stiffness given
directly by &'

Note that k, and k, could be positive or negative, depending on the parameters
of the original system. However, if b’ or k' became negative, the result would be
an unstable control system. This instability will be obvious if one writes down the
solution of the second-order differential equation (in the form of (9.6), (9.14), or
(9.26)). It also makes intuitive sense that, if b’ or k' is negative, servo errors tend to
get magnified rather than reduced.

EXAMPLE 9.4

If the parameters of the system in Fig. 9.6 are m = 1,b = 1, and k = 1, find gains
k, and k, for a position-regulation control law that results in the system’s being
critically damped with a closed-loop stiffness of 16.0.
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If we wish k' to be 16.0, then, for critical damping, we require that b’ =
2+/mk! = 8.0. Now, k = 1 and b = 1, so we need

k, = 15.0,
k, =17.0. (9.39)

9.5 CONTROL-LAW PARTITIONING

In preparation for designing control laws for more complicated systems, let us
consider a slightly different controller structure for the sample problem of Fig. 9.6.
In this method, we will partition the controller into a model-based portion and a
servo portion. The result is that the system’s parameters (i.e., m, b, and £, in this case)
appear only in the model-based portion and that the servo portion is independent
of these parameters. At the moment, this distinction might not seem important,
but it will become more obviously important as we consider nonlinear systems
in Chapter 10. We will adopt this control-law partitioning approach throughout
the book.
The open-loop equation of motion for the system is

mx +bx +kx = f. (9.40)

We wish to decompose the controller for this system into two parts. In this case, the
model-based portion of the control law will make use of supposed knowledge of m,
b, and k. This portion of the control law is set up such that it reduces the system so
that it appears to be a unit mass. This will become clear when we do Example 9.5.
The second part of the control law makes use of feedback to modify the behavior of
the system. The model-based portion of the control law has the effect of making the
system appear as a unit mass, so the design of the servo portion is very simple—gains
are chosen to control a system composed of a single unit mass (i.e., no friction, no
stiffness).
The model-based portion of the control appears in a control law of the form

f=af +8, (9.41)

where o and B are functions or constants and are chosen so that, if f’ is taken as the
new input to the system, the system appears to be a unit mass. With this structure of
the control law, the system equation (the result of combining (9.40) and (9.41)) is

mX + bx +kx = af + B. (9.42)

Clearly, in order to make the system appear as a unit mass from the f’ input, for
this particular system we should choose « and 8 as follows:

o =m,
B = b + kx. (9.43)

Making these assignments and plugging them into (9.42), we have the system

equation
i=f. v (9.44)
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FIGURE 9.8: A closed-loop control system employing the partitioned control method.

This is the equation of motion for a unit mass. We now proceed as if (9.44) were
the open-loop dynamics of a system to be controlled. We design a control law to
compute f/,just as we did before:

fl=—lkyi —k,x. : (9.45)
Combining this control law with (9.44) yields
5+ ki + kpx = 0. (9.46)

Under this methodology, the setting of the control gains is simple and is independent
of the system parameters; that is,
k, = zﬁ (9.47)

must hold for critical damping. Figure 9.8 shows a block diagram of the partitioned
controller used to control the system of Fig. 9.6.

EXAMPLE 9.5

If the parameters of the system in Fig. 9.6 arem = 1,b =1,and k = 1, find a, 8, and
the gains k, and k, for a position-regulation control law that results in the system’s
being critically damped with a closed-loop stiffness of 16.0.

We choose

o=1,

B=i+x, (9.48)

so that the system appears as a unit mass from the fictitious f’ input. We then set
gain k,, to the desired closed-loop stiffness and set k, = 2, /k, for critical damping.
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This gives ‘
k, = 16.0,
k, =8.0. (9.49)

9.6 TRAJECTORY-FOLLOWING CONTROL

Rather than just maintaining the block at a desired location, let us enhance our
controller so that the block can be made to follow a trajectory. The trajectory is
given by a function of time, x,4(t), that specifies the desired position of the block.
We assume that the trajectory is smooth (i.e., the first two derivatives exist) and that
our trajectory generator provides x,, %,, and ¥, at all times 7. We define the servo
error between the desired and actual trajectory as e = x,; — x. A servo-control law
that will cause trajectory following is

fl=3%,+ke+ kye. (9.50)

We see that (9.50) is a good choice if we combine it with the equation of motion of
a unit mass (9.44), which leads to

X=X;+keé+ke, 9.51
d v p

or ‘
é+ki+k,e=0. (9.52)
This is a second-order differential equation for which we can choose the coefficients,
so we can design any response we wish. (Often, critical damping is the choice made.)
Such an equation is sometimes said to be written in error space, because it describes
the evolution of errors relative to the desired trajectory. Figure 9.9 shows a block
diagram of our trajectory-following controller.

If our model is perfect (i.c., our knowledge of m, b, and k), and if there is
no noise and no initial error, the block will follow the desired trajectory exactly. If
there is an initial error, it will be suppressed according to (9.52), and thereafter the
system will follow the trajectory exactly.

m | System

bx + kx

FIGURE 9.9: A trajectory-following controller for the system in Fig. 9.6.



276 Chapter 9 Linear control of manipulators

9.7 DISTURBANCE REJECTION

One of the purposes of a control system is to provide disturbance rejection, that
is, to maintain good performance (i.e., minimize errors) even in the presence of
some external disturbances or noise. In Fig. 9.10, we show the trajectory-following
controller with an additional input: a disturbance force fy;. An analysis of our
closed-loop system leads to the error equation

E+kyetkye= fa (9.53)

Equation (9.53) is that of a differential equation driven by a forcing function.
If it is known that fg4; is bounded—that is, that a constant a exists such that

max fog (1) < @, (9.54)

then the solution of the differential equation, e(t), is also bounded. This result is due
to a property of stable linear systems known as bounded-input, bounded-output or
BIBO stability [3, 4]. This very basic result ensures that, for a large class of possible
disturbances, we can at least be assured that the system remains stable.

Steady-state error

Let’s consider the simplest kind of disturbance—namely, that f; is a constant. In
this case, we can perform a steady-state analysis by analyzing the system at rest (i.e.,
the derivatives of all system variables are zero). Setting derivatives to zero in (9.53)
yields the steady-state equation

kpe = fdist’ (9-55)

or
e= fyg/kpe (9.56)

The value of e given by (9.56) represents a steady-state error. Thus, it is clear that
the higher the position gain k,, the smaller will be the steady-state error.

f dist

m ——-:CED; System |

bx + kx

FIGURE 9.10: A trajectory-following control system with a disturbance acting.
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Addition of an integral term

In order to eliminate steady-state error, a modified control law is sometimes used.
The modification involves the addition of an integral term to the control law. The
control law becomes

fl=3%;+ké+ kpe +k; / edt, (9.57)

which results in the error equation
E+kyé+kye +k; / edt = fy. (9.58)

The term is added so that the system will have no steady-state error in the presence
of constant disturbances. If e(t) = 0 for ¢ < 0, we can write (9.58) for t > O as

Etké4k,e+ke= fy (9.59)
which, in the steady state (for a constant disturbance), becomes
k;e =0, (9.60)

SO
e=0. . (9.61)

With this control law, the system becomes a third-order system, and one can
solve the corresponding third-order differential equation to work out the response
of the system to initial conditions. Often, %, is kept quite small so that the third-order
system is “close” to the second-order system without this term (i.., a dominant-
pole analysis can be performed). The form of control law (9.57) is called a PID
control law, or “proportional, integral, derivative” control law [4]. For simplicity,
the displayed equations generally do not show an integral term in the control laws
that we develop in this book.

9.8 CONTINUOUS VS. DISCRETE TIME CONTROL

In the control systems we have discussed, we implicitly assumed that the control
computer performs the computation of the control law in zero time (i.e., infinitely
fast), so that the value of the actuator force f is a continuous function of time. Of
course, in reality, the computation requires some time, and the resulting commanded
forceis therefore a discrete “staircase” function. We shall employ this approximation
of a very fast control computer throughout the book. This approximation is good
if the rate at which new values of f are computed is much faster than the natural
frequency of the system being controlled. In the field of discrete time control or
digital control, one does not make this approximation but rather takes the servo
rate of the control system into account when analyzing the system [3].

We will generally assume that the computations can be performed quickly
enough that our continuous time assumption is valid. This raises a question: How
quick is quick enough? There are several points that need to be considered in
choosing a sufficiently fast servo (or sample) rate:
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Tracking reference inputs: The frequency content of the desired or reference input
places an absolute lower bound on the sample rate. The sample rate must be
at least twice the bandwidth of reference inputs. This is usually not the limiting
factor.

Disturbance rejection: In disturbance rejection, an upper bound on performance
is given by a continuous-time system. If the sample period is longer than the
correlation time of the disturbance effects (assuming a statistical model for
random disturbances), then these disturbances will not be suppressed. Perhaps
a good rule of thumb is that the sample period should be 10 times shorter than
the correlation time of the noise [3].

Antialiasing: Any time an analog sensor is used in a digital control scheme, there
will be a problem with aliasing unless the sensor’s output is strictly band
limited. In most cases, sensors do not have a band limited output, and so
sample rate should be chosen such that the amount of energy that appears in
the aliased signal is small.

Structural resonances: We have not included bending modes in our characterization
of a manipulator’s dynamics. All real mechanisms have finite stiffness and so
will be subject to various kinds of vibrations. Ifit is important to suppress these
vibrations (and it often is), we must choose a sample rate at least twice the
natural frequency of these resonances. We will return to the topic of resonance
later in this chapter. :

9.9 MODELING AND CONTROL OF A SINGLE JOINT

In this section, we will develop a simplified model of a single rotary joint of a
manipulator. A few assumptions will be made that will allow us to model the
resulting system as a second-order linear system. For a more complete model of an
actuated joint, see [5].

A common actuator found in many industrial robots is the direct current (DC)
torque motor (as in Fig. 8.18). The nonturning part of the motor (the stator) consists
of a housing, bearings, and either permanent magnets or electromagnets. These
stator magnets establish a magnetic field across the turning part of the motor (the
rotor). The rotor consists of a shaft and windings through which current moves to
power the motor. The current is conducted to the windings via brushes, which make
contact with the commutator. The commutator is wired to the various windings (also
called the armature) in such a way that torque is always produced in the desired
direction. The underlying physical phenomenon [6] that causes a motor to generate
a torque when current passes through the windings can be expressed as

F =¢qV x B, (9.62)

where charge g, moving with velocity V through a magnetic field B, experiences a
force F. The charges are those of electrons moving through the windings, and the
magnetic field is that set up by the stator magnets. Generally, the torque-producing
ability of a motor is stated by means of a single motor torque constant, which relates
armature current to the output torque as

T, =k, , (9.63)

m — “mta*
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When a motor is rotating, it acts as a generator, and a voltage develops across the
armature. A second motor constant, the back emf constant,? describes the voltage
generated for a given rotational velocity:

v=k,0 (9.64)

- “e¥m*

Generally, the fact that the commutator is switching the current through various sets
of windings causes the torque produced to contain some torque ripple. Although
sometimes important, this effect can usually be ignored. (In any case, it is quite hard
to model—and quite hard to compensate for, even if it is modeled.)

Motor-armature inductance

Figure 9.11 shows the electric circuit of the armature. The major components are a
voltage source, v, the inductance of the armature windings, [, the resistance of the
armature windings, r,, and the generated back emf, v. The circuit is described by a
first-order differential equation:

Lo, + i, =v, —k,b (9.65)

a e"m*

It is generally desirable to control the torque generated by the motor (rather than
the velocity) with electronic motor driver circuitry. These drive circuits sense the
current through the armature and continuously adjust the voltage source v, so that
a desired current i, flows through the armature. Such a circuit is called a current
amplifier motor driver [7]. In these current-drive systems, the rate at which the
armature current can be commanded to change is limited by the motor inductance
l, and by an upper limit on the voltage capability of the voltage source v,. The net
effect is that of a low-pass filter between the requested current and output torque.

Our first simplifying assumption is that the inductance of the motor can be
neglected. This is a reasonable assumption when the natural frequency of the closed-
loop control system is quite low compared to the cut-off frequency of the mmplicit
low-pass filter in the current-drive circuitry due to the inductance. This assumption,
along with the assumption that torque ripple is a negligible effect, means that we can
essentially command torque directly. Although there might be a scale factor (such
as k,,) to contend with, we will assume that the actuator acts as a pure torque source
that we can command directly.

Fa Iy

M
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FIGURE 9.11: The armature circuit of a DC torque motor.

3«emf” stands for electromotive force.
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FIGURE 9.12: Mechanical model of a DC torque motor connected through gearing to
an inertial load.

Effective inertia

Figure 9.12 shows the mechanical model of the rotor of a DC torque motor connected
through a gear reduction to an inertial load. The torque applied to the rotor, 7, is
given by (9.63) as a function of the current i, flowing in the armature circuit. The
gear ratio () causes an increase in the torque seen at the load and a reduction in
the speed of the load, given by

T =1NT,,

6 = (1/m0,,. (9.66)

where 7 > 1. Writing a torque balance for this system in terms of torque at the rotor
yields

m-m m-at

T =1, g,+b,06 + a/m (19 + b@) s (9.67)

where I, and I are the inertias of the motor rotor and of the load, respectively, and

b,, and b are viscous friction coefficients for the rotor and load bearings, respectively.

Using the relations (9.66), we can write (9.67) in terms of motor variables as

I\ . b\ . .
T = (Im + ;7—2> Gm + (bm + ”—2> Gm (968)
or in terms of load variables as
=0+ 7721111)5 + b+ 772b,]1)9. (9.69)

The term I +7?1,, is sometimes called the effective inertia “seen’ at the output

(link side) of the gearing. Likewise, the term b + n%b,, can be called the effective
damping. Note that, in a highly geared joint (i.e., n 3> 1), the inertia of the motor
rotor can be a significant portion of the combined effective inertia. Itis this effect that

allows us to make the assumption that the effective inertia is a constant. We know
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from Chapter 6 that the inertia, I, of a joint of the mechanism actually varies with
configuration and load. However, in highly geared robots, the variations represent
a smaller percentage than they would in a direct-drive manipulator (i.e., n = 1). To
ensure that the motion of the robot link is never underdamped, the value used for /
should be the maximum of the range of values that 7 takes on; we’ll call this value
I_.x. This choice results in a system that is critically damped or overdamped in all
situations. In Chapter 10, we will deal with varying inertia directly and will not have
to make this assumption.

EXAMPLE 9.6

If the apparent link inertia, I, varies between 2 and 6 Kg-m?, the rotor inertia is
I, =0.01, and the gear ratio is n = 30, what are the minimum and maximum of the
effective inertia? ‘

The minimum effective inertia is

Lpin + 771, = 2.0 4 (900)(0.01) = 11.0; (9.70)

the maximum is
I + 1771, = 6.0 + (900)(0.01) = 15.0. (9.71)

Hence, we see that, as a percentage of the total effective inertia, the variation of
inertia is reduced by the gearing.

Unmodeled flexibility

The other major assumption we have made in our model is that the gearing, the
shafts, the bearings, and the driven link are not flexible. In reality, all of these
elements have finite stiffness, and their flexibility, if modeled, would increase the
order of the system. The argument for ignoring flexibility effects is that, if the system
is sufficiently stiff, the natural frequencies of these unmodeled resonances are very
high and can be neglected compared to the influence of the dominant second-order
poles that we have modeled.* The term ‘“‘unmodeled” refers to the fact that, for
purposes of control-system analysis and design, we neglect these effects and use a
simpler dynamic model, such as (9.69).

Because we have chosen not to model structural flexibilities in the system,
we must be careful not to excite these resonances. A rule of thumb [8] is that, if
the lowest structural resonance is w,., then we must limit our closed-loop natural
frequency according to

1
w, < Ea)res. (9.72)
This provides some guidance on how to choose gains in our controller. We have seen
that increasing gains leads to faster response and lower steady-state error, but we
now see that unmodeled structural resonances limit the magnitude of gains. Typical
industrial manipulators have structural resonances in the range from 5 Hz to 25 Hz

[8]. Recent designs using direct-drive arrangements that do not contain flexibility

“This is basically the same argument we used to neglect the pole due to the motor inductance.
Including it would also have raised the order of the overall system.
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introduced by reduction and transmission systems have their lowest structural
resonances as high as 70 Hz [9].

EXAMPLE 9.7

Consider the system of Fig. 9.7 with the parameter valuesm = 1,b =1, and k = 1.
Additionally, it is known that the lowest unmodeled resonance of the system is at
8 radians/second. Find «, B, and gains kp and k, for a position-control law so the
system is critically damped, doesn’t excite unmodeled dynamics, and has as high a
closed-loop stiffness as possible.

We choose

a=1,
B=x+x, (9.73)

so that the system appears as a unit mass from the fictitious f’ input. Using
our rule of thumb (9.72), we choose the closed-loop natural frequency to be
w, = 4 radians/second. From (9.18) and (9.46), we have k,= w;’;, so

k, = 16.0,
k, = 8.0. (9.74)

Estimating resonant frequency

The same sources of structural flexibility discussed in Chapter 8 give rise to reso-
nances. In each case where a structural flexibility can be identified, an approximate
analysis of the resulting vibration is possible if we can describe the effective mass
or inertia of the flexible member. This is done by approximating the situation by a
simple spring—mass system, which, as given in (9.20), exhibits the natural frequency

w, =+/k/m, (9.75)

where k is the stiffness of the flexible member and m is the equivalent mass displaced
in vibrations.

EXAMPLE 9.8

A shaft (assumed massless) with a stiffness of 400 Nt-m/radian drives a rotational
inertia of 1 Kg-m?. If the shaft stiffness was neglected in the modeling of the
dynamics, what is the frequency of this unmodeled resonance?

Using (9.75), we have

Wpes = +/400/1 = 20 rad/second = 20/(27)Hz = 3.2 Hz. (9.76)

For the purposes of a rough estimate of the lowest resonant frequency of
beams and shafts, [10] suggests using a lumped model of the mass. We already
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i{ —> —i 023m
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FIGURE 9.13: Lumped models of beams for estimation of lowest lateral and torsional
resonance.

have formulas for estimating stiffness at the ends of beams and shafts; these lumped
models provide the effective mass or inertia needed for our estimation of resonant
frequency. Figure 9.13 shows the results of an energy analysis [10] which suggests
that a beam of mass m be replaced by a point mass at the end of 0.23 m and, likewise,
that a distributed inertia of I be replaced by a lumped 0.33 I at the end of the shaft.

EXAMPLE 9.9

A link of mass 4.347 Kg has an end-point lateral stiffness of 3600 Nt/m. Assuming
the drive system is completely rigid, the resonance due to the flexibility of the link
will limit control gains. What is w,g?

The 4.347 Kg mass is distributed along the link. Using the method of Fig. 9.13,
the effective mass is (0.23)(4.347) = 1.0 Kg. Hence, the vibration frequency is

Wpes = v/ 3600/1.0 = 60 radians/second = 60/(2x)Hz = 9.6 Hz. (9.77)

The inclusion of structural flexibilities in the model of the system used for
control-law synthesis is required if we wish to achieve closed-loop bandwidths higher
than that given by (9.75). The resulting system models are of high order, and the
control techniques applicable to this situation become quite sophisticated. Such
control schemes are currently beyond the state of the art of industrial practice but
are an active area of research [11, 12].

Control of a single joint
In summary, we make the following three major assumptions:

1. The motor inductance [, can be neglected.

2. Taking into account high gearing, we model the effective inertia as a constant
equal to I, + 1L,

3. Structural flexibilities are neglected, except that the lowest structural resonance
Wy 15 Used in setting the servo gains.
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With these assumptions, a single joint of a manipulator can be controlled with
the partitioned controller given by

=1l + 77 [
B = (b+1°b,)0, (9.78)
U =8, +k,e+ k,e. (9.79)
The resulting system closed-loop dynamics are
E+kvé+kpe = rdiSt’ (980)
where the gains are chosen as
1
_ . 2_ 1 2
kP - wn - Zwres7
ky=2/k, = & (9.81)

9.10 ARCHITECTURE OF AN INDUSTRIAL-ROBOT CONTROLLER

In this section, we briefly look at the architecture of the control system of the
Unimation PUMA 560 industrial robot. As shown in Fig. 9.14, the hardware archi-
tecture is that of a two-level hierarchy, with a DEC LSI-11 computer serving as
the top-level “master’ control computer passing commands to six Rockwell 6503
microprocessors.’ Each of these microprocessors controls an individual joint with
a PID control law not unlike that presented in this chapter. Each joint of the
PUMA 560 is instrumented with an incremental optical encoder. The encoders are
interfaced to an up/down counter, which the microprocessor can read to obtain the
current joint position. There are no tachometers in the PUMA 560; rather, joint
positions are differenced on subsequent servo cycles to obtain an estimate of joint
velocity. In order to command torques to the DC torque motors, the microprocessor

6503 @
VAL
language —>| 6503 @
< 6503 }4—».
DEC '_>

Interface

o @
FIGURE 9.14: Hierarchical computer architecture of the PUMA 560 robot-control
system.

SThese simple 8-bit computers are already old technology. It is common these days for robot
controllers to be based on 32-bit microprocessors.
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FIGURE 9.15: Functional blocks of the joint-control system of the PUMA 560.

is interfaced to a digital-to-analog converter (DAC) so that motor currents can be
commanded to the current-driver circuits. The current flowing through the motor is
controlled in analog circuitry by adjusting the voltage across the armature as needed
to maintain the desired armature current. A block diagram is shown in Fig. 9.15.

Each 28 milliseconds, the LSI-11 computer sends a new position command
(set-point) to the joint microprocessors. The joint microprocessors are running on a
0.875 millisecond cycle. In this time, they interpolate the desired position set-point,
compute the servo error, compute the PID control law, and command a new value
of torque to the motors.

The LSI-11 computer carries out all the “high-level” operations of the overall
control system. First of all, it takes care of interpreting the- VAL (Unimation’s
robot programming language) program commands one by one. When a motion
command is interpreted, the LSI-11 must perform any needed inverse kinematic
computations, plan a desired trajectory, and begin generating trajectory via points
every 28 milliseconds for the joint controllers.

The LSI-11 is also interfaced to such standard peripherals as the terminal and
a floppy disk drive. In addition, it is interfaced to a teach pendant. A teach pendant
is a handheld button box that allows the operator to move the robot around in a
variety of modes. For example, the PUMA 560 system allows the user to move the
robot incrementally in joint coordinates or in Cartesian coordinates from the teach
pendant. In this mode, teach-pendant buttons cause a trajectory to be computed
“on the fly” and passed down to the joint-control microprocessors.
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[20] For a second-order differential equation with complex roots
§1 = A+ i,
8y = A — i,

show that the general solution
x(t) = ¢V + cye™,

can be written
x(t) = cle’“ cos(ut) + cze“ sin{jt).

[13] Compute the motion of the system in Fig. 9.2 if parameter values are m = 2,
b =6, and k = 4 and the block (initially at rest) is released from the position
x=1.

[13] Compute the motion of the system in Fig. 9.2 if parameter values are m = 1,
b =2, and k = 1 and the block (initially at rest) is released from the position
x=4.

[13] Compute the motion of the system in Fig. 9.2 if parameter values are m = 1,
b =4, and k = 5 and the block (initially at rest) is released from the position
x =2

[15] Compute the motion of the system in Fig. 9.2 if parameter values are m = 1,
b =7,and k = 10 and the block is released from the position x = 1 with an initial
velocity of x = 2.

[15] Use the (1, 1) element of (6.60) to compute the variation (as a percentage
of the maximum) of the inertia “seen” by joint 1 of this robot as it changes
configuration. Use the numerical values

ll = 12 =0.5 m,
my; = 4.0Kg,
my =2.0Kg.
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Consider that the robot is direct drive and that the rotor inertia is negligible.

[17] Repeat Exercise 9.6 for the case of a geared robot (use n = 20) and a rotor
inertia of I,, = 0.01 Kg m?.

[18] Consider the system of Fig. 9.6 with the parameter values m = 1, b = 4,
and k = 5. The system is also known to possess an unmodeled resonance at
wpes = 6.0 radians/second. Determine the gains &, and k , that will critically damp
the system with as high a stiffness as is reasonable.

[25] In a system like that of Fig. 9.12, the inertial load, I, varies between 4 and
5Kg-m?. The rotor inertia is I, =001 Kg-m?, and the gear ratio is = 10.
The system possesses unmodeled resonances at 8.0, 12.0, and 20.0 radians/second.
Design « and g of the partitioned controller and give the values of k, and &, such
that the system is never underdamped and never excites resonances, but is as stiff
as possible.

[18] A designer of a direct-drive robot suspects that the resonance due to beam
flexibility of the link itself will be the cause of the lowest unmodeled resonance. If
the link is approximately a square-cross-section beam of dimensions 5 x 5 x 50 cm

with a 1-cm wall thickness and a total mass of 5 Kg, estimate w,,.

9.11 [15] A direct-drive robot link is driven through a shaft of stiffness 1000 Nt-m/radian.

9.12

9.13

9.14

9.15

The link inertia is 1 Kg-m?. Assuming the shaft is massless, what is wog?

[18] A shaft of stiffness 500 Nt-m/radian drives the input of a rigid gear pair with
n = 8. The output of the gears drives a rigid link of inertia 1 Kg-m”. What is the
w_, caused by flexibility of the shaft?

[25] A shaft of stiffness 500 Nt-m/radian drives the input of a rigid gear pair with
7 = 8. The shaft has an inertia of 0.1 Kg-m?. The output of the gears drives a rigid
link of inertia 1 Kg-m?. What is the w_,, caused by flexibility of the shaft?

[28] In a system like that of Fig. 9.12, the inertial load, I, varies between 4 and
5 Kg-m?. The rotor inertia is I, =001 Kg-m?, and the gear ratio is n = 10. The
system possesses an unmodeled resonance due to an end-point stiffness of the
link of 2400 Nt-m/radian. Design o and 8 of the partitioned controller, and give
the values of k, and k, such that the system is never underdamped and never
excites resonances, but is as stiff as possible.

[25] A steel shaft of length 30 cm and diameter 0.2 cm drives the input gear of a
reduction of = 8. The rigid output gear drives a steel shaft of length 30 cm and
diameter 0.3 cm. What is the range of resonant frequencies observed if the load
inertia varies between 1 and 4 Kg-m??

PROGRAMMING EXERCISE (PART 9)

We wish to simulate a simple trajectory-following control system for the three-link planar
arm. This control system will be implemented as an independent-joint PD (proportional
plus derivative) control law. Set the servo gains to achieve closed-loop stiffnesses of

175.0,

110.0, and 20.0 for joints 1 through 3 respectively. Try to achieve approximate

critical damping.

Use the simulation routine UPDATE to simulate a discrete-time servo running

at 100 Hz—that is, calculate the control law at 100 Hz, not at the frequency of the
numerical integration process. Test the control scheme on the following tests:

1.

2.

Start the arm at ® = (60, —110, 20) and command it to stay there until time = 3.0,
when the set-points should instantly change to ® = (60, —50, 20). That is, give a
step input of 60 degrees to joint 2. Record the error—time history for each joint.
Control the arm to follow the cubic-spline trajectory from Programming Exercise
Part 7. Record the error—time history for each joint.
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MATLAB EXERCISE 9

This exercise focuses on linearized independent joint-control simulation for the shoulder
joint (joint 2) of the NASA eight-axis AAT ARMII (Advanced Research Manipulator IT)
manipulator arm—see [14]. Familiarity with linear classical feedback-control systems,
including block diagrams and Laplace transforms, is assumed. We will use Simulink, the
graphical user interface of MATLAB.

Figure 9.16 shows a linearized open-loop system-dynamics model for the ARMII
electromechanical shoulder joint/link, actuated by an armature-controller DC servomo-
tor. The open-loop input is reference voltage V¢ (boosted to armature voltage via an
amplifier), and the output of interest is the load shaft angle Thetal.. The figure also
shows the feedback-control diagram, where the load-shaft angle is sensed via an optical
encoder and provided as feedback to the PID controller. The table describes all system
parameters and variables.

If we reflect the load shaft inertia and damping to the motor shaft, the effective
polar inertia and damping coefficient are J = J,; + J;(t)/n* and C = Cy + Cp/n?.
By virtue of the large gear ratio n, these effective values are not much different
from the motor-shaft values. Thus, the gear ratio allows us to ignore variations in the
configuration-dependent load-shaft inertia J; (¢) and just set a reasonable average value.

The ARMII shoulder joint constant parameters are given in the accompanying
table [13]. Note that we can use the English units directly, because their effect cancels out
inside the control diagram. Also, we can directly use deg units for the angle. Develop a
Simulink model to simulate the single-joint control model from the model and feedback-
control diagram shown; use the specific parameters from the table. For the nominal case,
determine the PID gains by trial and error for “good” performarice (reasonable percent
overshoot, rise time, peak time, and settling time). Simulate the resulting motion for
moving this shoulder joint for a step input of 0 to 60 deg. Plot the simulated load-angle
value over time, plus the load-shaft angular velocity over time. In addition, plot the

Vref ia Va /A\Va-Vb 1 la o TauM 1 OmegaM m Omegal Thetal
/ - Ls+R L/ Is+C 5
Amp Gear ratio Integrator
RL Circuit JC Motor Dynarnics

Vb (back emf) /Kbh

Open-Loop Eleciromechanical System Diagram

ThetaEl
A+ PID Inl Qutl S D
Vref
Commanded
Thetal. PID Controller Thetal

Open-Loop System

ThetaS (sensed) 4

Encoder

Closed-Loop Feedback Control Diagram

FIGURE 9.16: Linearized open-loop system-dynamics model for the ARMII elec-
tromechanical shoulder joint/link, actuated by an armature-controller DC servomo-
tor.
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TABLE 9.1: ARMII shoulder joint constant parameters.

v, armature | 7,,(r) generated T, (1) load torque
voltage motor
torque
L = 0.0006H | armature | 8,,(t) motor shaft |6, (¢) load shaft
induc- angle angle
tance
R = 1.40Q armature | w,, (1) motor shaft |w; () load shaft
resis- velocity velocity
tance
i, () armature | J,, = 0.00844 | lumped J; (1) =1 | lumped load
current | 1b ¢-in-s> motor polar |Ib-in-s* | polarinertia
inertia
V, (1) back emf | C,, = 0.00013 | motor shaft | C, = 0.5 |load shaft
voltage |lb,-in/deg/s | viscous 1b - viscous
damping in/deg/s |damping
coefficient coefficient
K, =12 amplifier | n = 200 gear ratio g=0 gravity
gain in/s?. (ignore
gravity at
first)
K, =0.00867 | back emf | X,, =4.375 |torque con-|K,=1 |encoder
Videgls constant |lb-in/A stant transfer
function

control effort—that is, the armature voltage V, over time. (On the same graph, also give
the back emf V,,.)

1

2)

3)

4

Now, try some changes—Simulink is so easy and enjoyable to change:

The step input is frustrating for controller design, so try a ramped step input
instead: Ramp from 0 to 60 deg in 1.5 sec, then hold the 60-deg command for all
time greater than 1.5 sec. Redesign PID gains and restimulate.

Investigate whether the inductor L is significant in this system. (The electrical sys-
tem rises much faster than the mechanical system—this effect can be represented
by time constants.)

We don’t have a good estimate for the load inertia and damping (J; and C;). With
your best PID gains from before, investigate how big these values can grow (scale
the nominal parameters up equally) before they affect the system.

Now, include the effect of gravity as a disturbance to the motor torque T ;. Assume
that the moving robot mass is 200 b and the moving length beyond joint 2 is 6.4
feet. Test for the nominal “good” PID gains you found; redesign if necessary. The
shoulder load angle 8, zero configuration is straight up.





