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- if time is not explicitly considered as an independent variable

→ the analysis is said to be static

→ otherwise, structural dynamic analysis or structural dynamics

Basic equation of Linear Elasticity

 Structural analysis … evaluation of deformations and stresses 
arising within a solid object under the action of applied loads

 Under the assumption of                                                 { Small deformation
Linearly elastic material behavior

- Three dimensional formulation  → a set of 15 linear 1st order PDE involving

displacement field (3 components)

stress field            (6 components)

strain field             (6 components)
{

→ simpler, 2-D formulations 
plane stress problem

plane strain problem
{

 For most situations, not possible to develop analytical solutions

→ analysis of structural components … bars, beams, plates, shells
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1.1 The concept of Stress

 State of stress in a solid body… measure of intensity of forces acting 
within the solid

1-3

- distribution of forces and moments appearing on the surface of the cut … 
equipollent force    , and couple 

- Newton’s 3rd law → a force and couple of equal magnitudes and opposite directions
acting on the two forces created by the cut

1.1.1 The state of stress at a point

F M

Fig. 1.1 A solid body cut by a plane to isolate a free body
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 A small surface of area   located at point P on the surface generated by the cut
→ equipollent force     , couplenF

0
limτ

→

 
=  

 n

n
n dA

n

F
dA

n n nF dA τ=

1.1 The concept of Stress

nM

- limiting process of area → concept of  “stress vector”

(1.1)

existence of limit : “fundamental assumption of continuum mechanics”

- Couple       → 0 as       → 0
… couple is the product of a differential element of force by a differential 

element of moment arm 
→ negligible, second order differential quantity

nM ndA

- Total force acting on a differential element of area, ndA

(1.2)

Unit : force per unit area,           or 

nA

2/N m Pa
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 Surface orientation, as defined by the normal to the surface, is kept constant 
during the limiting process

1.1 The concept of Stress

- Fig. 1.2 … Three different cut and the resulting stress vector
first… solid is cut at point P by a plane normal to axis    :

differential element of surface with an area       , stress vector
→ No reason that those three stress vectors should be identical.

1i
1dA 1τ

Fig. 1.2 A rigid body cut at point P by three planes orthogonal to the Cartesian axes.
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 Component of each stress vectors acting on the three forces

1.1 The concept of Stress

Force … vector quantity, 
3 components of the force vector (1st order tensor)

Stress … 9 quantities (2nd order tensor)

1 1 1 12 2 13 3i i iτ σ τ τ= + + (1.3a)

direct
normal

stress{ shearing
shear Stress{ → both act on the force normal to 

axis    in the direction of      and 1i 2i 3i

→ “engineering stress components”
unit :  force/area, 

“positive” force … the outward normal to the face, 
i.e., the normal pointing away from the body, 
is in the same direction as the axis
→ sign convention (Fig.1.3)

 9 components of stress components 
→ fully characterize the state of stress at P

Strain tensor
Bending stiffness of a beam
Mass moments of inertia

Fig. 1.3 sign conventions

1-6
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1.1 The concept of Stress

 Stress varies throughout a solid body
- Fig. 1.4 axial stress component at the negative face :

axial stress component at the positive face at coordinate
if           is an analytic function, using a Taylor series expansion

1.1.2 Volume equilibrium eqn.

2σ

Fig. 1.4 Stress components acting on a differential element of volume.

2 2 2 2 2: ( )x dx x dxσ+ +
2 2( )xσ

2

2
2 2 2 2 2 2 2

2

( ) ( ) ... . .
x

x dx x dx h o terms in dx
x
σσ σ ∂

+ = + +
∂ 2

2 2 2 2 2
2

( ) σσ σ ∂
+ = +

∂
x dx dx

x
- body forces     … gravity, inertial, electric, magnetic origin

1 1 2 2 3 3b b i b i b i= + +

b
→ unit : force/volume, 3/N m

1-7
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i) Force equilibrium
direction of axis 

311 21
1

1 2 3

0b
x x x

τσ τ ∂∂ ∂ + + + = ∂ ∂ ∂


must be satisfied at all points inside the body

1i

. . .

. . .

(1.4a)

- equilibrium should be enforced on the DEFORMED configuration (strictly)

1.1 The concept of Stress

ii) Moment equilibrium
about axis     →1i 23 32 0τ τ− =
→ “principle of reciprocity of shear stress” (Fig. 1.5)

- only 6 independent components in 9 stress components
→ symmetry of the stress tensor

“linear theory of elasticity”… assumption that the displacements of the body under 
the applied loads are very small, and hence the difference between deformed and 
undeformed is very small.

Fig. 1.5 Reciprocity of the 
shearing stresses acting on 
two orthogonal faces

Unknown, unfortunately

1-8
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1.1 The concept of Stress

 At the outer face of the body.

1.1.3 Surface equilibrium eqn.

Fig. 1.6 A tetrahedron with one face along the outer surface of the body.

tstress acting
inside the body 

Externally applied
Surface tractions

equilibrium
{ } { }

1 1 2 2 3 3t t i t i t i= + +

 Fig. 1.6 … free body in the form of a differential tetrahedron bounded by 

3 negative faces cut through the body in directions normal to axes 
A fourth face, ABC, of area 

1 2 3, ,i i i
ndA{

1-9
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1.1 The concept of Stress

 Force equilibrium along    , and dividing by 

body force term vanishes since it is a h.o. differential term.
A body is said to be in equilibrium if eqn (1.4) is satisfied at all points inside

the body and eqn (1.9) is satisfied at all points of its external surface.

ndA1i
1 1 1 21 2 31 3t n n nσ τ τ= + + (1.9a)

1-10
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1.2 Analysis of the state of stress at 
a point

1.2.1 Stress components acting on an arbitrary face

Fig. 1.6 Differential tetrahedron element with one face, ABC, normal to unit vector     
and the other three faces normal to axes          and     , respectively.

 It is fully defined once the stress components acting on three mutually 
orthogonal faces at a point are known.

n Fig 1.7… “Cauchy’s tetrahedron” with a fourth face normal to unit vector      of 
arbitrary orientation 

1 2,i i 3i
n

1-11
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dividing by       and neglecting the body force term
(since it is multiplied by a h.o. term)

ndA

1.2 Analysis of the state of stress at 
a point

1 1 2 2 3 3n n n nτ τ τ τ= + +

- Expanding the 3 stress vectors,

1 1 12 2 13 3 1 21 1 2 2 23 3 2 31 1 32 2 3 3 3( ) ( ) ( )n i i i n i i i n i i i nτ σ τ τ τ σ τ τ τ σ= + + + + + + + + (1.10)

- To determine the direct stress     , project this vector eqn in the direction of nσ n
1 1 12 2 13 3 1 21 1 2 2 23 3 2 31 1 32 2 3 3 3

2 2 2
1 1 2 2 3 3 23 2 3 13 1 3 12 1 2

( ) ( ) ( )

2 2 2
n

n

n n n n n n n n n n n n n
n n n n n n n n n

τ σ τ τ τ σ τ τ τ σ

σ σ σ σ τ τ τ

⋅ = + + + + + + + +

= + + + + + (1.11)

- stress component acting in the plane of face ABC : nsτ
… by projecting Eq. (1.10) along vector s

1 1 1 2 2 2 3 3 3 12 2 1 1 2 13 1 3 3 1 23 2 3 3 2( ) ( ) ( )ns n s n s n s n s n s n s n s n s n sτ σ σ σ τ τ τ= + + + + + + + + (1.12)

- force equilibrium

1 1 2 2 3 3 n ndA dA dA dA bdVτ τ τ τ+ + = +

1-12
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1.2 Analysis of the state of stress at 
a point

Compute definition of the state of stress at a point only requires knowledge of 
the stress vectors, or equivalently of the stress tensor components, acting on 
three mutually orthogonal faces.

Eqns (1.11), (1.12)… Once the stress components acting on 3 mutually orthogonal
faces are known, the stress components on a face of arbitrary orientation can be 
readily computed.

 How much information is required to fully determine the state of stress at a point P
of a solid? 

1.2.2 Principal stresses

 Is there a face orientation for which the stress vector is exactly normal to the 
face ? Does a particular orientation,     exist for which the stress vector acting on 
this face consists solely of                 , where      is the yet unknown?
… projecting Eq.(1.10) along axes             → 3 scalar eqns

n
n pnτ σ= pσ

1 2 3, ,i i i

1 12 13 1

21 2 23 2

31 32 3 3

0
p

p

p

n
n
n

σ σ τ τ
τ σ σ τ
τ τ σ σ

 −  
   − =  

  −   

(1.13)

1-13



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

“stress invariants”

1.2 Analysis of the state of stress at 
a point

- Solution of Eq (1.14) … “principal stress”
3 solutions                   → non-trivial sol. for the direction cosines
“principal stress direction” 
Homogeneous eqns → arbitrary constant → enforcing the normality condition

2 2 2
1 2 3n n n I+ + =

- Determinant of the system = 0, non-trivial sol. exists.
3 2

1 2 3 0p p pI I Iσ σ σ− + − = (1.14)

(1.15)

1 2 3
, ,p p pσ σ σ

1.2.3 Rotation of stresses

 Arbitrary basis :

- orientation of basis      relative to  
→ matrix of direction cosine, or rotation matrix      (A.36) 

* * *
1 2 3
* * *
23 13 12

, ,

, ,

σ σ σ

τ τ τ

* * * *
1 2 3( , )I i i i= {→

*J J
R

1-14

* * *
1 1 2 1 3 1 1 1 1

* * *
1 2 2 2 3 2 2 2 2

* * *
3 3 31 3 2 3 3 3

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

i i i i i i l m n
i i i i i i l n m

l m ni i i i i i
R
=

   
   = =   
      

(A.36)
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1.2 Analysis of the state of stress at 
a point

 Eq(1.11) →      in terms of those resolved in axis  

* 2 2 2
1 1 1 2 2 3 3 23 2 3 13 1 3 12 1 22 2 2l l l l l l l l lσ σ σ σ τ τ τ= + + + + + (1.18)

*
1σ J

1 1 12 2 13 3 1 21 1 2 2 23 3 2 31 1 32 2 3 3 3
2 2 2

1 1 2 2 3 3 23 2 3 13 1 3 12 1 2

( ) ( ) ( )

2 2 2
n

n

n n n n n n n n n n n n n
n n n n n n n n n

τ σ τ τ τ σ τ τ τ σ

σ σ σ σ τ τ τ

⋅ = + + + + + + + +

= + + + + + (1.11)

1 2 3, ,l l l : direction cosines of unit vector *
1i

Similar eqns for *
2 1 2 3
*
3 1 2 3

, ,

, ,

m m m
n n n

σ

σ

⋅⋅⋅

⋅⋅ ⋅

Shear component : Eq. (1.12) →

*
12 1 1 1 2 2 2 3 3 3 12 2 1 1 2 13 3 1 1 3 23 2 3 3 2( ) ( ) ( )l m l m l m l m l m l m l m l m l mτ σ σ σ τ τ τ= + + + + + + + + (1.19)

Compact matrix eqn.

* * *
1 12 13 1 12 13
* * *
21 2 23 21 2 23
* * *
31 32 3 31 32 3

TR R
σ τ τ σ τ τ
τ σ τ τ σ τ
τ τ σ τ τ σ

   
   =   
      

(1.20)
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1.2 Analysis of the state of stress at 
a point

1-16

 “Stress invariant”. … invariant w.r.t. a change of coordinate system. (1.21)

* * *
1 1 2 3 1 2 3,

* * * * * * *2 *2 *2
2 1 2 2 3 3 1 12 13 23

2 2 2
1 2 2 3 3 1 12 13 23

* * *
3 1 2 3

                                          (1.21a)

,                                   (1.21b)

I

I

I

σ σ σ σ σ σ

σ σ σ σ σ σ τ τ τ

σ σ σ σ σ σ τ τ τ

σ σ σ σ

= + + = + +

= + + − − −

= + + − − −

= − * *2 * *2 * *2 *2 *2 *2
1 23 2 13 3 12 12 13 23
2 2 2

1 2 3 1 23 2 13 3 12 12 13 23

2

2                       (1.21c)

τ σ τ σ τ τ τ τ

σ σ σ σ τ σ τ σ τ τ τ τ

− − +

= − − − +
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1.3 The state of plane stress

 All stress components acting along the direction of axis     are assumed to vanish 
or to be negligible. Only non-vanishing components : 

3i
1 2 12, ,σ σ τ

Independent of 3x

Vary thin plate or sheet subject to loads applied in its own plane (Fig. 1.11)

1-17
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1.3 The state of plane stress

 Considerably simplified from the general, 3-D case → 2 remaining eqns

1.3.1 Equilibrium eqns

1 21 12 2
1 2

1 2 1 2

0, 0b b
x x x x
σ τ τ σ∂ ∂ ∂ ∂

+ + = + + =
∂ ∂ ∂ ∂ (1.26)

Fig. 1.11 Plane stress problem in thin 
sheet with in-plane tractions

 Surface tractions

1 1 1 2 21 2 1 121 2 2,t n n t n nσ τ τ σ= + = +

Very thin plate or sheet subject to loads applied in its own plane Fig. 1.11

(1.27)

1-18



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

1.3 The state of plane stress

 Fig. 1.11 … outer normal unit vector 1 1 2 2

1 2 3

1 1 2 2

1 2 3

,
cos , sin , 0

sin , cos , 0

n n i n i
n n n
s s i s i
s s s

θ θ

θ θ

= +
= = =

= +
= − = =

tangent unit vector

Eq.(1.11) →

Eq.(1.12) →

2 2
1 2 12cos sin 2sin cosnt θσ θσ θ θτ= + + (1.28)

(1.29)2 2
2 1 12sin cos ( ) (cos sin )st θ θ σ σ θ θ τ= − + −

 Fig.1.12 : 2-D version of Cauchy’s tetrahedron (Fig. 1.7)

1.3.2 Stress acting on an arbitrary face within the sheet

Fig. 1.12 Differential element with a face at an angle θ
1-19
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1.3 The state of plane stress

- Equilibrium of forces

2 1 1 2 1 2
1
2ndx dx ds bdx dxτ τ τ+ = +

dividing by ds
1 1 2 2 1 2

1
2n n n bdx dx

ds
τ τ τ= + −

Neglected since multiplied by h.o. term

(1.30)( ) ( )1 1 12 2 21 1 2 2cos sinn i i i iτ σ τ θ τ σ θ= + + +

- Projecting in the dir. of unit vector nn σ→

2 2
1 2 12cos sin 2 cos sinnσ σ θ σ θ τ θ θ= + + (1.31)

- Projecting in the dir. of normal to 

2 2
1 2 12cos sin cos sin (cos sin )nsτ σ θ θ σ θ θ τ θ θ= − + + − (1.32)

nsn τ→

→ Knowledge of                  or  2 orthogonal faces allows computation of 
the stress components acting on a face with an arbitrary orientation 

1 2 12, ,σ σ τ

1-20
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1.3 The state of plane stress

1.3.3 Principal stress

12

1 2

sin 220 tan 2
cos 2

pn
p

p

d
d

θσ τθ
θ σ σ θ

→ = → = =
−

 Simply write Eqn. (1.13)-(1.15) with
or, using Eq. (1.31)… particular orientation,     , that maximizes (or minimizes)  

3 13 23 0σ τ τ= = =
pθ

(1.33)

2 sol.s and               corresponding to 2 mutually orthogonal principal stress 
directions.

pθ / 2pθ π+

( )

12 1 2

1/2
21 2

12

( )sin 2 , cos 2 ,
2

2

p p
τ σ σθ θ

σ σ τ

− = = ∆ ∆


 −  ∆ = +     

where     is determined by∆
2 2sin 2 cos 2 1p pθ θ+ =



Unique solution for pθ

(1.34)

(1.35)

- Max./Min. axial stress : “principal stress” by introducing Eq.(1.34) into (1.31)

1 2 1 2
1 2;

2 2p p
σ σ σ σσ σ+ +

= + ∆ = −∆ (1.36)

Where the shear stress vanishes
1-21

nσ
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1.3 The state of plane stress

(1.40)

2 sol.s and               corresponding to 2 mutually orthogonal faces
directions.

sθ / 2sθ π+

1 2
max 2

4

p p

s p

σ σ
τ

πθ θ

−
= ∆ =

= −

Max. shear stress occurs at a face inclined at a 45° angle w.r.t. 
the principal stress directions

(1.42)

- Max. shear stress

1 21 2
1 2 2 2

p p
s s

σ σσ σσ σ
++

= = =

 Max. shear stress →     → using Eq.(1.32)sθ 0nsd
d
τ
θ

= (1.37)

1 2

12

1tan 2
2 tan 2s

p

σ σθ
τ θ
−

→ = − = (1.38)

(1.41)

1-22
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1.3.4 Rotation of Stresses

(1.32)

- Eq (1.31)

- Compact matrix form

can be easily inverted by simply replacing    by

- Knowledge of the stress components    ,    ,      on 2 orthogonal faces allows 

computation of those acting on a face with an arbitrary orientation 

1.3 The state of plane stress

1-23

* 2 2
1 1 2 12cos sin 2 sin cosσ σ θ σ θ τ θ θ= + +

( )* 2 2
12 1 2 12sin cos sin cos cos sinτ σ θ θ σ θ θ τ θ θ= − + + −

* 2 2
1 1
* 2 2
2 2

* 2 2
12 12

cos sin 2cos sin
sin cos 2cos sin

sin cos sin cos cos sin

σ θ θ θ θ σ
σ θ θ θ θ σ
τ θ θ θ θ θ θ τ

     
     = −     
     − −     

θ−θ

1σ 2σ 12τ

(1.45)

(1.46)

(1.47)
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1.3.5 Special state of stresses

¡) Hydrostatic stress state …… “hydrostatic pressure” 

With any arbitrary orientation

ii) Pure shear state

(Fig. 1.13)

iii) Stress state in thin-walled pressure 

vessels 

Fig.14 … cylindrical pressure

vessel subjected to internal

pressure

1.3 The state of plane stress

1-24

1 2p p Pσ σ= =

12 0τ =

2 1p pσ σ= −

At the face inclined at a 45° angle w.r.t. the principal 

stress direction
* *
1 2 0σ σ= =

1

*
12 pτ σ= − (1.51)

iP
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2 in-plane stress components
(axial direction)

(circumferential or “hoop” direction)

Possibly a shear stress,

Area of cylinder cross-section in the 
direction of axial 

- Axial force equilibrium

- tangential (hoop) direction
Internal area of cylinder projected 
to the tangential (hoop) direction 

1.3.6 Mohr’s circle for plane stress

◦ , … Principal stresses at a point

◦ Eq.(1.49) -> stresses acting on a face oriented at an angle 𝜃𝜃 w.r.t. the

principal stress direction

𝜏𝜏∗ = −𝑅𝑅sin2𝜃𝜃

1.3 The state of plane stress

1-25

aσ

hσ

ahτ
2 / 2a iRt p Rσ π π=

2 / 2a ip R tσ =

2 2h ibt p Rbσ =

/h ip R tσ =
0ahτ =

1pσ
2pσ

* cos 2a Rσ σ θ= +

Left/right

(1.52)
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◦ where

◦ equation of a circle “Mohr’s circle”

:horizontal axis,  :vertical axis (“inverted”)

:radius,  

……each point on Mohr’s circle represents the state 
of stress acting at a face at a specific orientation

◦ Observations  

1) At point,    ,            ,           …..principal stress direction
,                              second principal stress direction

2) At point     ,  ,                              -> Max. shear stress orientation

3) At point,   ,    two faces oriented 90° apart, the shear stresses are equal in 
magnitude and of opposite sign -> principle of reciprocity 

1.3 The state of plane stress

1-26

( )1 2
/ 2a p pσ σ σ= + ( )1 2

/ 2p pR σ σ= −

( ) ( )2 2* * 2
a Rσ σ τ− + =

*σ *τ
aσ

R

1P
1

*
pσ σ= * 0τ =

2P

1E
2E 4

πθ = ( )1 2

*
max / 2p pRτ σ σ= = −

1A 2A

,

(1.53)

center at a coordinate       on the horizontal axis
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◦ Construction procedure 

1) First point    at

2) Second point    ,             at a 90° angle 
counterclockwise w.r.t. the first point

3) Straight line joining    and 

4) Stress component at    an angle   
…….a new diameter          rotated      degree from the ref. diameter

◦ Important features

1) Principal stress          -> points   and   , direct stress Max/Min. shear stress=0

2)  Max. shear stress…….. Vertical line    =radius,

direction…..45° since

3) Stress components acting on 2 mutually orthogonal faces ……..2 diametrically 
opposite points on Mohr’s circle   

4) All the point on Mohr’s circle represent the same state of stress at one point of 
the solid

1.3 The state of plane stress

1-27

1A ( )1 12,σ τ

2A ( )2 12,σ τ−

1A 2A

β

1 2B OB 2β 1 2AOA

1 2
,p pσ σ 1P 2P

1E ( )1 2max / 2P Pτ σ σ= −

1 1 90POE = °
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1.3.7 Lame’s ellipse

Eq. (1.30) When selecting the principal stress direction

: Tip of the stress vector,

Eliminating𝜃𝜃

Equation of ellipse with semi-axis equal to      and       (Fig 1.17) 

◦ Pure shear…..ellipse circle (Fig.1.18)

1.3 The state of plane stress

1-28

* *
1 1 2 2cos sinn p pi iτ σ θ σ θ= +

( )1, 2x x * *
1 1 2 2n x i x iτ = +

1 1 cospx σ θ= 2 2 sinpx σ θ=

2 2

1 2

1 2

1
p p

x x
σ σ
   

+ =      
   

(1.54)

1pσ
2pσ
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1.4 The concept of strain

◦ displacement vector 
¯
𝑢𝑢 …..measure of how much  a material point moves.

Rigid body motion…..translation, rotation -> does not produce strain

Deformation or straining -> strain-displacement relation

◦ State of strain……..characterization of the deformation in the neighborhood of a material
point in a solid

at a given point P, located by a position vector (Fig.1.22)

small rectangular parallelepiped PQRST of differential size
“ reference configuration,” undeformed state

“deformed configuration” PQRST 

1-29

1 1 2 2 3 3r x i x i x i= + +

(1.56)

two 
parts
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1.4.1 The state of strain at a point

◦ Material line PR in the ref. conf. Material line PR in the ref. conf. in the deformed 
configuration

◦ 2 factors in the measure of state of strain

Stretching of a material line ……

Angular distortion between 2 material lines……

1.4 The concept of strain

¡) Relative elongations or extensional strain
‖. . . ‖: magnitude 

…. Non-dimensional quantity

(1.59)

1-30

1 2 3, ,ε ε ε

23 13 12, ,γ γ γ

1

def ref

ref

PR PR
PR

ε
−

=

1 1 1refPR dx i dx= =

( )1 1 1 1 1( )defPR dx i u x dx u x= + + −

1 1 1 1 1 1 1 1
1 1

( ) ( )def
u uPR dx i u x dx u x dx i dx
x x
∂ ∂

= + + + − = +
∂ ∂

31 2
1 1 1 2 3 1

1 1 1

uu ui dx i i i dx
x x x

 ∂∂ ∂
= + + + ∂ ∂ ∂ 

assumed to be still straight, but 
a parallelogram

(1.57)
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1.4 The concept of strain

(1.60)

◦ fundamental assumption of linear elasticity….all displacement components remain 
very small so that all 2nd order terms can be neglected.
And, using the binomial expansion

“direct strains” or “axial strains”

(1.62)

(1.63)

Then

1-31

2 2 2

31 1 2
1

1 1 1 1

1 2 uu u u dx
x x x x

     ∂∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂     

2 2 2

31 1 2
1 1

1 1 1 1

1 2 1uu u u dx
x x x x

ε
     ∂∂ ∂ ∂

= + + + + −     ∂ ∂ ∂ ∂     

1 1
1

1 1

1 1u u
x x

ε ∂ ∂
≅ + − =

∂ ∂

2
2

2

u
x

ε ∂
=
∂

3
3

3

u
x

ε ∂
=
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1.4 The concept of strain

¡¡) Angular distortions or shear strains

….between two material lines PT and PS, defined as the change of the initially
right angle

(1.64)

<……> : angle between segment 

Non-dimensional quantities

by law of cosine

(1.65)

(1.66)

(1.67)

1-32

23γ

23 2ref def def
TPS TPS TPSπγ = − = −

23sin sin cos
2 def def

TPS TPSπγ  = − = 
 

2 2 2cos
def def def def def def

TS PT PS TPS PT PS= + −

2 2 2

23 arcsin
2
def def def

def def

PT PS TS

PT PS
γ

+ −
=

3 3
3

def
uPT i dx A
x

 ∂
= + = ∂ 

2 2
2

def
uPS i dx B
x

 ∂
= + = ∂ 

defdef defPS PS PT B A= − = −
    

,

232sin γ
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1.4 The concept of strain

Numerator

Denominator

-with the help of small displacement assumption

“shearing strain”

“shear strain”

(1.70)

(1.71)

-Strain-displacement relationship, Eqs. (1.63), (1,71) ….. Under the small 
displacement assumption

Large displacement  Eqns. (1.60),(1.67) should be used
1-33

3 32 1 1 2 2 2
2 3

3 2 2 3 2 3 2 3

2 u uu u u u u uN dx dx
x x x x x x x x

 ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2D A A B B= ⋅ ⋅

32
2 3

3 2

2 uuN dx dx
x x

 ∂∂
≅ + ∂ ∂ 

32
2 3

2 3

2 1 uuD dx dx
x x

 ∂∂
≅ + + ∂ ∂ 

32
23

3 2

uu
x x

γ ∂∂
≅ +
∂ ∂

31
13

3 1

uu
x x

γ ∂∂
≅ +
∂ ∂

1 2
12

2 1

u u
x x

γ ∂ ∂
≅ +
∂ ∂
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¡¡¡) Rigid body rotation

1.4 The concept of strain

(1.73a)

Rotation vector                      ……the rotation of the solid about axes        
respectively  

1.4.2 The volumetric strain

◦ After deformation

where high order strain quantities are neglected

◦ relative change in volume

“volumetric strain”

(1.74)

(1.75)

1-34

3 2
1

2 3

1
2

u u
x x

ω
 ∂ ∂

= − ∂ ∂ 

( )( )( ) ( )1 2 3 1 2 3 1 2 3 1 2 31 1 1 1dx dx dx dx dx dxν ε ε ε ε ε ε≈ + + + ≈ + + +

1 2 3e ε ε ε= + +

{ }1 2 3, ,Tω ω ω ω= 1 2 3, ,i i i
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- Arbitrary reference frame

1.5 Analysis of the state of strain at a point

-> Strain-displacement relationship in    (1.76), (1.77)

1.5.1 Rotation of strains

◦ chain rule

(1.78)

Where Eq. (A.39) is used

- Next,     in terms of the components in

Using Eq. (1.63) and  (1.71)

(1.79)

1-35

( )* * * *
1 2 3, ,J i i i=

* * * * * * *
* 31 1 1 1 2 1 1 1 1
1 1 2 3* * * *

1 1 1 2 1 3 1 1 2 3

xu u x u x u u u ul l l
x x x x x x x x x x

ε ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) ( ) ( )*
1 1 1 1 2 2 3 3 2 1 1 2 2 3 3 3 1 1 2 2 3 3

1 2 3

l l u l u l u l l u l u l u l l u l u l u
x x x

ε ∂ ∂ ∂
= + + + + + + + +

∂ ∂ ∂

* 2 2 2
1 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3l l l l l l l l lε ε ε ε γ γ γ= + + + + +

*J

J*
1u
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1.5 Analysis of the state of strain at a point
Similar eqns. (1.80), (1.81)

Tensor shear strain component

Engineering shear strain comp.

- Compact matrix form

(1.83)

1.5.2 Principal strains

◦ Is there a coordinate system    for which the shear strains vanish?

(1.82)

1-36

23
23 2

γε = 13
13 2

γε = 12
12 2

γε =

* * *
1 12 13 1 12 13
* * *
12 2 23 13 2 23
* * *
13 23 3 13 23 3
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ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

   
   =   
     

*
1 1 12 13

*
2 13 2 23

*
3 13 23 3

0 0
0 0
0 0

TR R
ε ε ε ε

ε ε ε ε
ε ε ε ε

   
   =   
     

*J

*
1 1

*
2 2

*
3 3

p p
p R p
p p

  
   =   

   
   

*
1 1
*
2 2
*
3 3

T

p p
p R p
p p

   
   =   
   

  

(A.39)
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1.5 Analysis of the state of strain at a point

- Pre-multiplying    and reversing the equality 
¯̄
𝑅𝑅

where the orthogonality of    , Eq. (A.37), is used  
¯̄
𝑅𝑅

- : sol. of 3 system of 3 eqns

1-37

1

2

3

1 12 13

13 2 23

13 23 3

0 0

0 0

0 0

p

p

p

R R

εε ε ε
ε ε ε ε
ε ε ε ε

  
   =   
     

1 12 13 1 1

13 2 23 2 2

13 23 3 3 3

p

n n
n n
n n

ε ε ε
ε ε ε ε
ε ε ε

     
     =    
         

1 2 3
, ,p p pε ε ε

1 2 3 1 1 1

1 2 3 2 2 2

1 2 3 3 3 3

1 0 0
0 1 0
0 0 1

T
l l l l m n

R R m m m l m n I
n n n l m n

= = =

     
     = = =     
         

(A.37)
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1.5 Analysis of the state of strain at a point

Determinant of the system vanishes-> non-trivial solution.

Cubic eqn.

“Strain 
invariant”

(1.85)

(1.86)

3 sol:               -> corresponding  “principal strain direction” 

-> homogeneous eqn.-> arbitrary constant ->normality condition 

1-38

3 2
1 2 3 0p p pI I Iε ε ε− + − =

1 2 3
, ,p p pε ε ε

◦ displacement component along    is assumed to vanish, or to be negligible

Example: a very long buried pipe aligned with    dir.

3i

3i
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1.6 The state of plane strain

1.6.1 Strain-displacement relations for plane strain

(1.87)

1.6.2 Rotation of strains

Eq (A.43)

◦ chain rule

1-39

1
1

1

u
x

ε ∂
=
∂

2
2

2

u
x

ε ∂
=
∂

1 2
12

2 1

u u
x x

γ ∂ ∂
= +
∂ ∂

* * * * *
* 1 1 1 1 2 1 1
1 * * *

1 1 1 2 1 1 2

cos sinu u x u x u u
x x x x x x x

ε θ θ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂
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1.6 The state of plane strain

- 𝑢𝑢1∗ in terms of those in

-Then,

(1.88)

(1.89)

-Matrix form

(1.91)

can be readily inverted by replacing 𝜃𝜃 by -𝜃𝜃

1-40

( ) ( )*
1 1 2 1 2

1 2

cos cos sin sin cos sinu u u u
x x

ε θ θ θ θ θ θ∂ ∂
= + + +

∂ ∂

* 2 2
1 1 2 12cos sin sin cosε θε θε θ θγ= + +

* 2 2
1 1
* 2 2
2 2
* 2 2
12 12

cos sin 2sin cos
sin cos 2sin cos

sin cos sin cos cos sin

ε θ θ θ θ ε
ε θ θ θ θ ε
ε θ θ θ θ θ θ ε

     
     = −    
    − −     

J
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1.6 The state of plane strain

1.6.3 Principal strains

◦ , in which the max (or min) elongation occurs   

(1.95)

(1.96)

2 sols. --- , ….. 2 mutually orthogonal principal strain directions

(1.99)

where shear strain vanishes

- The orientation of the  
Principal stresses

Principal strains

are not necessarily identical

1-41

*
1 1 2 120 2sin 2 2cos 2 0

2 2p p
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d
ε ε ε γθ θ
θ
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= = − + =
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1

1 2

2p
ε εε +

= + ∆
2

1 2

2p
ε εε +

= −∆

pθ

1pθ 2 1 2p p
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1.6 The state of plane strain

1.6.4 Mohr’s circle for plane strain

- Strains along a direction defined by angle 𝜃𝜃 w.r.t. the principal strain direction  

(1.100)

Where,

=> Mohr’s circle (1.101)

Fig.1.23, positive angle 𝜃𝜃 …. counterclockwise dir.
shear strain …….positive downward 

Vertical axis ……strain tensor,  

1-42

* cos 2a Rε ε θ= +
*

sin 2
2

Rγ θ= −

( )1 2

2
p p
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ε ε
ε
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=
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2
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( )
*2* 2

2a Rγε ε
 

− + = 
 
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2
γ 
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 
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1.7 Measurement of strains

¡) strain gauges
◦ measurement of extensional strains on the body’s external surfaces

- Very thin electric wire, or an etched foil pattern
- extension …. wire’s cross-section reduced by Poisson’s effect. Slightly                         

increasing its electrical resistance 
compression….increasing its electrical reduced resistance

- Wheatstone bridge …..accurate measurement

“micro-strains” …𝜇𝜇 𝑚𝑚/𝑚𝑚=10−6 𝑚𝑚/𝑚𝑚
¡¡) Chevron strain gauges

Fig 1.24….. e+45 and e-45, experimentally measured relative elongations

Using Eq (1.94a), 

……Not sufficient to determine the strain state at the point

3 measurements 
would be required 2 principal strains & dir.

However, can uniquely determine (1.102)

1-43

1 2 12
45 2 2

e ε ε γ
+

+
= + 1 2 12

45 2 2
e ε ε γ
−

+
= −

1 2 12, ,ε ε γ

12 45 45e eγ + −= −

No practical experimental device for direct measurement of STRESS …….indirect 
measurement of strain first
 constitutive laws
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1.7 Measurement of strains

¡¡¡) Strain gauge rosette

Fig.1.25……3 independent measurements, “delta rosette”

Eq. (1.94a)  (1.103)

Fig.1.26 …..various arrangement of strain gauges

1-44

1 1eε = 1
2 2 3

2
3 2

ee eε  = + − 
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( )12 2 3
2
3
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