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Basic equation of Linear Elasticity

s Structural analysis ... evaluation of deformations and stresses
arising within a solid object under the action of applied loads

- if time is not explicitly considered as an independent variable
— the analysis is said to be static
— otherwise, structural dynamic analysis or structural dynamics

Small deformation
Linearly elastic material behavior

L)

< Under the assumption of{

- Three dimensional formulation — a set of 15 linear 1%t order PDE involving
displacement field (3 components)
stress field (6 components)

strain field (6 components)

) ) plane stress problem
— simpler, 2-D formulatlons{

plane strain problem

s For most situations, not possible to develop analytical solutions

— analysis of structural components ... bars, beams, plates, shells




1.1 The concept of Stress

‘ 1.1.1 The state of stress at a point

% State of stress in a solid body... measure of intensity of forces acting
within the solid
- distribution of forces and moments appearing on the surface of the cut ...
equipollentforce F , and couple M
- Newton’s 3™ law — a force and couple of equal magnitudes and opposite directions
acting on the two forces created by the cut

Plane of
the cut

Applied loads
Small surface

on the cut A,
!—i“%
H s

=

=

Fig. 1.1 A solid body cut by a plane to isolate a free body
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1.1 The concept of Stress

» A small surface of area A1 located at point P on the surface generated by the cut
— equipollentforce F,, couple M.

- limiting process of area — concept of “stress vector”

. = |lim i
= _dAn—>0 dAh (1.1)

existence of limit : “fundamental assumption of continuum mechanics”
- CoupleM, - 0asdA — 0

... couple is the product of a differential element of force by a differential
element of moment arm

— negligible, second order differential quantity

- Total force acting on a differential element of area, dA1

E,=dAz, (1.2)

Unit : force per unit area, N / m? or Pa
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1.1 The concept of Stress

» Surface orientation, as defined by the normal to the surface, is kept constant
during the limiting process

- Fig. 1.2 ... Three different cut and the resulting stress vector
first... solid is cut at pointP by a plane normal to axis E :
differential element of surface with an area dA, , stress vector 7,
— No reason that those three stress vectors should be identical.

Cut normal
1o nxis |,

Cut norr[lal
to axis i,




1.1 The concept of Stress

» Component of each stress vectors acting on the three forces

7, =00k +T,L + TlBE (1.3a)
/ ~.A

{direct {shearing — both act on the force normal to
stress Stress o - - -
normal shear axis | inthe directionof |, and I,
— “engineering stress components” "T o.
unit : force/area, Pa

“positive” force ... the outward normal to the face,
I.e., the normal pointing away from the body,

Is in the same direction as the axis

— sign convention (Fig.1.3)

» 9 components of stress components
— fully characterize the state of stress at P

Force ... vector quantity, Fig. 1.3 sign conventions
3 components of the force vector (15t order tensor)

Stress ... 9 quantities (2" order tensor)

|9 Strain tensor

Bending stiffness of a beam
Mass moments of inertia




1.1 The concept of Stress

‘ 1.1.2 Volume equilibrium eqn.

% Stress varies throughout a solid body
- Fig. 1.4 axial stress component at the negative face : 0,
axial stress componentat the positive face at coordinate X, +dX, : o,(X, +dx,)
if 0,(X,) is an analytic function, using a Taylor series expansion

az(x2+dx2)=az(x2)+aﬂ
2

dx, +...n.oterms in dx,

oo
& o,(X, +dX,) =0, + x2 dx,

- body forces b ... gravity, inertial, electric, magnetic origin ?

b= b1E+ sz +b3E — unit : force/volume, N / m®

G+ (dcs_,fdx_\};kdx_, o 1,, + (dt,,/dx,) dx,

T, + (dt, /dx;) dx, /

P (dt,/dx,) dx,

Ly o, + (do,/dx,) dx,

T, + (dt,,/dx,) dx,




1.1 The concept of Stress

i) Force equilibrium
direction of axis |

0o, N 0T, N 07y,
oX,  OX,  OX (1.4a)

must be satisfied at all points inside the body
- equilibrium should be enforced on the DEFORMED configuration (strictly)

— Unknown, unfortunately

“linear theory of elasticity”... assumption that the displacements of the body under
the applied loads are very small, and hence the difference between deformed and
undeformed is very small.

i) Moment equilibrium
about axis | — 7Ty, — 75, =0

— “principle of reciprocity of shear stress” (Fig. 1.5)

- only 6 independent components in 9 stress components _ _ _
Fig. 1.5 Reciprocity of the

— symmetry of the stress tensor (1.6) shearing stresses acting on
two orthogonal faces




1.1 The concept of Stress

‘ 1.1.3 Surface equilibrium eqn.

% At the outer face of the body.

stress acting B equilibrium R Externallyapplied} t
{ inside the body} Surface tractions )

t= th"'tzi_z +tsg

» Fig. 1.6 ... free body in the form of a differential tetrahedron bounded by

{ 3 negative faces cut through the body in directions normal to axes b, b, L
A fourth face, ABC, of area dA,

Stresses acting
on the faces cut
through the body

Stress vector -

acting on the

external face
¢ of the body

External surface
of the body




1.1 The concept of Stress

> Force equilibriumalong i, , and dividing by dA
L =on +7,N, + 74N, (1.9a)

body force term vanishes since it is a h.o. differential term.
A body is said to be in equilibriumif egn (1.4) is satisfied at all points inside
the body and egn (1.9) is satisfied at all points of its external surface.




1.2 Analysis of the state of stress at

a point

4

» It is fully defined once the stress components acting on three mutually
orthogonal faces at a point are known.

. 1.2.1 Stress components acting on an arbitrary face

> Fig 1.7... “Cauchy’s tetrahedron” with a fourth face normal to unit vector N of
arbitrary orientation

Stresses on three Stress on the iace
normal faces normal to n

Fig. 1.6 Differential tetrahedron element with one face, ABC, normal to unit vector n
and the other three faces normal to axes iu i2 and E , respectively.




1.2 Analysis of the state of stress at

a point

- force equilibrium
7,dA +7,dA, + 7,dA, =7 dA +bdV

dividingbydA, and neglecting the body force term
(sinceitis multiplied by a h.o. term)

7, =5 + 5N, + 75N,
- Expanding the 3 stress vectors,
7, = (04 + 7350, + T3l + (T + 05y + Tpl)N, + (234 + 7550, + 03)N (1.10)
- To determine the direct stress O, project this vector eqn in the direction of N
M-z, = (03N, + 73N, + TN )Ny + (751N + TN, + TpaNy)N, + (74N, + 75,1, + 03NN,

o, =oN + 0,0 + 0 N +27,,0,N, + 27,,0N, + 27,0,N, (1.11)

- stress component acting in the plane of face ABC : 7\,

... by projecting Eq. (1.10) along vector S

Tos = O NS, +0,N,S, + 0,N,S; +7,,(N,S, +NS,) +7,5(NS; +N,S) +7,5(N,S; +N.S,)  (1.12)




1.2 Analysis of the state of stress at

a point

Eqns (1.11), (1.12)... Once the stress components acting on 3 mutually orthogonal
faces are known, the stress components on a face of arbitrary orientation can be

readily computed.

» How much information is required to fully determine the state of stress at a pointP
of a solid?
Compute definition of the state of stress at a point only requires knowledge of
the stress vectors, or equivalently of the stress tensor components, acting on
three mutually orthogonal faces.

‘ 1.2.2 Principal stresses

» |Is there a face orientation for which the stress vector is exactly normal to the
face ? Does a particular orientation, 1 exist for which the stress vector acting on
this face consists solelyof 7, = O'pﬁ, where O is the yet unknown?

... projecting Eq.(1.10) along axes il, iz, L, — 3 scalar egns

Ty c,— 0O Tyq n, =0 (1.13)




1.2 Analysis of the state of stress at

a point

- Determinant of the system = 0, non-trivial sol. exists.

(1.14)

3 2 —

T o

“stress invariants” (1.15)

- Solution of Eq (1.14) ... “principal stress”
3 solutions 9;,) Oy, Op, — non-trivial sol. for the direction cosines

“principal stress direction”
Homogeneous egns — arbitrary constant — enforcing the normality condition

ne+n +n7 =1

. 1.2.3 Rotation of stresses

> Arbitrary basis: I"'=(1 ", 1, I, ) —>{ O'I, O,, Oy

* * *

Tozr T13y 11

- orientation of basis ]~ relative to J
— matrix of direction cosine, or rotation matrix R (A.36)

cos(i’ i ) cos(i, i) cos(t k)| [, m

_ % —%* = —%* = _ (A_36)
R =|cos(i ,i, ) cos(i, ,i, ) cos(iy,i,)|=|l, n, m,
- |eos(i’ k) cos(iy k) cos(i )| Lk Ms Mg




1.2 Analysis of the state of stress at

a point

> Eq(1.11) — O, interms of those resolved in axis J

Nz, = (0N, + 7,0, + 7NN, + (7N, + 0,N, + T,.N)N, + (75,0, + 7,0, + 03NN,

2 2 2
o, =o,N +0o,N, +0,N; +27,,0,N, +27,,n,N, + 27, N, (1.11)
* 2 2 2
o, =0l +o,l; +o,l; + 27,1, + 27l 1, + 27,1, (1.18)

l;, 1,, 15 : direction cosines of unit vector i
Similareqns for o,--- m, m,, m,
Oy Ny, Ny, Ny
Shear component : Eqg. (1.12) —
7, =olm +o,l.m, +o.l.m, + 7, (Lm +Im,) + 7, (Lm +Im,) + 7. (ILm, +1,m,)  (1.19)

Compact matrix eqn.

.
Ty O, Tu|=R 7y 0, 7,4]|R (1.20)




1.2 Analysis of the state of stress at

a point

» “Stress invariant”. ... invariantw.r.t. a change of coordinate system. (1.21)

|, =0, +0,+0;=0,+0,+0; (1.213)

* * *2 *2

_ * * * * *2
|, =0,0,+0,0;+030, —7;; — 715 —Tp3

_ 2 2 2
|, =0,0,05 =017y — 0,713 — 03715 + 271571373

B 2 2 2

= 010,03 — Oy Ty — OyTj3 — O3Typ + 27157137 (1.21c)




1.3 The state of plane stress

> All stress components acting along the direction of axis L are assumed to vanish
or to be negligible. Only non-vanishing components g, o,, 7,

T Independent of X,

Vary thin plate or sheet subject to loads applied in its own plane (Fig. 1.11)




1.3 The state of plane stress

() 1.3.1 Equilibrium eqgns

» Considerably simplified from the general, 3-D case — 2 remaining eqns

0
ﬂ+6721+b1=0, O, +8o-2 +b,=0 (1.26)
0% OX, 0% OX,
» Surface tractions
t =no, +n,7,, t,=n7,+n,0, (1.27)

Very thin plate or sheet subject to loads applied in its own plane Fig. 1.11

Applied
tractions

Fig. 1.11 Plane stress problem in thin
sheet with in-plane tractions




1.3 The state of plane stress

> Fig. 1.11 ... outer normal unitvector N =ni +n,i,,
n,=cosé, n,=sind, n,=0
tangent unit vector 3§ = 51i+ 32T2
s, =-siné@, s,=cosd, s,=0

Eq.(1.11) > t =cos’ fo, +sin’ o, +2sin #cos Oz, (1.28)

Eg.(1.12) > t, =sindcosé(c,—o,)+(cos’* &—sin’ O)zr, (1.29)

. 1.3.2 Stress acting on an arbitrary face within the sheet

» Fig.1.12 : 2-D version of Cauchy’s tetrahedron (Fig. 1.7)




1.3 The state of plane stress

- Equilibrium of forces

7,dx, + 7,dx, = 7, ds + bdxdx, %

dividing by ds
1
. =N +7,n, —bdxdx, —
=n =11 x2'2 = Xl 2 2dS
Neglected since multiplied by h.o. term
7, =0, + 73,1, ) COS O + (7,4} + 0,1, )sin & (1.30)

- Projecting in the dir. of unit vector N — o,
o, =0,008" 0+0,sin’ 6+ 27, cos@sin & (1.31)
- Projecting in the dir. of normal to N — 7

r.. =—0,C080sin 0+ o, cosdsin @ +z,,(cos* @ —sin’ O) (1.32)

ns —

— Knowledge of 0, 0,, 7;; or 2 orthogonal faces allows computation of
the stress components acting on a face with an arbitrary orientation




1.3 The state of plane stress

‘ 1.3.3 Principal stress

» Simplywrite Egn. (1.13)-(1.15) with 0, =7,;=7,=0
or, using Eq. (1.31)... particular orientation, Hp , that maximizes (or minimizes) o,

do, 2z, sin 2‘9p

- :O—>tan26?p:

o, — 0, ~ cos 20, (1.33)
[
|

2 sol.s t9p and 6’p +7 /2 corresponding to 2 mutually orthogonal principal stress
directions.

(1.34)

sin 29p :%, coS 29p :M, where A is determined by
sin” 26, +cos” 26, =1

1/2
A=K%j+(ﬁz)z} (1.35)

—> Unique solutionfor 6,

- Max./Min. axial stress : “principal stress” by introducing Eq.(1.34) into (1.31)
o,+0

oo = 1 2

+A D o, =t T2 A (1.36)

Where the shear stress vanishes




1.3 The state of plane stress

d .
> Max. shear stress — 0, — Tg =0 using Eq.(1.32) (1.37)
Stan29 =21 % L
) 2r,,  tan26, (1.38)
2sol.s@, and 6, +7/2 corresponding to 2 mutually orthogonal faces
directions.
o,—O0
- Max. shear stress T =A= plsz (1.40)
T
0, =0, 2 (1.41)
Max. shear stress occurs at a face inclined at a 45° angle w.r.t.
the principal stress directions
o.+0 O, +0,,
Opp = 0py ==t = (1.42)
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1.3 The state of plane stress

‘ 1.3.4 Rotation of Stresses

_Eq(1.31) — O; =0,C08° §+0,8in" 6+ 27,,sin fcosd

(1.32) — 17, =-0,5IN0c0s0+0,siNOcosd+1,,(cos’ 0 —sin® 0)

- Compact matrix form

O3
0,

T1o

can be easily inverted by simply replacingg by -6

- Knowledge of the stress components 0,,92, 712 on 2 orthogonal faces allows

cos’ @
sin’ @

sin® @
cos’ @

2c0sdsing |
-2c0s@sin @

—sindcos@ sin@dcosd cos’H—sin? 2

computation of those acting on a face with an arbitrary orientation

(1.45)

(1.46)

(1.47)




1.3 The state of plane stress

‘ 1.3.5 Special state of stresses

i) Hydrostatic stress state ...... O, =0, = P “hydrostatic pressure”

7, =0  with any arbitrary orientation

i) Pure shear state

o, =—0, (Fig. 1.13)

At the face inclined at a 45° angle w.r.t. the principal

stress direction
*

- T Fig. 1.13. A differential plane
T =70, 0,=0,=0 (1.51)

stress element in pure shear.

1) Stress state in thin-walled pressure

vessels

2R
G, /
lfl-gn e £44448444

b

Fig.14 ... cylindrical pressure

vessel subjected to internal

pressure F)I Fig. 1.14. Long, thin-walled cylindrical pressure vessel (left) and free body diagram (right)
used to calculate in-plane stresses o, and o,.




1.3 The state of plane stress

— O, (axial direction)
2 in-plane stress components =

— O, (circumferential or “hoop” direction)

Possibly a shear stress, 7,

Left/right
- Axial force equilibrium o, 7Rt = pi 2
N

Area of cylinder cross-section in the
direction of axial

o, = p,R* /2t

- tangential (hoop) direction 20'hbt =P 2Rb

Internal area of cylinder projected
o, = piR/t to the tangential (hoop) direction

o Oy, Oy, .. Principal stresses at a point

> EQ.(1.49) -> stresses acting on a face oriented at an angle 6 w.r.t. the

principal stress direction

o =o0,+Rc0s20 t1* = —Rsin26 (1.52)

1-25




1.3 The state of plane stress

o where
Py P2

I:>(0'* -0, )2 +(T*)2 =R’ (1.53)

o equation of a circle “Mohr’s circle” o
s VG*
i
O

O'a=(6p1+6p2)/2, R:(O' -0 )/2

o :horizontalaxis, ¢ :vertical axis (“inverted”)
center at a coordinate O, on the horizontal axis

~ |
P e

: » G
R :radius, P, o
L p2
...... each point on Mohr’s circle represents the state g / — B °x
of stress acting at a face at a specific orientation ¢ | A% Directionof =
v K, positive 0 T
Fig, LIS, Mohr's cirele for visualizing plane
> Observations ey state
1) At point, R ,0 =0, , T =0 .....principal stress direction
P, second principal stress direction

*

2) At point E,_, 9:% » Tmax = R=(0p1 —apz)/Z -> Max. shear stress orientation
EZ

3) At point, A, A, two faces oriented 90° apart, the shear stresses are equal in
magnitude and of opposite sign -> principle of reciprocity




1.3 The state of plane stress

o Construction procedure

E Direction of
: positive 0

1) First point A at (0.7;,)

2) Second pointA, , (o,,-7,,) at a 90° angle
counterclockwise w.r.t. the first point

3) Straight line joining A and A,

Fig. 1.16. Mohr’s circle construction proce-

4) Stress component at # an angle dure.
.......anew diameter BB, rotated 24 degree from the ref. diameter AOA,

o Important features

1) Principal stress 7,0, -> pointsP,and P, direct stress Max/Min. shear stress=0

2) Max. shear stress........ Vertical line E,=radius, Tmax =(0p1 —sz)/Z

3) Stress components acting on 2 mutually orthogonal faces ........2 diametrically
opposite points on Mohr’s circle

4) All the point on Mohr’s circle represent the same state of stress at one point of
the solid




1.3 The state of plane stress

' 1.3.7 Lame’s ellipse

Eg. (1.30) == When selecting the principal stress direction
I—» 7, =0,,C0s0} +o0, sinoi,

(x.X,) : Tip of the stress vector, 7, = X1, + X1,

X, =0, cosd X, =O'2pSin(9

Eliminating 0

2 2
X X
- = +| —= — 1 (1 5 4) Fig. 1.17. Lamé’s ellipse. Stress vector 7,, corresponds to positive principal stresses whereas
o o " stress vector z;_ corresponds to a1 > 0 and a2 < 0.
1p 2p
— Equation of ellipse with semi-axis equal to ‘Upl‘and ‘sz (Fig 1.17)

> Pure shear.....ellipse — circle (Fig.1.18) 4 f‘ .

I'ig. 1.18. Lamé’s ellipse for the case of pure shear; the three figures illustrate the stress vectors
acting on faces at 0, 45, and 90 degrees with respect to axis 7] .




1.4 The concept of strain

o State of strain........characterization of the deformation in the neighborhood of a material
pointin a solid

at a given point P, located by a position vector I = X i + X, I, + X;i; (Fig.1.22)

small rectangular parallelepiped PQRST of differential size
“ reference configuration,” undeformed state

— “deformed configuration” PQRST

Reference i, R Deformed
configuration configuration

i,

Fig. 1.22. The neighborhood of point P in the reference and deformed configurations.

o displacement vector u .....measure of how much a material point moves. (1.56)
WO Rigid body motion.....translation, rotation -> does not produce strain
parts{

Deformation or straining -> strain-displacement relation




1.4 The concept of strain

1.4.1 The state of strain at a point

- Material line PR in the ref. conf. — Material line PR in the ref. conf. in the deformed
configuration N

o 2 factors in the measure of state of strain

assumed to be still straight, but
{ Stretching of a material line ...... £, Eyr Es a parallelogram

Angular distortion between 2 material lines.....V 53, Y131 V12
i) Relative elongations or extensional strain

HPRH _HPRH ||...[|: magnitude
&= ‘dIiRH - .... Non-dimensional quantity (1.57)
ref

PRI|ref = ‘ dxliH = Xm

PR||def = dX1i+H(X1+dX1)_Q(X1)H

PR||der = d&i++g(x1)+2—idx1—g(xl)H=deii+2—idx1H




1.4 The concept of strain
e (3] (] o
oo B (B oo

o fundamental assumption of linear elasticity....all displacement components remain
very small so that all 2"d order terms can be neglected.
And, using the binomial expansion

Then

ou, ou
1+a 1:8—); (1.62)

“direct strains” or “axial strains”

oy, . _0uy (1.63)
ox,’ 0%

&, =




1.4 The concept of strain

ii) Angular distortions or shear strains

V.3 -...DEtween two material lines PT and PS, defined as the change of the initially

right angle
Va3 = <TPS>ref _<TPS>def :%_<Tps>def (1.64)
1 Non-dimensional quantities
<.....>: angle between segment
Sin 7, :sin[%—(TPS>defjoOS(TPS)def (1.65)
by law of cosine
7S] =IPT I +1PS], —ZCOSQF’S)dﬁ PT e [P (1.66)
, - - 2siny,,
7. = arcsin HPTHdef +HPSHdef _HTSHdef (1.67)
N 2HF)THdef HPSHdef
~ Ou ~ Ou
PTo :[Is +(9_X_3j dx, = A, PSy, :(Ig +a—;2j dx, =B
1_32 P—S’def = P—S>def —ﬁdef = E—K
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1.4 The concept of strain

Numerator

N - 2(Gu2 N ou, N ou, ou, N ou, ou, N ou, ou, jdxzdxg

OX; OX, OX, OX; OX, OX; OX, OX,

Denominator

D=2JA-AVB-B

-with the help of small displacement assumption

N =2 %+% dx, dx, D=2|1+ o, +% dx, dx,
aXS axz 8X2 8X3
PTx, OX, “shearing strain” (1.79)
)= %Jr% v = %4_% “shear strain” (1.71)
OX;  OX, X, 0%

-Strain-displacement relationship, Egs. (1.63), (1,71) ..... Under the small
displacement assumption
Large displacement 2> Eqgns. (1.60),(1.67) should be used




1.4 The concept of strain

iii) Rigid body rotation

o :l[%_%j (1.73a)

Rotation vectorC_oT = {a)l,a)z,a)s} ...... the rotation of the solid about axes E,I_Z,E
respectively

1.4.2 The volumetric strain

o After deformation

va(1+6)(1+¢,)(1+ &) dxdx,dx, = (1+ €, + &, + & ) dx,dx,dx, (1.74)
where high order strain quantities are neglected

o relative change in volume

e=¢g+&,+& “volumetric strain” (1.75)




1.5 Analysis of the state of strain at a point

- Arbitrary reference frame J° = (T,E*,E*)

-> Strain-displacement relationship in J (1.76), (1.77)

1.5.1 Rotation of strains

o chain rule
. _ou o X, ou; Ox, Gu Ox; _0u ,~ du ~ ou
& =+ l, + 1, + 1, (1.78)
OX, 8x1 OX; 8x OX; 8x ox;, Ox = OX, OX,
Where Eq. (A.39) is used
- Next, U: in terms of the components in J
. 9, 0 0
& =h—(Lu, +Lu, +Luy )+ 1, —(lLu, + Lu, +Lu, )+ 1, — (Lu, + Lu, +L,u,) (1.79)

OX, OX, OX,

Using Eq. (1.63) and (1.71)

« 12
& =gl;

+ell + el

+&ly +yphl, + sl + 75l




1.5 Analysis of the state of strain at a point

Similar egns. (1.80), (1.81)

£y _7Ja e =13 o ~Ji/ < Engineering shear strain comp. (1.82)
2 13 12

f ! !

Tensor shear strain component

P, P b, J
P, =Rip; f‘> P, (=R 4P, (A.39)
P, P, P; Ps

- Compact matrix form )
& En & & & &3
552 5; ‘9;3 :BT i3 & &p B (1.83)
_‘91*3 Ex & €13 &3 &3

> Is there a coordinate system J for which the shear strains vanish?

&g 0 0 & &y &

0 & O :BT i3 &  &p B

*

0 0 &) C13 &3 &3




1.5 Analysis of the state of strain at a point

- Pre-multiplyingR and reversing the equality

& &y &3 €n 0 0
&3 & &»|R=RI0 ¢ 0
3 &y & 0 0 ¢ 0,

(A.37)

A
—|
Py,
Il
3
3
N
3
%
—
3
N
>
N
Il
o O -
o +— O
, O O
Il
[| —




1.5 Analysis of the state of strain at a point

Determinant of the system vanishes-> non-trivial solution.

\—> Cubic eqgn. 83—|18§+|28p—|3=0 (1.85)

T— “Strain (1.86)

invariant”
3 sol:&,,&, ,€, -=> corresponding “principal strain direction”

-> homogeneous eqn.-> arbitrary constant ->normality condition

> displacement component along E IS assumed to vanish, or to be negligible

Example: a very long buried pipe aligned WithE dir.




1.6 The state of plane strain

1.6.1 Strain-displacement relations for plane strain

_ oy, R ou, ou,
ox Y12 = +
2 oX, OX

‘ 1.6.2 Rotation of strains

o chain rule

*

« 0u; ou, %, ou, OX, aufcosé’+%sin9

81_

OX; 8)(1 OX, ax OX, O, oX, T
Eq (A.43)

(1.87)




1.6 The state of plane strain

- u} in terms of those in J

x 0 : : 0 :
& =Cc0s0—(u, cosd+u,sin@)+sind—,(u, cosd+u,sin ) (1.88)
0%, OX,
-Then,
* 2 - 2 -
& =C0S° Og, +sin” Og, +sin @ cos Gy, (1.89)
-Matrix form
g | cos’o sin9  2sinfcosd |[ ¢
g = sin’@ cos’d  -2sindcosd |< &, (1.91)
&,| |-sin@cosd sinfcosd cos®H-sin’d||e,

can be readily inverted by replacing 6 by -6




1.6 The state of plane strain

1.6.3 Principal strains

° <9p, in which the max (or min) elongation occurs

— 98 o B %4029 + 12 200526, =0 (1.95)
déa 2 2
Vip 12
tan 260 =
" (6-6,)12 (1.96)
T .. . i .
2 sols. --- 0, g, =0, +E 2 mutually orthogonal principal strain directions

g, = 81282 A e, :¥—A (1.99)

where shear strain vanishes

Principal stresses

- The orientation of the { } are not necessarily identical

Principal strains




1.6 The state of plane strain

1.6.4 Mohr’s circle for plane strain

- Strains along a direction defined by angle 6 w.r.t. the principal strain direction

*

g =¢,+Rcos20 %=—R8in 20 (1.100)
Where,
(gpl + gpz) _ (gpl _8p2 )
g, = =
2 2
. 2 i
=> (6‘ —83) +(%}: R? Mohr’s circle (1.101)
/OE; f\l
Fig.1.23, positive angle 6 .... counterclockwise dir. ;29 .
shear strain .......positive downward - Q.. - ‘l‘)ﬂ'»
2 1 i (g
Vertical axis ...... strain tensor, .
2 Y2 Direction of
A 4 A, E, positive 6

Fig. 1.23. Mohr’s circle for visualizing
plane strain state.




1.7 Measurement of strains

measurement of strain first

No practical experimental device for direct measurement of STRESS .......indirect
- constitutive laws

i) strain gauges

> measurement of extensional strains on the body’s external surfaces
- Very thin electric wire, or an etched foil pattern
extension .... wire’s cross-section reduced by Poisson’s effect. Slightly
increasing its electrical resistance

compression....increasing its electrical reduced resistance
- Wheatstone bridge .....accurate measurement

“micro-strains” ...y m/m=10"m/m
ii) Chevron strain gauges

Fig 1.24..... e.,5s and e_,5, experimentally measured relative elongations
Using Eq (1.94a),

& 1TE | T _até o
€5 = + €45 = -
2 2 2 2
...... Not sufficient to determine the strain state at the point
€10621 712
3 measurements o _ _
would be required 2 principal strains & dir.

Fig. 1.24. Two strain gauges at the surface of
a solid.
However, can uniquely determine

(1.102)




1.7 Measurement of strains

iii) Strain gauge rosette
Fig.1.25.....3 independent measurements, “delta rosette”

2 ) 2
Eqg. (1.94a) > £ =€ &, Zg €, + &, _E V12 :E(ez —63)

Fig. 1.25. Three strain gauges forming a
rosette at the surface of a solid.

Fig.1.26 .....various arrangement of strain gauges

(1.103)
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