Mathematical Background in Aircraft Structural Mechanics

CHAPTER 2. Basic Equations

SangJoon Shin School of Mechanical and Aerospace Engineering Seoul National University

Active Aeroelasticity and Rotorcraft Lab.

✤ 3 types of relationships for the sol. of elasticity problems

- Equilibrium eqns
- Strain-displacement relationships
- Constitutive laws ··· mechanical behavior of the material
- i) Homogeneity and isotropy
- "homogenous material" ··· physical properties are identical at each point
- > "isotropic material" ... physical properties are identical in all direction
 - Ex) mild steel, aluminum ··· both homogeneous and isotropic

- Composite material \cdots neither homogeneous nor isotropic -> heterogeneous, anisotropic

➤ "scale dependent" ···

① At atomic level, Al is neither homogenous nor isotropic

-> assumption of homogeniety and isotropy only hold for a very large number of atoms

- ② High temperature turbine blade applications poly-crystalline materials single crystal
 - single crystal ··· regular lattice structures -> homogeneous, but anisotropic
 - poly-crystalline … crystals oriented in a specific dir ->

ex) forged metals

crystals arranged at random orientations -> [homogeneous

ex) common structural metals(steel, AI) 1 isotropic

- ③ Composite material … clearly anisotropic, but samples containing a very large number of fibers -> reasonably assumed as homogeneous
- ii) Material testing
- If deformation very small -> linear stress-strain relationship
- If large deformation -> material is ductile or brittle
- ➤ Tensile test ··· strain $ε_1 = Al/l$ stress $σ_1 = N/A$ Stress-strain diagram

2.1 Constitutive laws for isotropic materials

- 2.1.1 Homogeneous, isotropic, linearly elastic materials
- Small deformations -> linear stress-strain behavior

$$\sigma_1 = E\varepsilon_1$$
 Hooke's law (2.1)
 \uparrow
Young's modulus or modulus of elasticity [pa]

$$\varepsilon_1 = \frac{1}{E}\sigma_1$$
 $\varepsilon_2 = -\frac{v}{E}\sigma_1$ $\varepsilon_3 = -\frac{v}{E}\sigma_1$ (2.2)

V: Poisson's ratio

if σ_2 is applied,

$$\varepsilon_1 = -\frac{\nu}{E}\sigma_2$$
 $\varepsilon_2 = \frac{1}{E}\sigma_2$ $\varepsilon_3 = -\frac{\nu}{E}\sigma_2$ (2.3)

- i) Generalized Hooke's law
- Deformation under 3 stress components … sum of those obtained for each stress component
- -> generalized Hooke's law

1-5

$$\varepsilon_1 = \frac{1}{E} \left[\sigma_1 - \nu (\sigma_2 + \sigma_3) \right]$$
(2.4a)

···· extensional strains depend only on the direct stress and not on the shear stress <- isotropic material

- ii) Shear stress shear strain relationships
- Pure shear state in a plane stress state

- 2 principal stresses $\sigma_{p2} = -\sigma_{p1}, \sigma_{p3} = 0$

$$\varepsilon_{1} = \frac{1+\nu}{E} \sigma_{p1}, \varepsilon_{2} = -\frac{1+\nu}{E} \sigma_{p1}, \gamma_{12} = 0$$
(2.5)

- on faces oriented at a 45° angle w.r.t. the principal stress directions

$$\tau_{s_{12}}^* = \sigma_{p2} = -\sigma_{p1}, \sigma_{s_1}^* = \sigma_{s_2}^* = 0$$
(2.6)

*, s: specially rotated axis with max shear stress

$$\varepsilon_1^* = \frac{\varepsilon_1 + \varepsilon_2}{2} + \frac{\varepsilon_1 - \varepsilon_2}{2} \cos 2\theta + \frac{\gamma_{12}}{2} \sin 2\theta, \qquad (1.94a)$$

$$\varepsilon_{2}^{*} = \frac{\varepsilon_{1} + \varepsilon_{2}}{2} - \frac{\varepsilon_{1} - \varepsilon_{2}}{2} \cos 2\theta - \frac{\gamma_{12}}{2} \sin 2\theta, \qquad (1.94b)$$

$$\gamma_{12}^{*} = -(\varepsilon_{1} - \varepsilon_{2}) \sin 2\theta + \gamma_{12} \cos 2\theta. \qquad (1.94c)$$

Eq. (1.94) ->
$$\theta_{s} = 45^{\circ}, \gamma_{s_{12}}^{*} = -(\varepsilon_{1} - \varepsilon_{2}) = -\frac{2(1+\nu)}{E} \sigma_{p1}, \varepsilon_{s1}^{*} = \varepsilon_{s2}^{*} = 0$$
 (2.7)
Eq. (2.6), (2.7) -> $\gamma_{s_{12}}^{*} = -\frac{2(1+\nu)}{E} \sigma_{p1} = 2(1+\nu) \frac{\tau_{s_{12}}^{*}}{E} = G\tau_{s_{12}}^{*}$
=> $G = \frac{E}{2(1+\nu)}$ "shear modulus" (2.8)

··· generalized Hooke's law for shear strains

$$\gamma_{23} = \tau_{23} / G, \gamma_{13} = \tau_{13} / G, \gamma_{12} = \tau_{12} / G$$
(2.9)

iii) Matrix form of the constitutive laws

Compact matrix form of the generalized Hooke's law

$$\mathcal{E} = \sum_{n=1}^{\infty} \mathbf{\sigma}$$
(2.10)
$$\mathcal{E} = \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \gamma_{23}, \gamma_{13}, \gamma_{12}\}^T$$
(2.11a)
$$\mathbf{\sigma} = \{\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{13}, \tau_{12}\}^T$$
(2.11b)

$$Eq(2.4) = \frac{1}{E} \begin{bmatrix} 1 & -v & -v & 0 & 0 & 0 \\ -v & 1 & -v & 0 & 0 & 0 \\ -v & -v & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+v) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+v) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+v) \\ 0 & 0 & 0 & 0 & 0 & 2(1+v) \end{bmatrix}$$
Absence of coupling between (2.12)
Axial stresses
Shear strains
And vice versa
$$Eq(2.9)$$

Stiffness form of the same laws

$$\sigma = C_{\underline{\mathcal{E}}} \qquad (2.13)$$
$$C = [\cdot \cdot] \qquad (2.14)$$

iv) Plane stress state

$$\begin{split} & \underbrace{\varepsilon}_{-} = \left\{ \varepsilon_{1}, \varepsilon_{2}, \gamma_{12} \right\}^{T} & (2.15a) \\ & \underbrace{\sigma}_{-} = \left\{ \sigma_{1}, \sigma_{2}, \gamma_{12} \right\}^{T} & (2.15b) \\ & \underbrace{C}_{-} = \frac{E}{(1 - \nu^{2})} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix} & (2.16) \end{split}$$

 \mathcal{E}_3 does not vanish due to Poisson's ratio effect, $\mathcal{E}_3 = -\nu(\sigma_1 + \sigma_2)$

v) Plane strain state

$$\sigma_{3} \text{ does not vanish due to Poisson's ratio effect,} \quad \sigma_{3} = \nu E \frac{(1+\nu)(1-2\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \quad (2.17)$$

vi) The bulk modulus

1-10

Volumetric strain … Eq.(1.75)

$$e = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \frac{1 - 2\nu}{E} (\sigma_1 + \sigma_2 + \sigma_3) = \frac{1 - 2\nu}{E} I_1$$
 (2.18)

→ Hydrostatic pressure, $\sigma_1 = \sigma_2 = \sigma_3 = p$

->
$$p = \kappa e$$
, (2.19)
 $\kappa = \frac{E}{3(1-2\nu)}$: "bulk modulus" (2.20)
When $\nu \to \frac{1}{2}, \kappa \to \infty$ … "incompressible material" (ex: rubber)

✤ 2.1.2 Thermal effects

1-11

Under a change in temperature, homogeneous isotropic materials will expand in all directions -> "thermal strain"

$$\varepsilon^t = \alpha \Delta T \tag{2.21}$$

- ① Thermal strains are purely extensional, do not induce shear strains
- 2 Thermal strains do not generate internal stresses … Unconfined material sample simply expands subject to a temp. change but remains unstressed
- Total strains ··· mechanical strains + thermal strains

$$\varepsilon_1 = \frac{1}{E} \left[\sigma_1 - \nu (\sigma_2 + \sigma_3) \right] + \alpha \Delta T \qquad (2.22a)$$

But shear stress-shear strain relationships unchanged

Constrained material ··· a bar constrained at its two ends by rigid walls

Constrained material ··· a bar constrained at its two ends by rigid walls

$$\varepsilon_1 = \frac{1}{E} [\sigma_1] + \alpha \Delta T = 0 \rightarrow \sigma_1 = -E \alpha \Delta T$$

... temp. change -> compressive stress("thermal stress")

2.1.4 Ductile materials

Fig. 2.5. Stress-strain diagram for a ductile material such as mild steel.

- O -> A ··· Hooke's law, slope=Young's modulus
- > A … limit of proportionality, $\sigma_e \cong \sigma_v$ ("yield stress")
- ▶ B->C ··· "plastic flow" ($\varepsilon_1 = 5 \sim 10\%$)
- > C->E ··· increasing stress, $\sigma_f = \max$
 - "necking" ··· x-s area decrease
- > E ··· "failure stress", σ_{f}

- Large deformations before failure ··· B->E
- When unloading, will follow DG//AO, with a permanent deformation OG

- When reloading, will follow GD(higher yield stress at D <- "strain hardening"), and further DEF

Fig. 2.6. Shear stress-shear strain diagram for a ductile material.

Shear behavior ··· similar

Fig. 2.7. Stress-strain diagram for an elastic-perfectly plastic material.

 \geqslant

Fig. 2.8. Stress-strain diagram for a ductile material such as aluminum.

1 - 14

Idealization ··· ``elastic-perfectly plastic", mild steel, annealed Al

> AI, Cu, no plastic flow regime, specific permanent deformation defined for σ_v

ex)arepsilon=0.2% for Al

✤ 2.1.5 Brittle materials

Very little deformation beyond the elastic limit

Ex) glass, concrete, stone, wood, composites or ceramic

2.2 Allowable stress

2.2 Allowable stress

- Factors influencing the design
- ① Strength of the structure <- focus of the present section
- 2 Elastic deformation of the structure
- ③ Dynamic characteristics of the structure … natural frequencies and resonance
- ④ Stability characteristics of the structure … buckling
- 5 Time dependent deformations associated with creep … turbine engine design
- Numerous uncertainties which decrease service loads
- ① Actual magnitude of the applied service loads
- ② Strength of materials … statistical
- ③ Manufacturing variability
- ④ Corrosion, wear, chemically aggressive environment
- 5 Predicted stresses might be very different from their actual values

2.2 Allowable stress

Load factor = failure load/ service load >1, as large as 10

1-17

Factor of safety -> allowable stress = yield stress/safety factor, or

$$\sigma_{allow} = \frac{\sigma_y}{\eta}$$
(2.26)

•••• adequate for ductile materials, for brittle materials, allowable stress= ultimate stress/safety factor, or

$$\sigma_{allow} = \frac{\sigma_y}{\eta}$$
(2.27)

2.3 Yielding under combined loading

- Proper yield criterion under multiple stress components acting
- Isotropic material ··· no directional dependency of the yield criterion state of stress

6 stress components defining the stress tensor

_ 3 principal stresses, $\sigma_{p1}, \sigma_{p2}, \sigma_{p3}$ and the corresponding 3 orientations

No direction dependency -> only the magnitudes of the principal stress should appear

2.3.1 Tresca's criterion

Fig. 2.5. Stress-strain diagram for a ductile material such as mild steel.

$$|\sigma_{p1} - \sigma_{p2}| \le \sigma_{y}, |\sigma_{p2} - \sigma_{p3}| \le \sigma_{y}, |\sigma_{p3} - \sigma_{p1}| \le \sigma_{y}$$

(2.29)

 σ_y : yield stress observed in a uniaxial test

> Whenever any one of Eq. (2.29) is violated, yielding develops

> Interpretation ->
$$\tau_{23\max} \leq \frac{\sigma_y}{2}, \tau_{13\max} \leq \frac{\sigma_y}{2}, \tau_{12\max} \leq \frac{\sigma_y}{2}, \text{ or } \tau_{\max} \leq \frac{\sigma_y}{2}$$

…the material reaches the yield condition when the max, shear stress=half the yield stress under a uniaxial stress state.

- "max, shear stress criterion"
- > Uniaxial state $\cdots \sigma_{p1} \leq \sigma_y$
- Plane state of stress ··· Eq.(2.31)
- > Pure shear state $\cdots \tau \leq \sigma_{y}/2$

$$2\sqrt{\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)^{2}+\tau_{12}^{2}} \le \sigma_{y}, \frac{\sigma_{1}+\sigma_{2}}{2} \pm \sqrt{\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)^{2}+\tau_{12}^{2}} \le \sigma_{y}$$
(2.31)

2.3.2 Von Mises' criterion

$$\succ \qquad \sigma_{eq} = \frac{1}{\sqrt{2}} \sqrt{\left[(\sigma_{p1} - \sigma_{p2})^2 + (\sigma_{p2} - \sigma_{p3})^2 + (\sigma_{p3} - \sigma_{p1})^2 \right]} \le \sigma_y \quad (2.32)$$

- Octahedral face -> shear stress acting on octahedral face

$$3\tau_{oc}^{2} = \frac{2}{3}\sigma_{eq}^{2} \qquad \sigma_{eq} = \frac{3}{\sqrt{2}}\tau_{oc} \qquad (2.33)$$

··· "the yield coord. is reached when the octahedral shear stress

 $=\frac{3}{\sqrt{2}}$ of the yield stress for a uniaxial stress state, σ_y

Fig. 1.8. The octahedral face.

 σ_{ea} can be expressed in terms of the stress invariants

$$\sigma_{eq}^{2} = I_{1}^{2} - 3I_{2}$$

$$\rightarrow \sigma_{eq} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{2}\sigma_{3} - \sigma_{3}\sigma_{1} - \sigma_{1}\sigma_{2} + 3(\tau_{23}^{2} + \tau_{13}^{2} + \tau_{12}^{2})} \le \sigma_{y}$$
(2.35)

- 1 Uniaxial stress state $\dots \sigma_{p_1} \le \sigma_y$ 2 Plane state of stress $\dots \sigma_{p_q} = \sqrt{\sigma_1^2 + \sigma_2^2 \sigma_1 \sigma_2 + 3\tau_{12}^2} \le \sigma_y$ (2.36) 3 Pure shear state $\dots \tau \le \frac{p_q}{\sqrt{3}} \sigma_y \cong 0.577$ (60%) more accurate than that of Tresca's

2.3.3 Comparing Tresca's and Von Mises' criteria *

Fig. 2.10. Comparison of Tresca's and von Mises' criteria for a plane stress case.

- Plane stress problem, $\sigma_{p3} = 0$ Tresca's criterion ··· 3 inequalities $\left|\frac{\sigma_{p1}}{\sigma_{y}}\right| < 1, \quad \left|\frac{\sigma_{p2}}{\sigma_{y}}\right| < 1, \quad \left|\frac{\sigma_{p2}}{\sigma_{y}} - \frac{\sigma_{p1}}{\sigma_{y}}\right| < 1 \quad \cdots \text{ slightly more conservative}$
- -> irregular hexagon enclosed by 6 dashed line segments

 \geq

Von Mises' criterion ··· oblique ellipse

$$\left(\frac{\sigma_{p1}}{\sigma_{y}}\right)^{2} + \left(\frac{\sigma_{p2}}{\sigma_{y}}\right)^{2} - \left(\frac{\sigma_{p1}}{\sigma_{y}}\right)\left(\frac{\sigma_{p2}}{\sigma_{y}}\right) = 1$$

··· often preferred since a single analytic expression

Table 2.1.	Comparison	of the	Tresca and	von Mise	s yield criteria.
------------	------------	--------	------------	----------	-------------------

Stress	Radial line	Tresca's	von Mises'	Percent
state	in fig. 2.10	yield stress	yield stress	difference
$\sigma_{p1} = -\sigma_{p2} = \sigma$	OA	$\sigma_y/2$	$\sigma_y/\sqrt{3}$	15.5%
$\sigma_{p1} = 2\sigma_{p2} = \sigma$	OB	σ_y	$2\sigma_y/\sqrt{3}$	15.5%
$\sigma_{p2} = 2\sigma_{p1} = \sigma$	OC	σ_y	$2\sigma_y/\sqrt{3}$	15.5%

- 3 radial lines OA, OB, OC in Fig. 2.10

1-21

-> max discrepancy between 2 criteria \cdots 15.5 %

2.4 Material selection for structural performance

2.4 Material selection for structural performance

Table 2.2. Physical properties of a few metals.

	Ultimate stress [MPa]	Modulus of elasticity [GPa]	Density [kg/m ³]
Aluminum	620	73	2700
Titanium	1900	115	4700
Steel	4100	210	7700

Table 2.3. Physical properties of a few fibers.

	Ultimate stress [MPa]	Modulus of elasticity [GPa]	Density [kg/m ³]
E-Glass	3400	72	2550
S-Glass	4800	86	2500
Carbon	1700	190	1410
Boron	3400	400	2570
Graphite	1700	250	1410

3 categories of structural design

strength design stiffness design buckling design ···· ultimate stress

- Modulus of elasticity
- Density
- (Steel for superior, but heavier)

··· fibers

2.4 Material selection for structural performance

2.4.1 Strength design

For a given mass and geometry, the max. load it can carry

$$P_{\rm max} \propto \frac{\sigma_{ult}}{\rho}$$
 (2.38)
 \cdots material performance index

2.4.2 Stiffness design

Cantilevered, thin-walled beam of length L, natural freq.

$$\omega \propto \frac{h}{L^2} \left[\frac{E}{\rho} \right]^{1/2}$$
 (2.40)
... material performance index

✤ 2.4.3 Buckling design

1-23

Critical load that will cause the plate to buckle

$$P_{cr} \propto \frac{M^2}{b^4 L^3} \frac{E}{\rho^3}$$
... material performance index

Performance	Strength design	Stiffness design	Buckling design
index	$\sigma_{\rm ult} / \rho [10^3 { m m}^2 / { m sec}^2]$	$\sqrt{E/ ho}$ [10 ³ m/sec]	$E/\rho^3 [{ m m^8/(kg^2 sec^2)}]$
Aluminum	230	5.2	3.7
Titanium	405	4.9	1.1
Steel	530	5.2	0.46

Table 2.4. Structural design performance indices for a few metals.

Table 2.5. Structural design performance indices for a few fibers.

Performance	Strength design	Stiffness design	Buckling design
Index	$\sigma_{\rm ult}/ ho [10^3 { m m}^2/{ m sec}^2]$	$\sqrt{E/\rho}$ [10 ³ m/sec]	$E/\rho^3 [{ m m^8/(kg^2 sec^2)}]$
E-Glass	1330	5.3	4.3
S-Glass	1920	5.9	5.5
Carbon	1200	11.6	68
Boron	1320	12.5	23
Graphite	1200	13.3	89

 ··· performance indices for metals and fibers

strength design ··· steel is the best Stiffness design ··· 3 equally well Strength and buckling ··· Al >> steel and Ti

Remarkably high performance indices of fibers -> potential use in structural applications

2.5 Composite materials

2.5.1 Basic characteristics

- Embedding fiber aligned in a single direction, in a matrix material
- Matrix material ... thermostat polymeric material, ex) epoxy
- "rule of mixture" … strength

$$S_c = V_f S_f + V_m S_m$$

S: strength, V: volume fraction, $V_f + V_m = 1$ Ex) graphite fiber ($V_f = 0.6$) embedded in an epoxy matrix ($V_m = 0.4$)

 $S_c = 1,700 \times 0.6 + 50 \times 0.4 = 1,040(MPa)$

Stiffness ··· assuming that perfectly bonded together

$$\varepsilon_m = \varepsilon_f = \varepsilon_c \tag{2.47}$$

Average stress

$$P = A_c \sigma_c = A_f \sigma_f + A_m \sigma_m \tag{2.48}$$

Dividing by

$$\sigma_c = \frac{A_f}{A_c} \sigma_f + \frac{A_m}{A_c} \sigma_m = V_f \sigma_f + V_m \sigma_m \qquad (2.49)$$

 \blacktriangleright Fiber, matrix \rightarrow linearly elastic, isotropic

 $\sigma_f = E_f \varepsilon_f \qquad \sigma_m = E_m \varepsilon_m \qquad (2.50)$

> Modulus of elasticity for the composite, E_c $\sigma_c = E_c \varepsilon_c$ (2.51)

Eq. (2.50), (2.51) \rightarrow (2.49) : $E_c = V_f E_f + V_m E_m$ (2.52) Ex) graphite-epoxy: $E_c = 250 \times 0.6 + 3.5 \times 0.4 = 150 GPa$

- > What is the role of the matrix material?
 - ① Keep all the fibers together
 - 2 Diffuse the stresses among the otherwise isolated fibers

2.5.2 stress diffusion in composites

✤ Fig. 2.12: single broken fiber of length 2L

- → Matrix material adjacent to the broken fiber will transfer stress from the surrounding material to the broken fiber
 - "stress diffusion process"

Fig. 2.13: simplified model

1-27

Assumptions

- ① Matrix carries shear stress only
- 2 Axial stress in the fiber is uniformly distributed
- ③ Existence of individual fibers ignored in the remaining composite
- ④ Perfectly bonded together

Strain-displacement relationship

$$\varepsilon_f = \frac{du_f}{dx_1} , \quad \varepsilon_a = \frac{du_a}{dx_1} , \quad \gamma_m = \frac{u_a - u_f}{r_m - r_f} \quad (2.54)$$

> Axial force equilibrium of a differential element of fiber

Overall equilibrium of an entire model

$$\sigma_{a} = \frac{\sigma_{0}}{1 - \frac{r_{m}^{2}}{r_{a}^{2}}} - \frac{r_{f}^{2}}{r_{a}^{2}} \frac{\sigma_{f}}{1 - \frac{r_{m}^{2}}{r_{a}^{2}}} \approx \sigma_{0} \quad (2.56)$$

$$\frac{r_{f}}{r_{a}} <<1 \quad \rightarrow 2 \text{nd term negligible,} \quad \frac{r_{m}}{r_{a}} <<1$$

Constitutive laws for fiber, composite, and matrix

$$\sigma_f = E_f \varepsilon_f , \quad \sigma_a = E_a \varepsilon_a , \quad \tau_m = G_m \gamma_m \quad (2.57)$$

► Eq.(2.57c), (2.54c) → Eq.(2.55)
$$\frac{d^2 \sigma_f}{dx_1} + \frac{2G_m}{r_f(r_m - r_f)} (u_a - u_f) = 0$$

- > Differentiate w.r.t. x_1 and substituting Eqs. (2.54a), (2.54b), (2.57a), (2.57b) $\frac{d^2\sigma_f}{dx_1} + \frac{2G_m}{r_f(r_m - r_f)} \left(\frac{\sigma_a}{E_a} - \frac{\sigma_f}{E_f}\right) = 0$
- > Since $\sigma_a \approx \sigma_0$ (Eq.2.56),

$$\frac{d^2\sigma_f}{dx_1^2} - \frac{2}{r_f(r_m - r_f)} \frac{G_m}{E_f} \sigma_f = -\frac{2}{r_f(r_m - r_f)} \frac{G_m}{E_f} \frac{E_f}{E_a} \sigma_0$$

- > Non-dimensional variable $\eta = (L x_1)/(2r_f)$
- > Then, the governing eqn.

$$\sigma_f'' - \lambda^2 \sigma_f = -\lambda^2 \frac{E_f}{E_a} \sigma_0 \quad ()': \text{ derivative w.r.t } \eta$$
$$\lambda^2 = 8 \frac{G_m}{E_f} \frac{r_f}{r_m} \frac{1}{1 - r_f / r_m}$$

$$\gg \frac{E_f}{E_a} = \frac{E_f}{V_f E_f + V_m E_m} \approx \frac{E_f}{V_f E_f} = \frac{1}{V_f} \quad \text{since } E_m << E_f$$

➢ Governing eqn.

1 - 30

$$\sigma_f'' - \lambda^2 \sigma_f = -\lambda^2 \frac{\sigma_0}{V_f} \quad (2.58)$$

where $\lambda^2 = 8 \frac{G_m}{E_f} \frac{\sqrt{V_f}}{1 - \sqrt{V_f}} \quad (2.59)$

B.C.: $\sigma_f = 0$ at $\eta = 0$ (broken fiber) $\sigma'_f = 0$ at $\eta = L/2r_f$ (symmetry)

Solution

1-31

$$\frac{\sigma_f}{\sigma_0} = \frac{1}{V_f} \left(1 - \frac{\cosh \lambda \left(L/2r_f - \eta \right)}{\cosh \left(\lambda L/2r_f \right)} \right) \approx \frac{1}{V_f} \left(1 - e^{-\lambda \eta} \right) \quad (2.60)$$

Since
$$\sigma_0 = V_f \sigma_{f^\infty} + (1 - V_f) \sigma_{m^\infty} \approx V_f \sigma_{f^\infty}$$
 ,

Eq. (2.60)
$$\rightarrow \frac{\sigma_f}{\sigma_{f^{\infty}}} = 1 - e^{-\lambda \eta}$$
 (2.61)

: fiber axial stress distribution near the fiber break

> Ineffective length δ : the distance where the fiber stress reaches 95% of its for field value

$$0.95 = 1 - \exp\left(-\lambda \delta / d_f\right) \rightarrow \frac{\delta}{d_f} \approx \left[\frac{E_f}{G_m} \frac{1 - \sqrt{V_f}}{\sqrt{V_f}}\right]^{1/2} (2.62)$$

: length of fiber, near a fiber break, that does not carry axial stress at fully capacity

→ Matrix material transfers the load from the surrounding material to the broken fiber very rapidly ("shear lag")

Shear stress in the matrix is effectively transferring the load to the fiber

$$\frac{\tau_m}{\sigma_{f^{\infty}}} = \frac{\lambda}{4} e^{-\lambda\eta} \quad (2.63)$$

- > Zone affected by a fiber break \rightarrow about 2δ in length Ex) graphite of dia.10micron
 - \rightarrow Zone of only 200 microns in length

- ◆ Unidirectional composite materials → fiber dir., dominated by that of fiber
 - transverse to fiber, dominated by that of matrix
- Linear relationship between the stress and strain

$$\underline{\sigma} = \underline{\underline{C}} \underbrace{\underline{\varepsilon}}_{\uparrow} : \underline{\varepsilon} = \underline{\underline{S}} \underbrace{\sigma}_{\uparrow} \quad (2.64) \qquad \underline{\underline{S}} = \underline{\underline{C}}^{-1} \quad (2.65)$$

6 x 6 stiffness 6 x 6 compliance

Strain energy:
$$A = \frac{1}{2} \underline{\varepsilon}^T \underline{\sigma} = \frac{1}{2} \underline{\varepsilon}^T \underline{\underline{\varepsilon}} = \frac{1}{2} \underline{\sigma}^T \underline{\underline{\varepsilon}} \underline{\sigma}$$

 \rightarrow both \underline{C} and \underline{S} are symm. and positive definite

- Due to symmetry, 6x6=36 independent consts $\rightarrow 21$ (2.67)
 - "anisotropic" or "triclinic" material

1-34

> Plain of symmetry: (i_1, i_2) plane of symmetry

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ & C_{22} & C_{23} & 0 & 0 & C_{26} \\ & & C_{33} & 0 & 0 & C_{36} \\ & & & C_{44} & C_{45} & 0 \\ & & & & C_{55} & 0 \\ & & & & & C_{66} \end{bmatrix}$$
(2.68)

If C₁₄ ≠ 0, E₁ would give rise to τ_{23} → violate the symmetry of response
→ 21-8=13 independent consts "monoclinic" material

> 2 mutually orthogonal planes of symmetry: $(i_1, i_2), (i_2, i_3)$

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{55} & 0 \\ & & & & & & C_{66} \end{bmatrix}$$
(2.69)

 \rightarrow 21-12=9 independent consts, "orthotropic" material

$$\succ \text{ Laminated composite material } \rightarrow \begin{cases} 2 \text{ orthogonal plane of symmetry: } (i_1, i_2), (i_2, i_3) \\ C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{22} & C_{23} & 0 & 0 & 0 \\ C_{22} & 0 & 0 & 0 \\ C_{22} & 0 & 0 & 0 \\ C_{22} & C_{23} & 0 & 0 \\ C_{23} & C_{23} & C_{23} & 0 \\ C_{23} & C_{23} & C_{23} & 0 \\ C_{23} & C_{23} & C_{23} & C_{23} \\ C_{23} & C_{23} \\ C_{23}$$

 \rightarrow 2 constants

 \succ Not clear about C_{11} , C_{12}

"Engineering consts": Young`s modulus, Poisson`s ratio

 \rightarrow experimental determination and physical interpretation

2.6.1 Constitutive laws for a lamina in the fiber aligned triad

Thin sheet of composite material made of unidirectional fibers *

- $\overline{i_1}^* : \text{fiber direction} \quad \overline{i_2}^* : \text{transverse direction} \\ \overline{i_3}^* : \text{perpendicular to the plane of thin sheet} \end{cases} \rightarrow \text{"fiber aligned triad"}$

- \rightarrow can be assumed as a homogeneous, transversely isotropic material
- Plane stress state: constitutive laws in compliance form *

$$\begin{cases} \varepsilon_{1}^{*} \\ \varepsilon_{1}^{*} \\ \gamma_{12}^{*} \end{cases} = \begin{bmatrix} 1/E_{1}^{*} & -\nu_{21}^{*}/E_{2}^{*} & 0 \\ -\nu_{12}^{*}/E_{1}^{*} & 1/E_{2}^{*} & 0 \\ 0 & 0 & 1/G_{12}^{*} \end{bmatrix} \begin{cases} \sigma_{1}^{*} \\ \sigma_{1}^{*} \\ \tau_{12}^{*} \end{cases}$$
(2.72)

- > E_1^* , E_2^* , v_{12}^* , G_{12}^* : engineering consts
- Symm. $\rightarrow v_{12}^* / E_1^* = v_{21}^* / E_2^* \rightarrow$ one of 5 consts is not an independent quantity

Simple test of a known stress σ₁^{*}, then σ₂^{*} = τ₁₂^{*} = 0

 of Eq. (2.72) → ε₁^{*} = σ₁^{*} / E₁^{*}, E₁^{*} can be determined
 of Eq. (2.72) → ε₂^{*} = -v₁₂^{*} σ₁^{*} / E₁^{*}, v₁₂^{*} can be determined

- > 2nd test of a known stress σ_2^* , then $\sigma_1^* = \tau_{12}^* = 0$ $\varepsilon_2^* = \sigma_2^* / E_2^*$, E_2^* can be obtained
- \blacktriangleright Last test of a known au_{12}^* , then $\sigma_1^* = \sigma_2^* = 0$
 - ③ of Eq.(2.72) $\rightarrow \gamma_{12}^* = \tau_{12}^* / G_{12}^*$, G_{12}^* can be obtained

Stiffness matrix: by inverting Eq. (2.72)

$$\begin{cases} \sigma_{1}^{*} \\ \sigma_{1}^{*} \\ \tau_{12}^{*} \end{cases} = \begin{bmatrix} \frac{E_{1}^{*}}{1-\nu_{12}^{*2}E_{2}^{*}/E_{1}^{*}} & \frac{\nu_{12}^{*}E_{2}^{*}}{1-\nu_{12}^{*2}E_{2}^{*}/E_{1}^{*}} & 0 \\ \frac{\nu_{12}^{*}E_{2}^{*}}{1-\nu_{12}^{*2}E_{2}^{*}/E_{1}^{*}} & \frac{E_{2}^{*}}{1-\nu_{12}^{*2}E_{2}^{*}/E_{1}^{*}} & 0 \\ 0 & 0 & G_{12}^{*} \end{bmatrix} \begin{cases} \varepsilon_{1}^{*} \\ \varepsilon_{1}^{*} \\ \gamma_{12}^{*} \end{cases}$$
(2.73)

2.6.2 Constitutive laws for a lamina in an arbitraty triad

✤ Fig. 2.18

Laminar of a direction that might not coincide with that of fiber counterclockwise θ orientation of fiber w.r.t. ref. direction

- ← formulae for stresses and strains in a rotated axis system
- 1) Rotations of the stiffness matrix
 - Constitutive laws for a lamina in the fiber aligned triad $\underline{\sigma}^* = \underline{C}^* \underline{\varepsilon}^*$
 - Introducing the rotation formulae, Eqs. (1.47), (1.91)

$$\begin{bmatrix} m^2 & n^2 & 2mn \\ n^2 & m^2 & -2mn \\ -mn & mn & m^2 - n^2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \underline{\underline{C}}^* \begin{bmatrix} m^2 & n^2 & mn \\ n^2 & m^2 & -mn \\ -2mn & 2mn & m^2 - n^2 \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix} \quad \text{where} \quad m = \cos\theta \\ n = \sin\theta$$

- Multiplying from the left by the inverse of the rotation matrix for the stress

$$\begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases} = \begin{bmatrix} m^{2} & n^{2} & -2mn \\ n^{2} & m^{2} & 2mn \\ mn & -mn & m^{2} - n^{2} \end{bmatrix} \underbrace{\underline{C}}^{*} \begin{bmatrix} m^{2} & n^{2} & mn \\ n^{2} & m^{2} & -mn \\ -2mn & 2mn & m^{2} - n^{2} \end{bmatrix} \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{cases}$$
(2.79)

- More compact manner of the relationship $\underline{C}(\theta) = \underline{x}(\theta)\underline{\alpha} \quad (2.86)$ where $\underline{C} = \left\{ C_{11} \quad C_{22} \quad C_{12} \quad C_{66} \quad C_{16} \quad C_{26} \right\}^{T} \quad (2.84)$

$$\underline{x}(\theta) = \begin{bmatrix} 1 & 1 & \cos 2\theta & \cos 4\theta \\ 1 & 1 & -\cos 2\theta & \cos 4\theta \\ 1 & -1 & 0 & -\cos 4\theta \\ 0 & 1 & 0 & -\cos 4\theta \\ 0 & 0 & \frac{1}{2}\sin 2\theta & \sin 4\theta \\ 0 & 0 & \frac{1}{2}\sin 2\theta & -\sin 4\theta \end{bmatrix}$$
(2.83)

 $\underline{\alpha} = \{ \alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \}^T \quad \text{"material invariants" (2.85)}$ with Eq. (2.82)

 $C_{\!11}$, $C_{\!12}\,$ in terms of $\,\theta\,$, sharp decline $\rightarrow\,$ high directionality

1 - 43

 C_{66} very high near $\theta = 45^{\circ}$

 $C_{\!\scriptscriptstyle 11}$, $C_{\!\scriptscriptstyle 26} \neq 0\,$ in terms of $\,\theta$, coupling between extension and shearing

 $C_{\!_{11}}\,,C_{\!_{26}}\,{=}\,0$ in $\underline{\underline{C}}^*$

 response of the systems must be symmetric precluding extension-shear couple

2) Rotations of the compliance matrix

1-44

$$\underline{\underline{S}} = \begin{bmatrix} m^{2} & n^{2} & -mn \\ n^{2} & m^{2} & mn \\ 2mn & -2mn & m^{2} - n^{2} \end{bmatrix} \underline{\underline{S}}^{*} \begin{bmatrix} m^{2} & n^{2} & 2mn \\ n^{2} & m^{2} & -2mn \\ -mn & mn & m^{2} - n^{2} \end{bmatrix}$$
(2.88)
$$= \begin{bmatrix} S_{11} & S_{12} & S_{16} \\ S_{12} & S_{22} & S_{26} \\ S_{16} & S_{26} & S_{66} \end{bmatrix} = \begin{bmatrix} 1/E_{1} & -V_{21}/E_{2} & V_{61}/G_{12} \\ -V_{12}/E_{1} & 1/E_{2} & V_{62}/G_{12} \\ V_{16}/E_{1} & V_{26}/E_{2} & 1/G_{12} \end{bmatrix}$$

- E₁, E₂, v₁₂, G₁₂, v₁₆, v₂₆ : engineering constants in the arbitrary triad
- <u>S</u> must be symmetric

- Alternative expression for engineering const. – Eq. (2.92)

Various tests to determine the engineering const.s

Similar to those in sec 2.6.1, but currently stress is applied at θ

1-45

 $E_{
m 1}$ shows precipitous drop w.r.t. heta

- Difference between C_{11} and E_1
 - > $E_1 = 1/S_1$, $1/S_{11} ≠ C_{11}$ since the inverse of a matrix is not simply the inverse of its items

Fig. 2.22 – to measure E_1 , σ_1 is applied, $\sigma_2 = \tau_{12} = 0$, $\varepsilon_1 \rightarrow E_1$, $\varepsilon_2 \rightarrow v_{12}$, $\gamma_{12} \rightarrow v_{16}$ in Eq (2.87)

Fig. 2.23 – to measure C_{11} , \mathcal{E}_1 is applied, $\mathcal{E}_2 = \gamma_{12} = 0$

but test is very difficult to perform since would have to be constrained to prevent any deformations except \mathcal{E}_1

1-46

Fig. 2.23

➢ Effect of these constraints → considerably stiffen the material ex) $C_{11} >> E_1$ (Fig. 2.19) $C_{66} >> G_{12}$ (Fig. 2.20)

Fig. 2.19. Variation of the stiffness coefficients, C_{11} and C_{22} , and the engineering constants, E_1 and E_2 , as a function of θ .

Fig. 2.20. Variation of the stiffness coefficient, C_{66} , and engineering constant, G_{12} as a function of θ .

2.7 Strength of a transversely isotropic lamina

2.7.1 Strength of a lamina under simple loading condition

✤ Fig. 2.26

1-48

- ① σ_1^* applied in the fiber direction, and $\sigma_2^* = \tau_{12}^* = 0$ will provide σ_{1t}^{*f} and σ_{1c}^{*f} (not equal, generally)
- (2) σ_2^* applied in the transverse direction, and $\sigma_1^* = \tau_{12}^* = 0$ will provide σ_{2t}^{*f} and σ_{2c}^{*f}
- (3) Shear stress au_{12}^* applied and
 - $ightarrow au_{12}^{*f}$, no dependence on sign

✤ Tests can be very difficult to perform in practice

2.7 Strength of a transversely isotropic lamina

2.7.2 Strength of a lamina under combined loading conditions

Fig. 2.27 **

Failure envelope, rather than performing a large number of experiments, apply a failure criterion

 \rightarrow many different failure criteria, widely used

*

1-49

Matrix failure – not always a catastrophic event

Fiber failure – completely eliminates load carrying capability

2.7 Strength of a transversely isotropic lamina

2.7.3 The Tsai-Wu failure criterion

Combined stresses applied

$$F_{11}^*\sigma_1^{*2} + 2F_{12}^*\sigma_1^*\sigma_2^* + F_{22}^*\sigma_2^* + F_{66}^*\tau_{12}^{*2} + F_{11}^*\sigma_1^* + F_2^*\sigma_2^* = 1$$
(2.93)

- ① Test with a single stress component σ_1^* applied $F_{11}^*\sigma_{1t}^{*2} + F_{11}^*\sigma_{1t}^{*f} = 1$, $F_{11}^*\sigma_{1c}^{*2} - F_{11}^*\sigma_{1c}^{*f} = 1$
- ② $\sigma_{\scriptscriptstyle 2}^{*}$ only
- \odot au_{12}^* only

1-50

 \rightarrow then, can find 5 coefficients in Eq.(2.93)