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CHAPTER 4. PROBABILISTIC ENGINEERING ANALYSIS – TIME-
INDEPENDENT PERFORMANCE 
 
4.1 Motivation 

 
Many system failures can be traced back to various difficulties in evaluating and 
designing complex systems under highly uncertain manufacturing and operational 
conditions and our limited understanding of physics-of-failures (PoFs).  One of the 
greatest challenges in engineered systems design is how to evaluate the probability of 
an engineering event accurately before prototyping or actual testing. One way to 
evaluate the probability of an engineering event is known as Monte Carlo simulation, 
based on random sampling. Due to inefficiency of Monte Carlo when data is not 
given sufficiently, many “efficient” methods have been devised to alleviate the need 
for Monte Carlo simulation. These methods included the first and second-order 
reliability method (FORM and SORM), the response surface method (RSM), and the 
Bayesian inference.  

 
4.2 Probabilistic Description of System Performance 

 
Uncertainty affects the entire lifecycle of engineered systems from the impurity of 
the resources to the assembly of the finished goods. No matter manufacturer design 
the product perfectly, there is always errors or imperfection in manufacturing and 
operation. It is extremely difficult to predict engineering performances precisely due 
to substantial uncertainty in engineering design, manufacturing and operation. For 
example, engineers cannot predict how much engine mount bushing transmits 
engine noise and vibration to drivers and passengers; how much 
head/neck/chest/femur injury occurs during a car crash; what is a critical height for 
a drop test that breaks the display of a smartphone. Thus, we should define 
engineering performances as a function of uncertainty as shown below. 
 

Probabilistic  performance  
 = Y(X);   X is a vector of uncertainty that affects system performance 

 
Engineering systems have specifications in terms of systems’ performances. The 
specification can set a threshold in a quantitative scale. Therefore we can set a 
probability of safety which is under the pre-determined threshold, say YU. 
 

Probability (Y(X) £ YU) = Probability of safety (=success) 
 = Reliability 

 = 1 – Probability of failure 
 

On the other hand, our system is now reliable—it meets our design goals or 
specifications—but it may not be robust.  Operation of the system is affected by 
variabilities of the inputs.  To be robust, a system performance must be insensitive 
to input variabilities. In other words, the performance thus possesses a narrow 
distribution subject to input variabilities as shown below 
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Probability (YL £ Y(X) £ YU) = Robustness 
 

 
Figure 4.1: Fundamentals of Probabilistic Performance Analysis 

 
 
4.3 Probabilistic Description of System Performance – Reliability 

 
A system performance is defined in many different ways as practiced in different 
applications; say the electronics, civil structures, nuclear/chemical plants, and aero-
space industries. In some instances, system performances can be treated time-
independently due to their characteristics. Other instances situate the performances 
time-dependently. 
 
4.3.1 Time-Independent Performance: 

The probability that the actual performance of a particular system will meet the 
required or specified design performance without considering the degradation of 
system performances over time.  It is often found in mechanical and civil 
structural systems. 
 
 ( ) ( ( ) ) 1 ( ( ) ) for larger-the-better performancesc cR P Y Y P Y Y= > = - £X X X  
 
where the safety of the system is defined as Y > Yc and Yc is the critical value for Y.  
Yc can be either deterministic or random. Examples include natural frequency, 
engine power, energy efficiency, etc. 
 

( ) ( ( ) ) 1 ( ( ) ) for smaller-the-better performancesc cR P Y Y P Y Y= < = - ³X X X  
 
where the safety of the system is defined as Y < Yc. Examples include stress, 
strain, crack size, etc. 
 

4.3.2 Time-Dependent Performance: 
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The probability that the actual life of a particular system will exceed the required 
or specified design life. 

 [ ] [ ]( ) ( ) 1 ( ) 1 ( )T TR t P T t P T t F t= > = - £ = -X X  

where the time-to-failure (TTF) of a system is defined as a time that a system 
health condition, G(X), is worse than its critical value, Gc, and X is the random 
vector representing engineering uncertain factors. 

 
4.3.3 Challenges: 
1. Modeling random variables (X) for future loading, material property, and 

manufacturing tolerances (section 3). 
2. Analyzing how input uncertainties propagate to those of system performances 

(section 4.4-4.7)  
3. Extending the ideas of probabilistic analysis to the case with a lack of data 

(section 4.8) 
4. Identification of the probability distribution for a reliability function (sections 

5). 
5. Predicting the failure time or performance failure when designing a system or 

component (section 5). 
6. A long-time failure or lack of failure in test-based reliability assessment 

(section 5). 
7. Consideration of performance degradation in time-dependent reliability 

(sections 5). 
 
 
4.4 Probabilistic Description of Time-Independent Performance  

 
· Structural reliability is defined in many different ways as practiced in different 

applications; say the electronics, civil structures, nuclear/chemical plants, and 
aero-space industries. 

· Most electrical, electronic and mechanical components and systems deteriorate 
during use as a result of elevated operating temperatures, chemical changes, 
mechanical wear, fatigue, overloading, and for a number of other reasons.  
Failure of a particular component may eventually occur for one of these reasons, 
or it may be caused indirectly as a result of the deterioration of some other parts 
of the system.  However, it is very difficult to estimate TTF distribution precisely. 

· In contrast to electronic/mechanical systems, structural systems tend not to 
deteriorate, except by the mechanical corrosion and fatigue, and in some cases 
may even get stronger, for example, the increase in the strength of concrete with 
time, and the increase in the strength of soils as a result of consolidation. 

· In other cases, engineers are interested in initial performances. 
 

For a simple structural member, the strength R and load S of the structure can 
describe the probability of failure or reliability.  Suppose the strength R and load 
S to be random with the known distributions, FR(r) and FS(s).  The probability of 
failure is defined as 
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 ( 0) ( ) ( )f R SP P R S F s f s ds
¥

-¥
= - £ = ò  (30) 

Then, the reliability can be defined as 

 1 1 ( ) ( )f R SR P F s f s ds
¥

-¥
= - = - ò  (31) 

 

 
Figure 4.2: A Simple Case of Reliability (= 1-Pf): Strength-Load 

 
 

4.5 General Description of Time-Independent Performance  
 
The reliability is defined as the probability that the performance of a system 
exceeds the required or specified design limit over operating time t. 

 
( )
( )

( ( , ) ) 1 ( ( , ) ) for Larger-the-better type

( ( , ) ) 1 ( ( , ) ) for Smaller-the-better type
c c

c c

R t P Y t Y P Y t Y

R t P Y t Y P Y t Y

= ³ = - <

= £ = - >

X X

X X
 

where the failure of the system is defined as Y ³ Yc for L-Type (or Y £ Yc) and Yc is 
the required design limit for Y.  Yc can be either deterministic or random. 

 
4.6 Probabilistic Engineering Analysis Using Simulation Models 

 
For probabilistic engineering analysis, uncertainty in engineered system 
performances (or outputs) must be understood by taking into account various 
uncertainties in engineered system inputs. As shown Fig. 4.3, input uncertainties are 
propagated through the system to those in outputs (e.g., natural frequency, fuel 
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consumption, energy conversion efficiency, vibration, transmission error, 
temperature distribution, head injury). 
 

 
Figure 4.3: Uncertainty Propagation through Physical System 

 
Then, the probability of safety (L-Type) can be estimated by integrating the PDFs of 
the system performances over the safety region. 

 { }
( )

( , ) ( ) ( )
c

c

c YY Y Y
R P Y t Y f y dy f d

¥

³

= ³ = =ò ò ò X
X

X x xL  (32) 

 
4.7 Methods for Probabilistic Performance Analysis (Frequentist) 
 

4.7.1 General Model of Design under Uncertainty 
The design under uncertainty can generally be defined as: 

 { }{ }
L U

Minimize Cost( )
subject to ; ( ) 0 , 1, ,

                       , and
ii f

nd nr

P G P i nc

R R

> < =

£ £ Î Î

d
X d X

d d d d X

L  (33) 

where nc is the number of probabilistic constraints; nd is the number of design 
parameters; nr is the number of random variables; [ ] ( )T

id m= =d X  is the design 

vector; [ ]T
iX=X  is the random vector; and the probabilistic constraints are 

described by the performance function { }; ( )iG X d X , their probabilistic models, and 

the probability of failure.  The probability of failure is defined as ( )f tP bº F -  with a 

target reliability index tb  where the failure is defined as { }; ( ) ( ; ( ))i c iG Y Y= -X d X X d X  

0>  for L-type.  The design procedure under uncertainty is graphically illustrated in 
Fig. 4.9. 
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Y”(X)+C(X)Y’(X)+K(X)Y(X)=F(X) 
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Figure 4.4: Design under Uncertainty 
 
 

The probability of failure is defined as 

 

( ) 0

( ( ) 0) 1 ( ( ) 0)
    1 (0)

    ( ) ,
G

nv
G

P G P G
F

f d R
>

> = - £
= -

= Îò ò XX

X X

x x XL

 (34) 

The reliability (or the probability of safety) is inversely defined as 

 
( ) 0

( ( ) 0) (0)

    ( ) ,
G

nr
G

P G F

f d R
£

£ =

= Îò ò XX

X

x x XL
 (35) 

Figure 4.5 explains both the probability of failure and reliability. 
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Figure 4.5: Reliability or Probability of Safety 

 

The statistical description of the safety (or failure) of the performance function ( )iG X  
requires a reliability analysis and is expressed by the CDF (0)

iGF  of the constraint as 
 

 

( ( ) 0) (0) ( ) or  

Time-dependent:     ( , ) 0 where  is a designed life.
Time-independent:  ( ) 0 where  is a critical buckling load.

i i ii G t t

i d i d

i i c c

P G F R

G T T T T
G P P P

b£ = ³ F

= - £

= - £

X

X
X

 (36) 

 
where the probability of the safety constraint £ 0 is described as 
 

 0

( ) 0
(0) ( ) ... ( ) , 1, ,  and 

i i
i

nr
G G i i G

F f g dg f d i nc R
-¥ £

= = = Îò ò ò XX
x x xL  (37) 

 
In Eq. (37), ( )fX x  is the joint PDF of all random parameters and the evaluation of Eq. 
(37) involves multiple integration.  Neither analytical multi-dimensional integration 
nor direct numerical integration is possible for large-scale engineering applications.  
Existing approximate methods for probability analysis can be categorized into four 
groups: 1) sampling method; 2) expansion method; 3) the most probable point 
(MPP)-based method; and 4) stochastic response surface method. 
 

4.7.2 Random sampling techniques (Monte Carlo simulation) 
 

Let us recall the reliability or the probability of safety as 

( )iG X
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 { } Number of safe trials
Number of total trials( ) 0

( ; ) 0 (0) ... ( )
i

i
i G G

P G F f d
£

£ = = »ò ò XX
X d x x  (38) 

Or, inversely, the probability of failure can be obtained as 
 { } Number of failure trials

Number of total trials( ) 0
( ; ) 0 1 (0) ... ( )

i
i

i G G
P G F f d

>
> = - = »ò ò XX

X d x x  (39) 

 
· Simple but extremely expensive 
· Seldom used due to its computational intensiveness, but used for a 

benchmark study 
· To estimate a failure rate, 

 

Number of failed samples 

                       :   Number of total samples

,   : f
f fN

N

N
p

N
=

 

 
 

 
 

% generate random samples 
>> m=[2 3]; 
>> s=[1 0;0 3]; 
>> n=1000; 
>> x=mvnrnd(m,s,n); 
>> plot(x(:,1),x(:,2),'+') 
 
% plot a failure surface 
>> [x1,x2] = meshgrid(-1:.1:6,-4:.2:10); 
>> gg=x1.^2-x2-8; 
>> v=[0 0]; 
>> [C,h]=contour(x1,x2,gg,v) 
 

% calculate reliability 
>> ns=0; 
>> for i = 1:1000 
           g(i) = x(i,1)^2-x(i,2)-8; 
           if g(i) <= 0 
               ns = ns + 1 
           end 
    end 
>> rel = ns/n 
>> cdfplot(g) 
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Homework 12: Monte Carlo Simulation 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Figure below.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
Figure 4.6: Simply Supported Beam 

 
Random Vector: 

 1 1

2 2

7 5
1

4 3
2

~ ( 3 10 , 10 )
~ ( 10 , 10 )

X X

X X

EI X N
w X N

= = ´ =

= = =

m s
m s  

The maximum deflection of the beam is shown as 

 
4

2
1 2

1

5( , )
384

= = -
X LY g X X

X
 

Determine the PDF (or CDF) of the maximum deflection and estimate its reliability 
using the MC simulation when the failure is defined as Y < yc = -3´10-3m. 
 

 
 
4.7.3 Expansion methods 

 
First-order method 

 
Any nonlinear function (Y) can be linearized in terms of an input random vector 

, i.e., 

 

( )
1

1 1

( )( ) ( ) . . .

or

i

n

i X
i i

n n
T

YY Y X h o t
X

a X a X b
Y b

m
=

¶
= + - +

¶
» + + +
» +

å X
X

μX μ

a X
L  (40) 

where { }1, ,= L
T

na aa  is a sensitivity vector of Y. 
 

· Mean of Y 

{ }1, ,= L
T

nX XX

w per unit length 

L 

EI 
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[ ] [ ]
[ ] [ ]

[ ]

T
Y

T

T

T

E Y E b
E E b

E b
b

m

m

= » +
= +
= +
= +X

a X
a X

a X
a

 

 
· Variance of Y 

     

2 2[ ] [( ) ]
[( )( ) ]
[( )( ) ]

[( )( ) ]

Y Y
T

Y Y
T T T T T

T T

T

Var Y E Y
E Y Y
E b b b b

E

s m
m m

= = -
= - -
» + - - + - -
= - -
= S

X X

X X

X

a X a μ a X a μ
a X μ X μ a
a a

 

 
· Generalization 

Let Î mRY  be a random response vector of interest, which is related to input 
Î nRX .  The linear system is given in the following equation. 

 T» +Y A X B  

where Î ´n mR RA  and Î mRB  are coefficient matrix and vector, respectively.  
Let  and Î Î ´m m mR R RY Yμ Σ  be the mean vector and covariance matrix of 
output Y.  Then, 

 
T

T
» +
»

Y X

Y X

μ A μ B
Σ A Σ A

 (41) 

 
 

 
Exercise: Cantilever Beam 
 
 
 
 
 
 
 
 
Given that: 

2 2 2 2
1 2~ 1000 lb, 100  lb , ~ 500 lb, 50  lb , 10000 lb-ft, deterministicP N P N mé ù é ù =ë û ë û  

Assume P1 and P2 are uncorrelated.  Calculate mean, standard deviation, and 
coefficient of variation (COV) of maximum moment at the fixed end. Estimate 

10 ft 10 ft 

P1 P2 

m 
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the reliability when an allowable bending moment (Ma) is 33,000 lb-ft. 

Solution: At fixed end, the maximum moment is expressed as 
 

 max 1 210 20 10000= + + = +TM P P ba X  

 
{ }

2
1 2

2
2

where  10 20 , 10000 lb-ft,
1000 100 0

           = lb, lb, lb
500 0 50

T

X

b
P
P

m

= =
é ùì ü ì ü

= = ê úí ý í ý
î þ ê úî þ ë û

X

a

X Σ
 

 
Mean of Mmax 

{ }
max

1000
10 20 10000

500
30,000 lb-ft

T
M bm m

ì ü
= + = +í ý

î þ
=

Xa
 

 
Variance of Mmax 

 

{ }
max

max

2
2

2

6 2

6

100 0 10
10 20

200 50
2 10  [lb-ft]

2 10 1414.2 lb-ft

T
M

M

s

s

é ù ì ü
= S = ê ú í ý

î þê úë û
= ´

= ´ =

Xa a

 

 
Coefficient of Variation (COV) of Mmax 

 standard deviation 1414.2COV 0.047 or 4.7%
mean 30000

º = =  

Reliability with an allowable moment Ma = 33,000 lb-ft 

( )

max max

max max

max

max

( )

33,000 30,000 2.12
1414

2.12 98.3%

a

M a M

M M

R P M M
M M

P

P z

m m
s s

= £
æ ö- -

= £ç ÷ç ÷
è ø

-æ ö= £ =ç ÷
è ø

= F =

 

 

Homework 13: Expansion method 

Recall Homework 12.  Estimate its reliability using the expansion method when the 
failure is defined as Y < yc = -3´10-3m. 
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Second-order method 

Second-order approximation of any nonlinear function (Y) can be used for the 
second-order method as 

 ( ) ( )( )
2

1 1 1

( ) ( )( ) ( )
i i j

n n n

i X i X j X
i i ji i j

Y YY Y X X X
X X X

m m m
= = =

¶ ¶
» + - + - -

¶ ¶ ¶å ååX X
X

μ μX μ  (42) 

 
· Mean of Y 

 
2

2
2

1

( )1[ ] ~ ( )
2 i

n
X

Y X X
i i

YE Y Y
X=

¶
= +

¶å mm m s  

 
· Variance of Y 

2 2
2 2 2 2

1 1 1

( ) ( )1[ ]
2 i j

n n n

Y X X X
i i ji i j

Y YVar Y
X X X

s s s s
= = =

æ ö¶ ¶
= @ +ç ÷¶ ¶ ¶è ø

å ååX Xμ μ
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4.7.4 Most Probable Point (MPP) based methods 

Most probable point (MPP) based methods include the first order reliability method 
(FORM) and second order reliability method (SORM). Instead of approximating a 
response Y at the mean of X, it approximates the function at the most probable point 
in either a linear or quadratic manner. This is illustrated in Figure 4.6. The MPP is a 
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pointwise representation of the failure surface and normally computed in a 
transformed space (or standard Gaussian space). In the MPP based methods, the 
reliability analysis requires a transformation T from the original random parameter 
X to the independent and standard normal parameter U.  The constraint function 

( )G X  in X-space can then be mapped onto G(T(X)) º G(U) in U-space. Rosenblatt 
transformation is most widely used for transforming any non-normally distributed 
random vector to standard normal random vector. 
 

X2

0

Failure Surface
g(X)=0

Failure Region
g(X)<0

X1

Safe Region
g(X)>0

Mean Value 
Design Point

Joint PDF
fX(x) Contour

b

b
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g(U)<0
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FORM

Failure Surface
g(U)=0
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Safe Region
g(U)>0

0

Reliability
Index b

Joint PDF 
fU(u)

Joint PDF
fU(u) Contour

MPP u*

Mapping T

 
 

( a ) Nonlinear Transformation of Non-normal Distributions 
 

 
 

( b ) First-Order Reliability Method 
 

Figure 4.6: Nonlinear Transformation of Non-normal Distributions 
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Table 4.1: Nonlinear Transformation, T: X à U 

 

 
 

 

( ( ) 0) (0) ( ) or  

Time-dependent:     ( , ) 0 where  is a designed life.
Time-independent:  ( ) 0 where  is a critical buckling load.

i i ii G t t

i d i d

i i c c

P G F R

G T T T T
G P P P

b£ = ³ F

= - £

= - £

X

X
X

 (43) 

 
The probabilistic constraint in Eq. (36) can be further expressed in two different 
ways through inverse transformations as (see Fig. 4.7): 

 RIA:   { }1 (0)
i i is G tFb b-= F ³  (44) 

 PMA:   { }1 ( ) 0
i i ip G tG F b-= F £  (45) 

where 
isb  and 

ipG  are respectively called the safety reliability index and the 
probabilistic performance measure for the ith probabilistic constraint.  Equation (44) 
is employed to prescribe the probabilistic constraint in Eq. (33) using the reliability 
measure, i.e. the so-called Reliability Index Approach (RIA).  Similarly, Eq. (45) can 
replace the same probabilistic constraint in Eq. (33) with the performance measure, 
which is referred to as the Performance Measure Approach (PMA). 
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( a ) MPP Search Space in RIA  ( b ) MPP Search Space in PMA 

Figure 4.7: Random Search Space in RIA and PMA 

 
Formulation for Reliability Index Approach (RIA) 

In RIA, the first-order safety reliability index ,FORMsb  is obtained using FORM 
by formulating as an optimization problem with one equality constraint in U-
space, which is defined as a limit state function: 

 minimize
subject to ( ) 0G =

U
U

 (46) 

where the optimum point on the failure surface is called the Most Probable 
Failure Point (MPFP) *

( ) 0G =Uu , and thus *
,FORM ( ) 0s Gb == Uu . 

Either MPFP search algorithms specifically developed for the first-order 
reliability analysis, or general optimization algorithms can be used to solve Eq. 
(46).  The HL-RF method is employed to perform reliability analyses in RIA due 
to its simplicity and efficiency. 
 
HL-RF Method 

The HL-RF method is formulated as follows 

 

( )
( 1) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

2( )

( )
( )

( )
( ) ( )

( )

k
k k k k

k
U

k
k k k U

U k
U

G
G

G
G G

G

+
æ ö
ç ÷= · -
ç ÷Ñè ø

Ñé ù= Ñ · -ë û
Ñ

u
u u n n

u

u
u u u

u

 (47) 

where the normalized steepest ascent direction of ( )G U  at ( )ku  
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( )

( ) ( )
( )

( )
( )

( )

k
k k U

k
U

G
G

Ñ
= =

Ñ

u
n n u

u
 

and the second term in Eq. (47) is introduced to account for the fact that ( )G U  
may be other than zero. 

 
 

function [beta,dbeta]=HL_RF(x,kc) 
    u=zeros(1,nd); iter=0;  Dif=1; 
    while Dif >= 1d-5 & iter < 20 
        iter=iter + 1; 
        [ceq,GCeq]=cons(u,x,kc); 
        u=(GCeq*u'-ceq)/norm(GCeq)^2*GCeq; 
        U(iter,:)=u/norm(u); 
        if iter>1 
            Dif=abs(U(iter-1,:)*U(iter,:)' - 1); 
        end 
    end 
    beta = norm(u); 
    dbeta = -u./(beta*stdx); 
end 

 
 

Formulation for Performance Measure Approach (PMA) 
Reliability analysis in PMA can be formulated as the inverse of reliability analysis 
in RIA.  The first-order probabilistic performance measure ,FORMpG  is obtained 
from a nonlinear optimization problem in U-space defined as 

 
maximize ( )
subject to t

G
b=

U
U

 (48) 

where the optimum point on a target reliability surface is identified as the Most 
Probable Point (MPP) *

tb b=u  with a prescribed reliability *
tt b bb == u , which will be 

referred to as MPP.  Unlike RIA, only the direction vector * *
t tb b b b= =u u  needs to 

be determined by exploring the explicit sphere constraint tb=U . 
General optimization algorithms can be employed to solve the optimization 
problem in Eq. (48).  However, the Advanced Mean Value (AMV) method is well 
suited for PMA due to its simplicity and efficiency. 

 
AMV method  

Thus, the AMV method can be formulated as 

 (1) * ( 1) ( )
AMV MV AMV AMV, ( )k k

tb+= =u u u n u  (49) 

where  
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U

G
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Ñ
=

Ñ

un u
u

 (50) 

 
 
function [G,DG]=AMV(x,kc) 
    u=zeros(1,nd); iter = 0; Dif=1; 
    while Dif>1d-5 & iter<20                       
        iter=iter+1;  
        if iter>1 
            u=DG*bt/norm(DG); 
        end         
        [G,DG]=cons(u,x,kc); 
        U(iter,:)=u/bt;         
        if iter>1 
            Dif=abs(U(iter,:)*U(iter-1,:)'-1); 
        end 
    end 
end 
 

 
 

Table 4.2: Properties of the RIA and PMA 

 Properties 
RIA 1. Good for reliability analysis 

2. Expensive with sampling method and MPP-based method when 
reliability is high. 

3. MPP-based method could be unstable when reliability is high or a 
performance function is highly nonlinear. 

PMA 1. Good for design optimization. 
2. Not suitable for assessing reliability. 
3. Efficient and stable for design optimization. 
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Homework 14: First-Order Reliability Method 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 4.13.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.8: Simply Supported Beam 
 
Random Vector: 

 1 1

2 2

7 5
1

4 3
2

~ ( 3 10 , 10 )
~ ( 10 , 10 )

X X

X X

EI X N
w X N

= = ´ =

= = =

m s
m s  

The maximum deflection of the beam is shown as 

 
4

2
1 2

1

5( , )
384

= = -
X LY g X X

X
 

Estimate its reliability using the MPP-based method (HL-RF) when the failure is 
defined as Y < yc = -3´10-3m.  Make your own discussion and conclusion. 

 
 
 
4.7.5 Stochastic response surface method 

Dimension reduction family: 
Dimension reduction (DR) method simplifies a single multi-dimensional 
integration to multiple one-dimensional integration or multiple one- and two-
dimensional integration using additive decomposition. This section introduces 
univariate dimension reduction (UDR) method. 
 
For the approximation of the multi-dimensional integration, consider an 
integration of two dimensional function which can be expressed by the Taylor 
series expansion by 
 

w per unit length 

L 

EI 
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where integration term can be defined as 

( )1 2 1 2 1 2, ( , )
a a

a a
I Y x x Y x x dx dx

+ +

- -
é ù =ë û ò ò  

Because integrations of the odd functions are zero, the integration of Taylor 
series expansion of the target function (Y) can be expressed as: 
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where I(•) calculates integration over the given space.  
This is also computationally expensive because of the terms including multi-

dimensional integration such as 2 2I i jx xé ùë û . To effectively remove the terms with 

multi-dimensional integration, additive decomposition, Ya, is defined as:  
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Integration of Taylor series expansion of the additive decomposition (Ya) can be 
expressed as: 
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This results the largest error at the fourth even-order term, producing negligible 
error. 

[ ] ( )
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For probabilistic engineering analysis, the mth statistical moments for the 
responses are considered as 
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Applying the Binomial formula on the right-hand side of the equation above gives 

 
One-dimensional integration will be performed with integration weights ,j iw  and 

points ,j ix  as 
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where N is the number of input random parameters and n is the number 
integration point along each random variable. An empirical sample point 
distribution for the UDR when m = 3 is shown in the Fig. 4-DR1. We can see that, 
compared to the full factorial sample points, the UDR achieves a significant 
reduction in the number of sample points. 
 
 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

2017 Copyright ã reserved by Mechanical and Aerospace Engineering, Seoul National University 72 
 

 
Fig. 4-DR1. Empirical sample point distribution for UDR (m=3) 

 
· Refer to http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4M-

4H74MB0-
1&_user=961305&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C00
0049425&_version=1&_urlVersion=0&_userid=961305&md5=6e56b71561720cf
e918f32c3eaa2cf86 

· Refer to http://www.springerlink.com/content/416l79447313n8q1 
 
Polynomial Chaos Expansion (PCE) method 
Tensor-Product (or Stochastic Collocation) Method 

 
 
4.8 Bayesian Description of Time-Independent Performance 

When modeling uncertainties with insufficient data, the probability of safety (or 
satisfying a specification), referred to as reliability, must be uncertain and subjective. 
Because the Bayes theory provides a systematic framework of aggregating and 
updating uncertain information, reliability analysis based on the Bayes theory, 
referred to as Bayesian reliability, is employed to deal with subjective and 
insufficient data sets. 

 

4.8.1 Bayesian binomial inference - reliability 
• Bayesian binomial inference 
If the probability of a safety event in each sample is r and the probability of failure is 
(1-r), then the probability of x safety occurrences out of a total of N samples can be 
described by the probability mass function (PMF) of a Binomial distribution as 

 ( ) ( )Pr , 1 , 0,1,2,...,N xxN
X x N r r r x N

x
-æ ö

= = - =ç ÷
è ø

  (51) 

( )1 1 2
3 ,X X Xm s m+( )1 2

,X Xm m

( )1 1 2 2
3 , 3X X X Xm s m s+ -

( )1 1 2 2
3 , 3X X X Xm s m s+ +( )1 2 2

, 3X X Xm m s+

( )1 2 2
, 3X X Xm m s-( )1 1 2 2
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When r is an uncertain parameter and a prior distribution is provided, a Bayesian 
inference process can be employed to update r based on the outcomes of the sample 
tests. It is possible to obtain a posterior distribution with any type of a prior 
distribution. A Bayesian inference model is called a conjugate model if the conjugate 
prior distribution is used. For conjugate Bayesian inference models, the updating 
results are independent of the sequence of data sets. 
 
• Conjugate prior reliability distribution 
For Bayesian reliability analysis, both prior reliability distribution (r) and the 
number (x) of safety occurrences out of the total number of test data set N must be 
known. If prior reliability distribution (r) is unavailable, it will be simply modeled 
with a uniform distribution, r ∼U (a, b) where a<b and a, b∈[0, 1]. In all cases, 
reliability will be modeled with Beta distribution, the conjugate distribution of the 
Bayesian binomial inference, because the uniform distribution is a special case of the 
Beta distribution.  

 ( ) 1 11 (1 ) , ( , ) :  Beta function
( , )

a bf r x r r B a b
B a b

- -= -  (52) 

where a = x + 1 and b = N – x +1. The larger the number of safety occurrences for a 
given N samples, the greater the mean of reliability, as shown in Figure 4.9 (a). As 
the total number of samples is increased, the variation of reliability is decreased, as 
shown in Figure 4.9 (b).  
In Bayesian inference model, the binomial distribution likelihood function is used 
for test data, whereas the conjugate prior distribution of this likelihood function is 
used for reliability (r), which is a beta distribution. However, it is found that the 
Bayesian updating results often depend on the selection of a prior distribution in the 
conjugate models. Besides, the available conjugate Bayesian models are limited. To 
eliminate the dependency and the limitation, a non-conjugate Bayesian updating 
model can be developed using Markov chain Monte Carlo methods. This is, however, 
more computationally intensive. 
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(a)                 (b) 
Figure 4.9: Dependence of the PDF of reliability on the number of safety 

occurrences, x and the total number of samples, N 

 

4.8.2 Definition of Bayesian reliability 
Bayesian reliability must satisfy two requirements: (a) sufficiency and (b) 
uniqueness. The sufficiency requirement means that the Bayesian reliability must be 
no larger than an exact reliability, when it is realized with a sufficient amount of data 
for input uncertainties. The uniqueness requirement means that the Bayesian 
reliability must be uniquely defined for the purpose of design optimization. To meet 
these two requirements, Bayesian reliability is generally defined with a confidence 
level of reliability prediction where the confidence level CL of Bayesian reliability is 
defined as 

 ( ) ( ) ( )
1

Pr 1
B

L B R BR
C R R f r dr F R= > = = -ò x  (53) 

With the predefined confidence level CL, Bayesian reliability can be defined as 

 [ ]1 1B R LR F C-= -  (54) 

Therefore, Bayesian reliability can be formulated as a function of a predefined 
confidence level. Bayesian reliability is desirable since it is defined from the 
reliability distribution with a corresponding confidence level and accounts for 
reliability modeling error due to the lack of data. 
To guarantee the sufficiency requirement, extreme distribution theory for the 
smallest reliability value is employed. Based on the extreme distribution theory, the 
extreme distribution for the smallest reliability value is constructed from the 
reliability distribution, beta distribution. For random reliability R, which follows the 
beta distribution, FR(r), let R1 be the smallest value among N data points, the CDF of 
the smallest reliability value, R1, can be expressed as 

 ( ) ( ) ( )
1 1 1 21 Pr Pr , ,...,R NF r R r R r R r R r- = > = > > >  (55) 

Since the ith smallest reliability values, Ri(i=1, . . . ,N), are identically distributed and 
statistically independent, the CDF of the smallest reliability value becomes 

 ( ) ( )
1

1 1 N
R RF r F r= - -é ùë û  (56) 

Then Bayesian reliability, RB, is uniquely determined as the median value of the 
extreme distribution. Based on this definition, Bayesian reliability and its confidence 
level can be respectively obtained as the solution of the nonlinear equation, by 
setting ( )

1
0.5R BF R =  

 ( )
1

1 11 1 1 0.5NN
B R R B RR F F R F- -é ù é ù= - - = -ë ûë û  (57) 

 ( ) ( )11 1 1 0.5 0.5N N
L R B R RC F R F F - é ù= - = - - =ë û  (58) 
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The Beta distribution for reliability, its extreme distribution for the smallest 
reliability value, and the Bayesian reliability are graphically shown as below. 

 
Figure 4.10: Bayesian reliability 

 

4.8.3 Numerical procedure of Bayesian reliability analysis 
Bayesian reliability analysis can be conducted using a numerical procedure as 
follows. 
• Step 1: collect a limited data set for epistemic uncertainties where the data size is N. 

• Step 2: calculate reliabilities (Rk) with consideration of aleatory uncertainties at all 
epistemic data points. 
• Step 3: build a distribution of reliability using the beta distribution with aleatory 
and/or epistemic uncertainties. 
• Step 4: select an appropriate confidence level, CL, of Bayesian reliability. 

• Step 5: determine the Bayesian reliability. 
 

Refer to http://www.springerlink.com/content/u1185070336p4116/fulltext.pdf. 
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Homework 15: Bayesian Reliability Analysis  

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 4.14.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.11: Simply Supported Beam 
 
Random Vector: 

 1 1

7 5
1

2

~ ( 3 10 , 10 )
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X XEI X N
w X

= = ´ =
=

m s  

The maximum deflection of the beam is shown as 

  

The X2 is an epistemic uncertainty.  For X2, it is assumed that 10 data sets are 
gradually obtained at different times.  Using MPP-based method (HL-RF), 
determine the reliability of the maximum deflection constraint, P(Y(X1) ³ yc = -
3´10-3m), at all individual X2 points in the table.  Predict the PDF of reliability in 
a Bayesian sense using the first 10 data set and gradually update the PDFs of 
reliability using the second and third data sets.  Make your own discussion and 
conclusion, and attach your code used for Bayesian reliability analysis. 

 
Table 4.3 Three sets of 10 data for X2 (´104) 

 
Set1       1.0000    0.8126    1.0731    1.0677    0.9623    0.9766    1.1444    1.0799    1.0212    0.9258 
Set2      0.9682    1.0428    1.0578    1.0569    0.9704    1.0118    0.9649    1.0941    1.0238    1.1082 
Set3      1.1095    1.0896    1.0040    0.9744    0.8525    1.0315    1.0623    0.9008    0.8992    0.9869 
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