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 One of its dimensions much large than the other two
 Civil engineering structure − assembly on grid of beams with cross-sections

having shapes such as T’s on I’s
 Machine parts − beam-like structures lever arms, shafts, etc.
 Aeronautic structures − wings, fuselages → can be treated as thin-walled beams

 Beam theory

− important role, simple tool to analyze numerous structures
valuable insight at a pre-design stage

 Euler-Bernoulli beam theory − simplest, must be useful

 Assumption
① Cross-section of the beam is infinitely rigid in its own plane

② The cross-section is assumed to remain plane
③ The cross-section is assumed to normal to the deformed axis

→ in-plane displacement field →{2 rigid body translations
1 rigid body rotation
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5.1 The Euler-Bernoulli assumptions

 Fig. 5.1
“pure bending” beam deforms into a curve of constant curvature

→ a circle with  center O, symmetric w.r.t. any plane perpendicular to its deformed axis

 Kinematic assumptions “Euler-Bernoulli”

① Cross-section is infinitely rigid in its own plane

② Cross-section remains plane after deformation

③ Cross-section remains normal to the deformed axis of the beam

→ valid for long, slender beams made of isotropic materials with solid cross-sections
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5.2 Implication of the E-B assumption

 displacement of an arbitrary point of the beam
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 E-B assumption

① Displacement field in the plane of cross-section consists solely of 2
rigid body translations

② Axial displacement field consists of    rigid body translation

③ Equality of   the slope of the beam

2 1 3 1( ), ( )u x u x

( )2 1 2 3 2 1, , ( )u x x x u x= ( )3 1 2 3 3 1, , ( )u x x x u x= (5.1),

2 rigid body rotation
{ 1 1( )u x

2 1 3 1( ), ( )x xΦ Φ

( )1 1 2 3 1 1 3 2 1 2 3 1, , ( ) ( ) ( )u x x x u x x x x x= + Φ − Φ (5.2)

the rotation of the section
{

2
3

1

du
dx

Φ = 3
2

1

du
dx

Φ = −

consequence of  the sign convention

(5.3)
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5.2 Implication of the E-B assumption

 To eliminate the sectional rotation from the axial displacement field

→ Important simplification of E-B : unknown displacements are functions of the     
span-wise coord,     ,alone

(5.4.a)

 Strain field

(5.5.a)

(5.5.b)

(5.5.c)

 Assuming a strain field of the form Eqs (5.5.a),(5.5.b),(5.7)
→ Math. Expression of the E-B assumptions

( ) 3 1 2 1
1 1 2 3 1 1 3 2

1 1

( ) ( ), , ( ) du x du xu x x x u x x x
dx dx

= − −

2 3 23

12 13
2 2

3 11 1 1 2 1
1 3 22 2

1 1 1 1

0, 0, 0

0, 0

( )( ) ( )d u xu du x d u xx x
x dx dx dx

ε ε γ

γ γ

ε

= = =

= =

∂
= = − −
∂

( )1 1 2 3 1 1 3 2 1 2 3 1, , ( ) ( ) ( )x x x x x x x xε ε κ κ= + − (5.7)

1 1
1 1

1

( )( ) ,du xx
dx

ε =
2

3 1
2 1 2

1

( )( ) ,d u xx
dx

κ = −
2

2 1
3 1 2

1

( )( ) .d u xx
dx

κ =

Sectional axial strain Sectional curvature about          axes2 3,i i

E-B(2)

1x
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 2 moment resultants  :                       bending moments

5.3 Stress resultants

 3-D stress field     described in terms of sectional stresses called 
“stress resultants”

→ equipollent to specified components of the stress field

 3 force resultants               axial force
transverse shearing forces{ 1 1( )N x

2 1 3 1( ), ( )M x M x

(5.8)

(5.9)

2 1 3 1( ), ( )V x V x

(5.10a)

(5.10b)

( )1 1 1 1 2 3( ) , ,
A

N x x x x dAσ= ∫
( )2 1 12 1 2 3( ) , , ,

A
V x x x x dAτ= ∫ ( )3 1 13 1 2 3( ) , ,

A
V x x x x dAτ= ∫

( )2 1 3 1 1 2 3( ) , ,
A

M x x x x x dAσ= ∫
( )3 1 2 1 1 2 3( ) , ,

A
M x x x x x dAσ= −∫
(+) equipollent bending moment about       (Fig 5.5)

3i
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(5.11a)

(5.11b)

( )2 1 3 3 1 1 2 3( ) ( ) , ,p
pA

M x x x x x x dAσ= −∫
( )3 1 2 2 1 1 2 3( ) ( ) , ,p

pA
M x x x x x x dAσ= −∫

bending moments computed about point 2 3( , )p pP x x

Fig. 5.5. Sign convention for the 
sectional stress resultans
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5.4 Beams subjected to axial loads

 Distributed axial load p1(x1) [N/m], concentrated axial load P1[N]
→ axial displacement field                ‘bar’ rather than ‘beam’1 1( )u x

 Axial loads causes only axial displacement of the section

5.4.1 Kinematic description

( )
( )
( )
( )

1 1 2 3 1 1

2 1 2 3

3 1 2 3

1 1 2 3 1 1

, , ( )

, , 0

, , 0

, , ( )

u x x x u x

u x x x

u x x x

x x x xε ε

=

=

=

=

(5.12a)

(5.12b)

(5.12c)

(5.13)

→ uniform over the x-s (Fig. 5.7)Eq.(5.4) →

Axial strain field
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5.4 Beams subjected to axial loads

5.4.2 Sectional constitutive law

 σ2<< σ1 , σ3<< σ2         transverse stress components ≈ 0, σ2≈0, σ3≈0

 Generalized Hooke’s law → 

 Inconsistency in E-B beam theory

 Axial force

→ constitutive law for the axial behavior of the beam at the sectional level

( ) ( )1 1 2 3 1 1 2 3, , , ,x x x E x x xσ ε=

At the “infinitesimal” level

Eq. (5.5a)    → 

Hooke’s law  →   if                    , then

Eq.(5.13) → (5.14) :

2 30, 0ε ε= =

2 3 0σ σ= = 2 1 3 1/ , /E Eε νσ ε νσ= − = −

( ) ( )1 1 2 3 1 1 2 3, , , ,x x x E x x xσ ε=

(Poisson’s effect) → very small effect, and assumed to vanish

( )1 1 1 1 2 3 1 1 1( ) , , ( ) ( )
A A

N x x x x dA EdA x S xσ ε ε = = = ∫ ∫

(5.14)

(5.15)

(5.16)

Axial stiffness
for homogeneous materialS EA=
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5.4 Beams subjected to axial loads

5.4.3 Equilibrium eqns

 Fig. 5.8 → infinitesimal slice of the beam of length

force equilibrium in axial dir. →

→ equilibrium condition for a differential element of a 3-D solid
→ equilibrium condition of a slice of the beam of differential length 

Eq. (1.4)
Eq. (5.18)

(5.18)1
1

1

dN p
dx

= −

1dx
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5.4 Beams subjected to axial loads

5.4.4 Governing eqns

 Eq (5.16) Eq. (5.18) and using Eq. (5.6)

 3 B.C ① Fixed(clamped)   :

② Free (unloaded)  :            →

③ Subjected to a concentrated load      :             →

(5.19)

5.4.5 The sectional axial stiffness

 Homogeneous material

(5.20)S EA=

1
1 1

1 1

( )dud S p x
dx dx

 
= − 

 

1 0u =

1 0N = 1

1

0du
dx

=

1 1N P= 1
1

1

duS P
dx

=1P
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5.4 Beams subjected to axial loads

 Rectangular section of width b made 
of layered material of different moduli(Fig. 5.9)

5.4.6 The axial stress distribution

 Eliminating the axial strain form Eq.(5.15) and (5.16)

 Homogeneous material

→ Uniformly distributed over the section
 Sections made of layers presenting different moduli

→ Stress in layer I is proportional to the modulus of the layer

(5.21)

(5.22)

(5.23)

[ ]

[ ] [ ] [ ] [ 1] [ ]
3 3

1 1
( )

i

n n
i i i i i

A A
i i

S EdA E dA E b x x+

= =

= = = −∑ ∑∫ ∫

“weighted average” of the Young’s modulus

weighting factor thickness

( ) ( )1 1 2 3 1 1, , Ex x x N x
S

σ =

( ) ( )1 1
1 1 2 3, ,

N x
x x x

A
σ =

( ) ( )1 1[ ] [ ]
1 1 2 3, ,i i N x

x x x E
S

σ =
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5.4 Beams subjected to axial loads

 Eq (5.13)     axial strain distribution is uniform over the section,
i.e. each layer is equally strained (Fig. 5.10)

 Strength criterion

in case compressive, buckling failure mode may occur → Chap. 14 

(5.24)1max ,tens tens
allow

E N
S

σ≤ 1max
comp comp

allow
E N
S

σ≤
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5.5 Beams subjected to transverse 
loads

 Fig. 5.14 → “transverse direction” distributed load,          [N/m]
concentrated load,      [N]

bending moments, transverse shear forces, 
and    axial   stresses will be generated

transverse shearing{

5.5.1 Kinematic description

 Assumption → transverse loads only cause    transverse displacement
curvature of the section{

 General displacement field (Eq.(5.6))

( )

( )
( )

2 1
1 1 2 3 2

1

2 1 2 3 2 1

3 1 2 3

( ), ,

, , ( )

, , 0

du xu x x x x
dx

u x x x u x

u x x x

= −

=

=

(5.29a)

(5.29b)

(5.29c)

→ linear distribution of the axial displacement 
component over the x-s

2 1( )p x
2P
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5.5 Beams subjected to transverse 
loads

 Only non-vanishing strain component

5.5.2 Sectional constitutive law

( )1 1 2 3 2 3 1, , ( )x x x x xε κ= − (5.36) → linear distribution of the axial strain

 Linearly elastic material, axial stress distribution

 Sectional axial force by Eq. (5.8)

 Axial force =0 since subjected to transverse loads only

(5.31)

(5.32)

( )1 1 2 3 2 3 1, , ( )x x x Ex xσ κ= −

( )1 1 1 1 2 3 2 3 1( ) , , ( )
A A

N x x x x dA Ex dA xσ κ = = −  ∫ ∫

3 20, 0
A

then Ex dAκ  ≠ = ∫
(5.33)2

2 2
1 0c A

Sx Ex dA
S S

= = =∫
Location of the “modulus-weighted centroid” of the x-s
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5.5 Beams subjected to transverse 
loads

 If homogeneous material

 Bending moment by Eq.(5.31)

2
2 2

1 0A
c A

A

E x dA
x x dA

AE dA
= = =∫

∫∫
→ is simply the area center of the section2x

(5.34)

The axis system is located at the    modulus-weighted centroid
area center if homogeneous material

 Center of mass
2 2

2 2
A A

nn c

A A

x dA x dA
x x

dA dA

ρ

ρ
= = =∫ ∫

∫ ∫

{
center of mass – 3 coincide

2
3 1 2 3 1 33 3 1( ) ( ) ( )c

A
M x Ex dA x H xκ κ = = ∫

“centroid bending stiffness” about axis  

“moment-curvature” relationship

( )1 1 33 3 1( )cM x H xκ=

Constitutive law for the bending behavior of the beam bending moment      the curvature

(5.35)

(5.37) Bending stiffness
(“flexural rigidity”)

∝
3i

2-14



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

5.5 Beams subjected to transverse 
loads

5.5.3 Equilibrium eqns

 Fig. 5.16 → infinitesimal slice of the beam of length
acting at a face at location

@            , evaluated using a Taylor series expansion, 
and H.O terms ignore

3 1 2 1( ), ( )M x V x

2 equilibrium eqns vertical force        →

moment about O   →
{ (5.38a)

(5.38b)

(5.39)

2
2 1

1

( )dV p x
dx

= −

3
2

1

0dM V
dx

+ =
2

3
2 12

1

( )d M p x
dx

=

1 1x dx+

1dx
1x
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5.5 Beams subjected to transverse 
loads

5.5.4 Governing eqns

 Eq. (5.37)  Eq. (5.39), and recalling Eq. (5.6)

(5.40)

4th order DE
 4 B.C

① Clamped end

② Simply supported(pinned)

③ Free(or unloaded) end

④ End subjected to a concentrated transverse load

22
2

33 2 12 2
1 1

( )c d ud H p x
dx dx

 
= 

 

2 0,u = 2

1

0du
dx

=

2 0,u =
2

1
2

1

0d u
dx

=

2
2

33 2
1 1

0c d ud H
dx dx

 
− = 

 

2
2

2
1

0,d u
dx

=

2
2

33 22
1 1

c d ud H P
dx dx

 
− = 

 

2
2

2
1

0,d u
dx

=

3
2 2

1

dMP V
dx

= = −2P

2-16



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

⑤ Rectilinear spring(Fig. 5.17)

⑥ Rotational spring(Fig. 5.18)

5.5 Beams subjected to transverse 
loads

2 2( ) ( )V L ku L− =

3 3( ) ( )M L k L− = Φ

1

2
2

33 22
1 1

( ) 0,c

x L

d ud H ku L
dx dx

=

 
− = 

 

2
2

2
1

0d u
dx

=

(+) when the spring is located at the left end  

sign convention

1

2 2
2 2

33 2 2
1 1

0,c

x L

d u d uH k
dx dx

=

+ =
1

2
2

33 2
1 1

0c

x L

d ud H
dx dx

=

 
− = 

 
(-) when at the left end  

2-17



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

5.5 Beams subjected to transverse 
loads

5.5.5 The sectional bending stiffness

 Homogeneous material
(5.41)

(5.42)

: purely geometric quantity, the area second moment of the section 
computed about the area center

 Rectangular section of width b made of layered materials (Fig. 5.9)

“weighted average” of the Young’s moduli

(5.43)

33 33
c cH EI=

2
33 2

c

A
I x dA= ∫

[ ]

2 [ ] 2 [ ] [ ] [ 1] 3 [ ] 3
33 2 2 2 2

1 1
( ) ( )

3i

n n
c i i i i i

A A
i i

bH Ex dA E x dA E x x+

= =

 = = = − ∑ ∑∫ ∫
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5.5 Beams subjected to transverse 
loads

5.5.6 The axial stress distribution

 Local axial stress

 homogeneous material

 various layer of materials

→ eliminating the curvature from Eq.(5.3), (5.37)

→ linearly distributed over the section, independent of Young’s modulus

→ axial STRAIN distribution is linear over the section   ← Eq.(5.30)
axial stress distribution → piecewise linear (Fig. 5.20)

(5.44)

(5.46)

(5.45)

( ) 3 1
1 1 2 3 2

33

( ), , c

M xx x x Ex
H

σ = −

( ) 3 1
1 1 2 3 2

33

( ), , M xx x x x
I

σ = −

( )[ ] [ ] 3 1
1 1 2 3 2

33

( ), ,i i
c

M xx x x E x
H

σ = −
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5.5 Beams subjected to transverse 
loads

 Strength criterion

 Layers of various material
→ must be computed at the      top       locations of each ply

bottom{

5.5.7 Rational design of beams under bending

Maximum (+) bending moment in the beam

 “Neutral axis”

 Material located near the N.A carries almost no stress
 Material located near the N.A contributes little to the bending stiffness

→ along axis     which passes through the section’s centroid3i

Rational design → removal of the material located at and near the N.A and 
relocation away from that axis

max
2 max

3
33

,comp
allowc

x
E M

H
σ≤

max
2 max

3
33

,tens
allowc

x
E M

H
σ≤
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5.5 Beams subjected to transverse 
loads

 Fig. 5.21

 Ratio of bending stiffness

 Ratio of max. axial stress

 Ideal section       “I beam,” but prone to instabilities of web 
and flange buckling

→   rectangular    section, same mass
ideal{ m bhρ=

→   ideal section can carry a 60 times larger bending moment

For / 0,d h =

For / 10,d h = 1200ideal

rect

H
H

≅

max

max 6( / ) 60rect

ideal

d hσ
σ

≅ =

a thin web would be used to keep the 2 flanges

2
2

2

3

( / 2)2
12 2 1 12

4
12

ideal

rect

b h bhE d
H d

bhH hE

 
+    = = +  

 



2

3

3

1 12
42
1 2

4 2

ideal
ideal

rect
ideal

dhE M I h
h dI E d M

h

σ
σ

 +  
 = =

   + +   
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5.6 Beams subjected to combined and 
transverse loads

 Sec. 5.4, 5.5 → convenient to locate the origin of the axes system at 
the centroid of the beam’s x-s

5.6.1 Kinematic description

 Strain field

(5.73a)

(5.73b)

(5.73c)

(5.74)

( )

( )
( )

2 1
1 1 2 3 1 1 2 2

1

2 1 2 3 2 1

3 1 2 3

( ), , ( ) ( )

, , ( )

, , 0

C
du xu x x x u x x x

dx
u x x x u x

u x x x

= − −

=

=

location of centroid

( )1 1 2 3 1 1 2 2 3 1, , ( ) ( ) ( )Cx x x x x x xε ε κ= − −
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5.6 Beams subjected to combined and 
transverse loads

5.6.2 Sectional constitutive law

 Axial stress distribution

(5.75)

 Axial force

 Bending moment

“decoupled sectional constitutive law”

→ Thus, centroid plays a crucial rule

2 crucial steps ① Displacement field must be in the form of Eq.(5.73)
② Bending moment must be evaluated w.r.t. the centroid{

( )1 1 2 3 1 1 2 2 3 1, , ( ) ( ) ( )Cx x x E x E x x xσ ε κ= − −

[ ]3 2 2 1 1 2 2 3 1( ) ( ) ( ) ( )C
C CA

M x x E x E x x x dAε κ= − − − −∫
2

2 2 1 1 2 2 3 1( ) ( ) ( ) ( )C CA A
E x x dA x E x x dA xε κ   = − − + −   ∫ ∫

[ ]1 1 1 2 2 3 1( ) ( ) ( )CA
N E x E x x x dAε κ= − −∫

1 1 2 2 3 1( ) ( ) ( )CA A
EdA x E x x dA xε κ   = + −   ∫ ∫

(axial stiffness)
2 2 2 2 0C CA A

Ex dA x EdA S Sx= − = − =∫ ∫S

0=
33

cH (bending stiffness)

1 1N Sε=

3 33 3
C cM H κ=
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5.6 Beams subjected to combined and 
transverse loads

5.6.3 Equilibrium eqns

 Force equilibrium in horizontal dir.

 Vertical equilibrium

 Equilibrium of moments about the centroid

 Fig. 5.47 →   infinitesimal slice of the beam of length 1dx

Moment arm of the axial load w.r.t the centroid

(5.77)

(5.38a)

(5.18)
1

1
1

dN p
dx

= −

2
2

1

dV p
dx

= −

3
2 2 2 1

1

( )a C
dM V x x p
dx

+ = −
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5.6 Beams subjected to combined and 
transverse loads

5.6.4 Governing eqns

→ “decoupled” eqns (5.78a) → can be independently solved
(5.78b) →

1 1( )u x
2 1( )u x{

If axial loads are applied @ centroid, extension and bending are “decoupled”
If axial loads are not applied @ centroid, extension and bending are “coupled”{

(5.19)

almost similar to 
(5.19) concept

(5.78a)

(5.78b)[ ]
22

2
33 2 1 2 2 1 12 2

1 1 1

( ) ( ) ( )c
a C

d ud dH p x x x p x
dx dx dx

 
= + − 

 

1
1 1

1 1

( )dud S p x
dx dx

 
= − 
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