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CHAPTER 6. DESIGN OPTIMIZATION

6.1 General Model of Design under Uncertainty

The design under uncertainty can generally be defined as:
Minimize Cost(d) or Risk(d)
subjectto  P{G, {X;d(X)} >0} <P, i=1,,nc
d, <d<d,, deR"andXeR"

(67)

where nc is the number of probabilistic constraints; nd is the number of design

parameters; nr is the number of random variables; d:[a’i]T = u(X) is the design

vector; X=[X,]" is the random vector; and the probabilistic constraints are

described by the performance function G, {X;d(X)} , their probabilistic models, and
the probability of failure. The probability of failure is defined as P, = ®(-4,) with a

target reliability index B, where the failure is defined as G, {X;d(X)} > 0.
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Figure 6.1: Design under Uncertainty
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6.2 A General Formulation of Design Optimization

In general, design optimization can be formulated as

Minimize (or Maximize) f(x)
Subject to h(x)=0, i=1,p
gj(X)SO, jzly"'am

n
X, <x<X,, XeR

where m: no of inequality constraints, feasible where g, (x) <0

p: no of equality constraints, feasible where 4 (x) =0

6.3 Optimality Condition

Refer to Section 6.1 (Arora, 2004): First-order necessary KKT condition.
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Lagrangian function:
p m
L=f()+Y vh)+Yug,(x)
i=1 j=1

Gradient conditions

6—L=0 = h(x*)=0; i=1~p
ov,

1

2 * . n * a i
ox, ox, ‘= ox, ‘O 7 ox

Feasibility check
g,(x)<0; j=1~m

Switching conditions

u,g,(x)=0; j=1~m

Nonnegativity of Lagrange multipliers for inequalities

u;20; j=l~m

Regularity check
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(71)

(72)

(73)

(74)

Gradients of active constraints must be linearly independent. In such a case, the

Lagrangian multipliers for the constraints are unique.
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Exercise: Check for KKT necessary conditions
Minimize f(x,y)=(x-10)*+(y-8)" subjecttog, =x+y-12<0,g,=x-8<0

Refer to Example 5.1 (Arora, 2004).
Arora, J.S. Introduction to Optimum Design, Second Edition, Elsevier, 2004

The ordinary optimization task is where many constraints are imposed. In the
process of finding a usable-feasible search direction, we are able to detect if the KKT
conditions are satisfied. If they are, the optimization process must be terminated.

6.4 Concept of Numerical Algorithms in Design Optimization

Xp f 65
" / Optimum point
1.0LX" (1,1)and f=4
L /x(4
0 > X1
-1.0 . .
-2.0 1 0 2.0

Figure 6.2: Conceptual steps of unconstrained optimization algorithm
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Optimum point
7 ALY

Figure 6.3: Conceptual steps of constrained optimization algorithm

Iterative numerical search methods are employed for the optimization. Two basic
calculations are involved in the numerical search methods for optimum design: (1)
calculation of a search direction and (2) calculation of a step size in the search
direction. It can be generally expressed as

X =x" 4+ AxY where Ax* =, d" (75)
So, finding ox is a line search and d® is the direction search.
6.4.1 Line Search

The cost function f(x) is given as

S =" +ad™) = f(a) (76)

It is important to understand this reduction of a function of n variables to a function
of one variable. The descent condition for the cost function can be expressed as the
inequality:

()< 1(0) (77)

To satisfy the inequality (77), the curve f{«) must have a negative slope when a=o0.
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Figure 6.4: Descent condition for the cost function

Let Vf(x) be c(x). In fact, the slope of the curve fla) at @=0 is calculated as
£'0)=c¢"-d" <0. 1f d¥ is a descent direction, then « must always be a positive

scalar. Thus, the one-dimensional minimization problem is to find ax =« such that
) is minimized.

The necessary condition for the optimal step size is df(«@)/da = 0, and the sufficient

condition is d?f(@)/da? > 0. Note that differentiation of f{x*+1) with respect to «
gives

d| _d ) de)
do |X(k+1) dx da

— Vf(x(k+1)) AP =c* D q® =0 (78)

Analytical Step Size Determination
Let a direction of change for the function

f(x)=3x +2x,x3 +2x3 +7 (a)
at the point (1, 2) be given as (-1, —1). Compute the step size ¢ to minimize f(x) in
the given direction.
Solution. For the given point x*' = (1, 2), f(x*) = 22, and d*® = (-1, —1). We first
check to see if d is a direction of descent using Inequality (8.8). The gradient of the
function at (1, 2) is given as ¢® = (10, 10) and ¢®.d® = 10(=1) + 10(=1) ==20< 0.

Therefore, (—1, —1) is a direction of descent. The new point x**" using Eq. (8.9a) is
given as
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(h+l) 1 -1
P - e e
X3 2 -1

Substituting these equations into the cost function of Eq. (a), we get
fx*N)=31-a) +20-a)2-a)+22-a) +7=Ta* -20a+22= fl@) (c)

Therefore, along the given direction (=1, —1), f(x) becomes a function of the single
variable & 'Note from Eq. (c) that f(0) = 22, which is the cost function value at the
current point, and that f'(0) = =20 < 0, which is the slope of f(a) at = 0 (also recall
that £’(0) = ¢®-d™). Now using the necessary and sufficient conditions of optimality
for f(a), we obtain

L 2 - A0
dot -14“}. 20_05- o, = 7 L) dﬂI “14}[} {d)
Therefore, o, = ¥ minimizes f(x) in the direction (-1, —1). The new point is
k+1) 3 *
x| _[1], (10Y-1]_|"7
MEEEG HEW
7

Substituting the new design (—+, +) into the cost function f(x) we find the new value
of the cost function as ¥. This is a substantial reduction from the cost function value
of 22 at the previous point. Note that Eq. (d) for calculation of step size o can also
be obtained by directly using the condition given in Eq. (8.11). Using Eq. (b), the
gradient of f at the new design point in terms of « is given as

c**V = (6x, + 2x;, 2x, +4x,) = (10 - 8ax, 10 - 6cx) (f)

Using the condition of Eq. (8.11), we get 14a — 20 = 0 which is same as Eq. (d).
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>> [X,Y] = meshgrid(-3:.3:3,-2:.3:4);

>> f=3*X."2+2*X . ¥*Y+2*Y."2+7;

>> [C,h]=contour(X,Y,f); clabel(C,h); hold on
>> [U,V] = gradient(f,2,2); quiver(X,Y,U,V)

Line Search Methods

1. Equal interval search

2. Golden section search

3. Quadratic interpolation method

With the assumption that the function f{«) is sufficiently smooth and unimodal,

) is approximated using a quadratic function with respect to « as

fl@)=q(a)=a,+aa+ aza2 (79)
The minimum point & of the quadratic curve is calculated by solving the
necessary condition dq/da = o.

One-dimensional Minimization with Quadratic Interpolation
Find the minimum point of f(@) = 2 — 4o + ¢” of Example 8.3 by polynomial inter-
polation. Use the golden section search with d = 0.5 to bracket the minimum point
initially.

Iteration 1. From Example 8.3 the following information is known.
a1 = 0.5, % = 1309017, o, = 2.618034

flog)=1.648721,  f(o;)=0.460464,  Fler,) = 5.236610

1 (3.587‘) —l.I823)
a = = =2410
1.3090212.1180 0.80902
L1823 (2.41)(1.80902) = -5.821
a = e U * &)==2.04
' 0.80902 4

ay =1.648271 —(-5.421)(0.50) —2.41(0.25) = 3.957

Therefore, o = 1.2077 from Eq. (9.3), and f(&) = 0.5149. Note that & < ¢, and f(c;)
< f(&). Thus, new limits of the reduced interval of uncertainty are of = & = 1.2077,
o, = o, = 2.618034, and & = o, = 1.309017.

oy = 1.2077, o; =1.309017, o, = 2.618034

The coefficients ay, a,, and a, are calculated as before, a, = 5.7129, a, = —7.8339, and
a, = 2.9228. Thus, @ = 1.34014 and f(&) = 0.4590.

2017 Copyright © reserved by Mechanical and Aerospace Engineering, Seoul National University 102




446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong

exact
1st approx
2nd approx

Homework 21: Optimization Reading 1

Chapters 4.3-4.5
Chapters 5.1-5.2
Chapters 8.1, 8.2

6.4.2 Direction Search

The basic requirement for d is that the cost function be reduced if we make a

small move along d; that is, the descent condition ( /'(0)=¢"-d* <0) be
satisfied. This is called the descent direction.

Search Direction Methods
1. Steepest descent method
2. Conjugate gradient method
3. Newton’s Method
4. Quasi-Newton’s Method
5. Sequential linear programming (SLP)
6. Sequential quadratic programming (SQP)

The first four are used for an unconstrained optimization problem whereas the
last two are often used for a constrained optimization problem.
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/ \ Detail A

| o x9=(1,1)

b |,
'5\4»1!':(0,0)

(a) Steepest descent method (b) Conjugate gradient method
Figure 6.5: Search direction methods using gradient method

a. Steepest decent method

Step 1. Estimate a starting design x™ and set the iteration counter k = 0. Select a
convergence parameter £ > 0.

Step 2. Calculate the gradient of f(x) at the point x* as ¢® = Vf(x™).

Step 3. Calculate lic™l. If lic®Il < &, then stop the iterative process because x* = x* is a
minimum point. Otherwise, continue.

Step 4. Let the search direction at the current point x** be d* = -,

Step 4. Let the search direction at the current point x* be d* = —¢™.

Step 5. Calculate a step size o that minimizes f(x* + cd®). Any one-dimensional
search algorithm may be used to determine .
Step 6. Update the design as x**” = x® + qd®. Set k= k + 1, and go to Step 2.
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EXAMPLE 8.4 Use of Steepest Descent Algorithm
Minimize f(x,, x;)=x’ +x} —2x,x, using the steepest descent method starting from the point (1, 0).

1. The starting design is given as x¥ = (1, 0).

2. €9 = (2x) = 255, 21y - 2x)) = (2, -2).

3. [c@]=2v220

4. Setd? =—<"=(-2,2)

5. Calculate @ to minimize f(x® + cd™) where x® + ad® = (1 - 2a, 20):

f(x® +ad®)=(1-2a)" +(2a)’ +(2a)’ -2 -2a)2a)
=16a’ -8a+1= f(a)

Using the analytic approach

#@ . df(@)
s =0; 320-8=0 o ;=025 Wﬁ32>0.

6. Updating the design (x® + ad®): 2’ = 1 - 0.25(2) = 0.5, & = 0 + 0.25(2) =
0.5 Solving for ¢” from the =xpression in Step 2, we see that ¢/ = (0, 0), which
satisfies the stopping criterion. Therefore, (0.5, 0.5) is a minimum point for f(x)
and f* = 0.

b. Conjugate gradient method
Actually, the conjugate gradient directions d” are orthogonal with respect to a symmetric
and positive definite matrix A, i.e., d” Ad"" =0 for all i and j, i # j. The conjugate gradient
algorithm is stated as follows:

Step I. Estimate a starting design as x. Set the iteration counter k = 0. Select the
convergence parameter £ Calculate

d® = - = _Vf(x"¥) (8.21a)

Check stopping criterion. If llc™|l < g, then stop. Otherwise, go to Step 4 (note that
Step 1 of the conjugate gradient and the steepest descent methods is the same).

Step 2. Compute the gradient of the cost function as ¢® = Vf(x™).
Step 3. Calculate lic™1l. If lic™ll < &, then stop; otherwise continue.
Step 4. Calculate the new conjugate direction as

d® =W+ B, B, =(c®]/lc"D’ (8.21b)

Step 5. Compute a step size @ = o to minimize f(x* cd™).
Step 6. Change the design as follows, set k= k + 1 and go to Step 2.

xt0 = gl 4 o gt (8.22)
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EXAMPLE 8.6 Use of Conjugate Gradient Algorithm
Consider the problem solved in Example 8.5: minimize f(x;, x;, %3) =] +2x] +2x{ + 2x,x; + 2x,x
Carry out two iterations of the conjugate gradient method starting from the design (2, 4, 10).
The first iteration  ¢'® =(12,40,48), [ ”|=63.6, f(x'”)=3320
x'V = (0.0956, — 2.348, 2.381)

The second iteration 2. ¢V =(45-443843828), f(x")=10.75

3. llel = 7.952 > £ 80 continue, 4
4. B =[lc™I/c™] =(7.952/63.3)" =0.015633

4.500 =12 4.31241
d"V =" 4+ §,d” =| 4438 |+(0.015633) —40 [=| 3.81268
—4.828 —48] |-5.57838

5. Step size in the direction d"" is calculated as a = 0.3156.

0.0956 4.31241 1.4566
6. The design is updated as x'¥' =(-2.348 | +a| 3.81268 |=|-1.1447
2.381 -5.57838 0.6205

Calculating the gradient at this point, we get ¢ = (0.6238, —0.4246, 0.1926). lic?ll =
0.7788 > ¢, so we need to continue the iterations. Note that ¢ - d'"' =0,

TABLE 8-3 Optimum Solution for Example 8.6 with the Conjugate Gradient Method:
X, X3 %) =38 + 228 + 23 + 2x%; + 2x:%;

Starting values of design variables: 2,4,10

Optimum design variables: -6.4550E-10, -5.8410E-10, 1.3150E~10.
Optimum cost function value: 6.8520E-20.

Norm of the gradient at optimum: 3.0512E-05. '
Number of iterations: 4

Number of function evaluations: 10

Homework 21: Optimization Reading 2

Chapters 8.3, 8.4

c. Newton’s method
The basic idea of the Newton’s method is to use a second-order Taylor’s
expansion of the function about the current design point.

f(x+Ax) = f(x)+¢ Ax+0.5Ax" HAx (80)
The optimality conditions (Jf/d(Ax) = 0) for the function above
c+HAx=0 Ax=-H"c (81)

The optimal step size must be calculated for design optimization.
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Use of Modified Newton’s Method
Minimize f(x)=10x{ =20x{x, +10x3 +x{ —=2x, +5 (a)

using the computer program for the modified Newton’s method given in Appendix D
from the point (=1, 3). Golden section search may be used for step size determination
with 8= 0.05 and line search accuracy equal to 0.0001. For the stopping criterion, use

€ =0.005.
¢ = Vf(x) = (40x; —40x,x, +2x, =2, —20x{ +20x,) (b)
120x2 —40x, +2 —40x,
H=V?f(x)= [ ' 4 } (c)
flx) —40x, 20

X2 f= 65

(-1,3) 1\
' 14

Optimum point

1.0 (1,1)andf=4
0 —> X4
-1.0 !
2.0 2.0
Optimum Solution with Modified Newton’s Method
Starting point: s 10
Optimum design variables: 9.998R0E-01, 9.9968 1 E-01
Optimum cost function value: 4.0
Norm of gradient at optimum: 3.26883E-03
Number of iterations: 8
Number of function evaluations: 198
e M-file
function opt ()
x0 = [-1;3];
x = x0;
[x,fval,exitflag,output,grad]l= fminunc (@obj,x0) ;
end

function £ = obj (x)
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f = 10*x(1)"4-20*x (1) "2*x(2)+10*x(2) "2+x (1) "2-2*x(1)+5
end

The drawbacks of the modified Newton’s method for general applications are:

1. It requires calculations of second-order derivatives at each iteration, which is usually
quite time consuming. In some applications it may not even be possible to calculate
such derivatives. Also, a linear system of equations in Eq. (9.11) needs to be solved.
Therefore, each iteration of the method requires substantially more calculations
compared with the steepest descent or conjugate gradient method.

2. The Hessian of the cost function may be singular at some iterations. Thus, Eq. (9.11)
cannot be used to compute the search direction. Also, unless the Hessian is positive
definite, the search direction cannot be guaranteed to be that of descent for the cost
function, as discussed earlier.

3. The method is not convergent unless the Hessian remains positive definite and a step
size is calculated along the search direction to update design. However, the method
has a quadratic rate of convergence when it converges. For a strictly convex
quadratic function, the method converges in just one iteration from any starting
design.

Comparison of Steepest Descent, Conjugate:
Gradient, and Modified Newton Methods

Minimize f(x) = 50(x, — x{)* + (2 - x,)’ starting from the point (5, =5). Use the steep-
est descent, Newton, and conjugate gradient methods, and compare their performance.

TABLE 9-3 Evaluation of Three Methads for Example 9.8: fix) = 50(x; = x3)? + (2 - x,)?

Steepest descent Conjugate gradient Modified Newton

Xy 1.9941 2.0000 2.0000
X5 3.9765 3.9998 3.9999
i 3.4564E-05 1.0239E-08 2.5054E-10
llell 3.3236E-03 1.2860E-04 9.0357E-04
No. of function 138,236 65 349

evaluations
No. of iterations 9670 22 13

d. Quasi-Newton Method

Only the first derivatives of the function are used to generate these Newton
approximations. Therefore the methods have desirable features of both the
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conjugate gradient and the Newton’s methods. They are called quasi-Newton
methods.

c+HAx =0 Ax=-H"c (82)

There are several ways to approximate the Hessian or its inverse. The basic
idea is to update the current approximation of the Hessian using two pieces of
information: the gradient vectors and their changes in between two successive
iterations. ~ While updating, the properties of symmetry and positive
definiteness are preserved. Positive definiteness is essential because the
search direction may not be a descent direction for the cost function with the

property.

Hessian Updating: BFGS (Broyden-Fletcher-Goldfarb-Shanno)
Method

Step 1. Estimate an initial design x”. Choose a symmetric positive definite n x n matrix
H“ as an estimate for the Hessian of the cost function. In the absence of more
information, let H” = I. Choose a convergence parameter €. Set k = 0, and compute
the gradient vector as ¢ = Vf(x?).

Step 2. Calculate the norm of the gradient vector as
iterative process; otherwise continue.

Step 3. Solve the linear system of equations H®d® = —¢® to obtain the search direction.

Step 4. Compute optimum step size ¢ = ¢ to minimize f(x* + cd®).

Step 5. Update the design as x**" = x® + gd®

Step 6. Update the Hessian approximation for the cost function as

[c®]|. If |e*|| < € then stop the

H(kol) =Hlkw+D(k)+E(k) (a)

where the correction matrices D* and E® are given as

) o) T (k) o (k)T
w_ Yy . . _¢¢
- (k) _ o(k))? B = k) . (k) (b)
(y* -s) (c* .a™)
s® = o4d™ (change in design); y¥ = ¢®V — ¢® (change in gradient);
c|k+l) o Vf‘(x(hl)) (C)

Step 7. Set k =k + 1 and go to Step 2.

Example of BFGS Method
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Execute two iterations of the BFGS method for the problem:
minimize f(x) = 5x} + 2x,x, + 23 + 7 starting from the point (1, 2).

Solution. 'We shall follow steps of the algorithm. Note that the first iteration gives
steepest descent step for the cost function.

Iteration 1 (k =0).

1. x(‘:)’(l, 2),H”=1,e=0001,k=0

e = (10x; + 2x,, 2x; + 2x,)= (14, 6)

le@||=+14? +6* =15.232 > ¢, so continue

d? = —¢© = (-14, —6); since H” =1

Step size determination (same as Example 9.9): o = 0.099
xV = x@ + 0,d® = (-0.386, 1.407)

s = 0pd? = (-1.386, 0.593); ¢V = (—1.046, 2.042)

Al ol o ol

¥y =c" -c® =(-15.046,-3.958); y@ -5 =2320; ¢@.d? =-232.0 (a)

Oy 07 _ [226.40 59.55]' DO — y© yo~ _ [9.760 2.567] ®)
59.55 15.67) y@-s@ 12567 0.675
(O _[196 84]_ g0 €0 [—0.845 —0.362] ,
= : s c)
84 36 c¢?.d9 |-0.362 -0.155
HY =H® +D© +E© = [9-915 2'205] )
2.205 0.520
Iteration 2 (k = 1).
2. |le)| = 2.29 > &, so continue
3. Hd" =—; or, d” = (17.20, =76.77)
4. Step size determination: a; = 0.018455
5. xX?=x + d™ = (-0.0686, —0.0098)
6. sV = ad™ = (0.317, —=1.417); ¢® = (-0.706, —0.157) (e)

yO =c¢®—c® =(0.317,-2.199); y®-s® =3.224; cV.dV =-174.76 (f)

y

r [0.1156 -0.748
y(l)y(l) =[ ] (2

po -1 y " _[ 0.036 —0.232]
~0.748  4.836

T y®.s® T[ 0232 1.500

2136 4.170 [ e .a® T 00122 -0.0239

H® =HO 4+ pO 4+ EO =[9.945 1.985]
1.985 1.996

T
cmcm’:[l'(’94 ‘2'136]. go eV [—0.0063 0.0122] -
()

[t can be verified that H® is quite close to the Hessian of the given cost function. One
more iteration of the BFGS method will yield the optimum solution of (0, 0).
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Table 6.1: Summary of Numerical Aspects in Unconstrained Optimization Algorithms

Methods Steepest Conjugate Newton Quasi
Newton
Requirements Function, Function, Function, Function,
Gradient Gradient Gradient, Gradient
Hessian
Stability Good Good Good Good
Efficiency Bad Good Bad Good
Speed Bad Good Good Good

Let us recall a constrained design optimization formulated as
Minimize f(x)
Subjectto h(x)=0, i=L---,p
gj(X)SO, jzla"'am
" (83)
X, <x<Xx,, XeR
where m: no of inequality constraints, feasible where g, (x) <0

p: no of equality constraints, feasible where /,(x) =0

Homework 22: Optimization Reading 3

Chapters 9.1, 9.3, 9.4.1, 9.4.2, 9.5

6.5 Sequential Linear Programmning (SLP)

At each iteration, most numerical methods for constrained optimization compute
design change by solving an approximate subproblem that is obtained by writing
linear Taylor’s expansions for the cost and constraint functions.

Minimize f(x* +Ax")= Fx*“)+Vvf (x*)Ax?
Subjectto  A(x™ + Ax) = h(x)+ VAT x*)AXP =0, i=1,---,p
g(x? + Ax") = g(x)+ Vg x*H)AxP <0, j=1,---,m

n
X, <x<Xx,, XeR

(84)

The linearization of the problem can be rewritten in a simple form as
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Minimize f = z cd. =c'd

d—e, i=l--,p = Nid=e

i

Subjectto h=h = Zn 85)

g=z Zaljd1<b j=1---m = A'd<b
X, <x<x,, XeR’
It must be noted that the problem may not have a bounded solution, or the changes

in design may become too large. Therefore, limits must be imposed on changes in
design. Such constraints are usually called “move limits”, expressed as

-AY <d <AY i=lton (86)

Ay Aqy

Infeasible

Feasible
Figure 6.6: Linear move limits on design changes

1. The method should not be used as a black box approach for engineering design
problems. The selection of move limits is a trial and error process and can be best
achieved in an interactive mode. The move limits can be too restrictive resulting in
no solution for the LP subproblem. Move limits that are too large can cause
oscillations in the design point during iterations. Thus performance of the method
depends heavily on selection of move limits.

2. The method may not converge to the precise minimum since no descent function is
defined, and line search is not performed along the search direction to compute a
step size. Thus progress toward the solution point cannot be monitored.

3. The method can cycle between two points if the optimum solution is not a vertex of
the feasible set.

4. The method is quite simple conceptually as well as numerically. Although it may not
be possible to reach the precise optimum with the method, it can be used to obtain
improved designs in practice.
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6.6 Sequential Quadratic Programmning (SQP)
There are several ways to derive the quadratic programming (QP) subproblem that has
to be solved at each optimization iteration. The QP subproblem can be defined as

Minimize f=f=c'd+ %dTHd
Subjectto N'd=e (87)

A'd<b
d, <d<d,, derR"

. I
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I minimize VfTAx+0.5Ax"V?LAx

1
| | [ N
I subjectto p4nUTAx=0; i=ltop 1 N” o] Lv"] Lhn

The Hessian matrix can be updated using the quasi-Newton method. The optimization
with the equality constraints can be extended to that with both equality and inequality
constraints. There is no need to define a move limit unlike SLP.
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|

I  minimize VfTAx+0.5Ax"V?LAx :
| :

I subjectto p, 4+ n®T Ax = 0 i=ltop |
l I
I- —_— — —_— — — — — — _— — —_— — I
I minimize f =¢"d+0.5d"Hd I
I |
| subjectto n'd= e i=ltop |
I ) |
I a’d<b,; i=ltom [
I |

Homework 22: Optimization Reading 4

Chapters 9.1, 9.3, 9.4.1, 9.4.2, 9.5

Homework 23: Design Optimization of Crashworthiness Problem

A vehicle side impact problem is considered for design optimization. All the
design variables are shown in Table 6.2. In this example, the weight of the vehicle
is treated as an objective function with ten constraints defined in Table 5.3.
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Table 6.2: Properties of design variables
(X10 and X1: have “0” value)

Random

Variables dt d dv
Xi 0.500 1.000 1.500
Xo 0.500 1.000 1.500
X3 0.500 1.000 1.500
X, 0.500 1.000 1.500
X5 0.500 1.000 1.500
Xs 0.500 1.000 1.500
X7 0.500 1.000 1.500
Xs 0.192 0.300 0.345
Xy 0.192 0.300 0.345
X0

X0 and X1: are not design variables

Table 6.3: Design variables and their bounds

Constraints Safety Criteria
G] G].C
G1: Abdomen load (kN) <1
G2-G4: Rib deflection (mm) Upper <32
Middle
Lower
G5-G7: VC (m/s) Upper <0.32
Middle
Lower
G8: Pubic symphysis force (kIN) <4
G9: Velocity of B-pillar <9.9
G1o0: Velocity of front door at B-pillar <15.7

Responses:

7.7*%(7)*x(8)+0.32*x(9)*x(10))-32;

G1= (1.16-0.3717*x(2)*x(4)-0.00931*x(2)*x(10)-
0.484*x(3)*x(9)+0.01343*x(6)*x(10))-1;

G5 = (0.261-0.0159*x(1)*x(2)-0.188*x(1)*x(8)-

G2 = (28.98+3.818"x(3)-4.2*x(1)*x(2)+0.0207*x(5)*x(10)+6.63*x(6)*x(9)-

G3= (33.86+2.95%x(3)+0.1792*x(10)-5.057*x(1)*x(2)-11*x(2)*x(8)-
0.0215*x(5)*x(10)-9.98*x(7)*x(8)+22*x(8)*x(9))-32;

G4 = (46.36-9.9"x(2)-12.9"x(1)*x(8)+0.1107*x(3)*x(10))-32;

Cost(weight) = 1.98+4.90*x(1)+6.67*x(2)+6.98*x(3)+4.01*x(4)+1.78*x(5)+2.73*x(7)
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0.019"x(2)*x(7)+0.0144*x(3)*x(5)+0.0008757*x(5)*x(10)+0.08045*x(6)*x(9)+0.00
139*x(8)*x(11)+0.00001575*x(10)*x(11))-0.32;

G6 = (0.214+0.00817*x(5)-0.131*x(1)*x(8)-0.0704*x(1)*x(9)+ 0.03099*x(2)*x(6)-
0.018*x(2)*x(7)+0.0208*x(3)*x(8)+ 0.121*x(3)*x(9)-
0.00364*x(5)*x(6)+0.0007715*x(5)*x(10)-
0.0005354*x(6)*x(10)+0.00121*x(8)*x(11)+0.00184*x(9)*x(10)- 0.018*x(2).A2)-
0.32;

G7 = (0.74-0.61*x(2)-0.163*x(3)*x(8)+0.001232*x(3)*x(10)-
0.166*x(7)*x(9)+0.227*x(2).42)-0.32;

G8 = (4.72-0.5*x(4)-0.19*x(2)*x(3)-
0.0122*x(4)*x(10)+0.009325*x(6)*x(10)+0.000191*x(11).A2)-4;

GO = (10.58-0.674*x(1)*x(2)-1.95*x(2)*x(8)+0.02054*x(3)*x(10)-
0.0198*x(4)*x(10)+0.028*x(6)*x(10))-9.9;

G10 = (16.45-0.489*x(3)*x(7)-0.843*x(5)*x(6)+0.0432*x(9)*x(10)-
0.0556*x(9)*x(11)-0.000786*x(11).42)-15.7;

The Design Optimization is formulated as
Minimize f(Xx)
Subjectto g,(x)=G,(x)-G; <0, j=L--.9
x, <x<x,, xeR’
Solve this optimization problem using the sequential quadratic programming

(use the matlab function, ‘‘mincon’, in Matlab). Make your own discussion
and conclusion.
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