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9.1 Introduction

Mechanical work : Scalar product of the force by the displacement through which it
acts — scalar quantity — simpler to manipulate — very attractive

Newton’s equilibrium condition : The sum of all force (regardless of externally
applied loads, internal forces, and reaction forces)

must vanish

Analytical mechanics : powerful tools for complex problems

e Scalar quantities, simpler analysis procedure

* Reaction forces can often be eliminated if the work involved
vanishes.

* Systematic development of procedure for approximate
solutions (ex : finite element method)

Why still need Newton’s formulation? : to determine both magnitude and direction
of all forces acting within a structure, to
estimate failure condition

Principle of virtual work (PVW) ﬁ Newton’s law

equivalent




9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Newton’s 15t law : every object in a state of uniform motion tends to remain in that
state of motion unless an external force is applied to it

* A particle at rest tends to remain at rest unless the sum of the externally
applied force does not vanish.

A particleis at rest if and only if the sum of the externally applied forces
vanishes.

A particleis in static equilibrium if and only if the sum of the externally
applied forces vanishes.

+ A particle is in static equilibriumiff » F =0 (9.1)
(1) The vector sum of all forces acting on a particle must be zero.

(2) The vector polygon must be closed.

(3) The component of the vector sum resolved in any coord. system must

ZE: F1E+F2E+F3E - F1 — Fz - F3 =0

vanish.




9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Newton’s 3" law : If particle A exerts a force on particle B, particle B

simultaneously exerts on particle A a force of identical
maghnitude and opposite direction.

 Two interacting particles exert on each other forces of equal magnitude,
opposite direction, and sharing a common line of action.

Euler’s 1st law

system consisting of N particles

Particle i subjected to an external force F;, N -1
interactionforces ., j=12.., N,j=i

Newton’s 1st law

Fig. 9.1. A system of particles.




9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Interaction forces : for rigid body, it will ensure the body shape remain unchanged
elastic body, stress resulting from deformation planetary
system, gravitational pull

Summation of N eqns. for N particles

By Newton’s 3 law,

N N
Z ZLJ =0 (©-3)

Then,

iEi =0 (9.4)

Euler’s 1st law for a system of particles
necessary condition for a system of particles to be in static equilibrium but not a
sufficient condition




9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Euler’'s 2 law

 Taking a vector product of
N N

iEi +Z Z iij =0

i=1  j=1,j=#i
by I;, then summing over all particles

then,

e Euler’s 1stand 2" law both necessary condition for the system of particles
to be in static equilibrium, but not a sufficient condition.




9.2 Equilibrium and work fundamentals

9.2.2 Concept of mechanical work

> Definition

» The work done by a force is the scalar product of the force by the
displacement of its point of application.

1. force, displacement, collinear : F=Fu, d=du, W=Fd
+ : if the same direction/ - : if the opposite direction

2. not collinear : W =Fdcos¢, ¢ angle between u and v
3. Perpendicular : cosezcosgzo , W=0
+ “incremental work” : dw =F.dr , total work : W=["dw =["F.dr  (9.7)

* F=Fe+Fe +Fes;, dr=dre +dre, +dres, dW =F -dr = Fdr, + F,dr, + F,dr,

« dr=dru, E=FUu+Fv — dW:(F”GJrFLQ).er:F”dr




9.2 Equilibrium and work fundamentals

9.2.2 Concept of mechanical work

« superposition: E=FR+F, dW:F'dLZ(Fl-'_FZ)'d£:i'd£+i'd£:dW1+dW2

* Why is work a quantity of interest for the static analysis?
— Concept of “virtual work” that would be done by a force if it were to
displace its point of application by a fictitious amount.




9.3 Principle of virtual work

> PVW

e “arbitrary virtual displacement”, “arbitrary test virtual displacement”
“arbitrary fictitious virtual displacement”

e arbitrary : Displacement can be chosen arbitrarily without any
restrictions imposed on their magnitude or orientations.

* virtual, test, fictitious : Do not affect the forces acting on the particle.




9.3 Principle of virtual work

9.3.1 PVW for a single particle

particle in static equilibrium under a set of externally
applied loads, fictitious displacement of S

virtual work done

WZ[ZE]@:O (9.8)

Assume that one of the externally applied forces, F,, is
an elastic spring force. If for a real, arbitrary
displacement, d , the spring force will change to become
F, ', the sum of eventually applied forces,

SE > YE'#0

For a virtual or fictitious displacement, do not affect the loads applied to the particle,
it remains in static equilibrium, W = [ZE].§ — 0 holds.

Fig. 9.2. A particle with ap-
plied forces subjected to a
fictitious test displacement.

If W= [ZE} -8 =0 is satisfied for all arbitrary virtual displacement, then ZE =0,
and the particle is in static equilibrium.




9.3 Principle of virtual work

9.3.1 PVW for a single particle

Principle 3 (PVW for a particle) : A particle is in static equilibriumifand only if the
virtual work done by the externally applied forces
vanishes for all arbitrary virtual displacement.

Example 9.1 Equilibrium of a particle

E, =1 F,=-3ix S=S/l1+S,i2

Virtual work is

Fig. 9.3. A particle under the action of two W = (1|1 -3z ) ' (Slll + 3, IZ) =—2I1 '(Slll +3, |2) =-25, #0
forces. .
Because the virtual work done by the externally

applied forces does not vanish for all virtual
displacement, the principle of virtual work, Principle
3, implied that the particle is not in static
equilibrium.




9.3 Principle of virtual work

9.3.1 PVW for a single particle

ku

u
e s T b §,
i

S

mg

Fig. 9.4. A particle suspended to an elastic
spring.

Example 9.2 Equilibrium of a particle connected to an
elastic spring

W = (mgil - kUil)'(Slil +sziz) =[mg - ku]s,

[mg —ku]s, =0

But, s, =0 is not valid because, as implied by the
principle of virtual work, S, is arbitrary.

In conclusion, the vanishing of the virtual work for all
arbitrary virtual displacementimpliesthat mg-ku =0,
and the equilibrium configuration of the system is found
as u=mg/k.



9.3 Principle of virtual work

9.3.1 PVW for a single particle

Consider the work done by the elastic force, —kui - duis ,
under a virtual displacement, s,,

W = J'uml —kudu = —kujumldu =—ku[u].™* =—kus, (9.9)

12
L 2k It is possible to remove the elastic force, —ku, from
i m the integral because this force remains unchanged by
i|] [ gku the virtual displacement, and hence, it can be treated
@ >, as a constant.
s, ¢ I mg In contrast, the work done by the same elastic force

under a real displacement, d, is

Fig. 9.4. A particle suspended to an elastic
u+d

spring. W = J‘uwd—kudu - {—%kuz} = —kud —{—%kdz} (9.10)

u

In this case, the real work includes an additional term
that is quadratic in d and represents the work done by
the change in force that develops due to the stretching

of the spring.




9.3 Principle of virtual work

9.3.1 PVW for a single particle

Example 9.3 Equilibrium of a particle slidingon a

track
mg I S, mgil_Ri1+Pi2 _Fi2 :O
F < *—>>P (mg_R)il‘F(P—F)iz =0
P TR
;¥ |

. Finallyy, R=m F=P
Fig. 9.5. A particle sliding on a track. Y g

Next, by PVW,

W = (mgi1 — Ri1 + Pi2 — Fi2)- (i1 +5,i2) =[mg —R]s, +[P—F]s, =0  (9.11)




9.3 Principle of virtual work

‘ 9.3.2 Kinematically admissible virtual displacement

» “arbitrary virtual displacements” : including those that violate the kinematic
constraints of the problem

« “kinematically inadmissible direction”, “infeasible direction”: S; in the
track example — S = S, 12 kinematically admissible
* Reaction forces acts along the kinematically inadmissible direction

» Modified version of PVW : “a particle is in static equilibrium if and only if the
virtual work done by the externally applied forces
vanishes for all arbitrary kinematically admissible
virtual displacements”

» Constraint (reaction) forces are automatically eliminated.
 Fewer number of equations




9.3 Principle of virtual work

9.3.3 Use of infinitesimal displacements as virtual displacements

» Special notation commonly used to denote virtual displacements
S=0ou

Virtual work done by a force undergoing virtual displacement— oW
» Convenient to use virtual displacements of infinitesimal magnitude
— Often simplifies algebraic developments

1. Displacementdependent force — automatically remain unaltered

Ex 9.6 Consider a particle connected to an elastic spring. This is the same
problem treated in Ex 9.2

spring
forcew

oW =(mgi_1 _kUil)'<5Ui1 +5Vi2) =[mg —ku]su =0

>

ou =du

ku |- :
dW =ku du

u+du

u+du 1 1
u [ —kudu = [—Ekuz} = —kudu —~k(du)* = —kudu

u

du

u




9.3 Principle of virtual work

9.3.3 Use of infinitesimal displacements as virtual displacements

2. Rigid bodies
« 2 pointP, Q of arigid body — must satisfy the rigid body dynamics
Vp =Vo TOXIgp
du, du, dy
= +=—XIp
dt dt dt

du, =dug +dy xrep (9.14)

* Itis possible to write

OUp =0Uqg +0Y XIp

field of kinematically admissible virtual displacements for a rigid body




9.3 Principle of virtual work

9.3.3 Use of infinitesimal displacements as virtual displacements

O : virtual fictitious displacement, leave the forces unchanged, allowed to violate
the kinematic constraints

d : real, infinitesimal displacement, no requirement for forces, cannot violate the
kinematic constraints.

« O : vector quantity, but finite rotations are scalar quantity.

* Virtual displacements of infinitesimal magnitude greatly simplifies the treatment.




9.3 Principle of virtual work

9.3.4 PVW for a system of particles

> For a particle 1,
N
j=1, j=i

* Sum of virtual work : All particles must also vanish.
A system of particlesis in static equilibriumifand only if

éVVizi F+ ZN: fij -ou; =0 (9.16)
=)

1=1, j=#i

for all virtual displacements,oU; , 1=1,2,3,---,N

3N scalar egn.s for a system of N particles > 3N D.O.F’s




9.3 Principle of virtual work

9.3.4 PVW for a system of particles

> Internal and external virtual work

* Internal forces : act and reacted within the system
» External forces : act on the system but reacted outside the system

é\NE = ZN:Eu '5gij
i=1

(9.17)

Eq. (9.16) becomes

SW =W, +6W, =0 (9.18)




9.3 Principle of virtual work

9.3.4 PVW for a system of particles

» Principle 4 (Principle of virtual work)

A system of particles is in static equilibrium if the sum of the virtual work done by
the internal and external forces vanishes for all arbitrary virtual displacements.

Actual displacements: W =W_ +W, =0 (9.19)

« Euler’s law ]
virtual displacement of a particle |

OU; =0U, + oy XTI, (9.20)

OU, : virtual translation of a rigid body

Oy : virtual rotation — 6 independent virtual quantities, far few than 3N




9.3 Principle of virtual work

9.3.4 PVW for a system of particles




9.4 Principle of virtual work applied to

mechanical systems

» Rigid body
OU; =0U, +oy X,
 Kinematically admissible virtual displacement field (3-dimensional)

e 2 vector egn.s

N
ZEi =0
i=1

or 6 scalar egn.s

* 2-dimensional or planar mechanism, oU; = 0U, + oy xI'; becomes

OU. =OU, + Opls T, (9.21)

Sy = Spis




9.4 Principle of virtual work applied to

mechanical systems

Example 9.7
Consider the simple lever subjected to two vertical end forces, Fa and Fb acting at
distance a and b, respectively, from the fulcrum.

- l-Fh
¥
F, # Too

Fig. 9.9. Simple lever acted upon by two vertical end forces.

- Classical egn. of statics by free body diagram
H=0
V=F+F

aV cos¢ = (a+b)F, cos¢g
aF, =bF,




9.4 Principle of virtual work applied to

mechanical systems

Example 9.7
- Principle of virtual work (kinematically admissible virtual displacement)
kinematically admissible virtual displacement field at A

SU, = 5pis x Io, = a(sin giz — cOS giz ) 5p
kinematically admissible virtual displacement field at B
SUg = pis x o5 = b(—sin gis + COS iz ) 59

virtual work
OW, = (-F,i2)-8u, +(~F,i2)-Su, = 5¢[aF, cos ¢ —bF, cos¢]

- Principle of virtual work (kinematically violating virtual displacement)
kinematically violating virtual displacementfield at A

Su, = Ou,i, +SU,i, = Su, +a(sin dis —cos¢iz)5¢

kinematically violating virtual displacement field at B

SUy = OU,T, +8U,T, = 8, +b(—sin gi +cos giz ) 5




9.4 Principle of virtual work applied to

mechanical systems

Example 9.7
- Principle of virtual work (kinematically violating virtual displacement)

virtual work
SW. = (—=F.i2)-8u, + (~F.i2)-Su, + (Hi1 +Vi2) - Su,
=ou,[H]+0ou,[V - F, — F, ]+ o¢[aF, cos ¢ —DbF, cos¢]
The virtual work done by the reaction forces at the fulcrum does not vanish.
Thus they must be included in the formulation.

Three bracketed terms must vanish, leading to the three equilibrium egns
identical to those obtained by Newtonian approach

- Equivalence of PVW and Newton’s first law

- Kinematically admissible virtual displacement field automatically eliminates the
reaction forces when using PVW.




9.4 Principle of virtual work applied to
mechanical systems

9.4.1 Generalized coordinates and forces

» Not convenient to work with Cartesian coord. in many cases

Will be represented in terms of N “generalized coord.”

u=u(g,,d,,0s, - qy)

Virtual displacement

5g:ﬂ§ql+ﬂ5q2 +ﬂ5q3 4ot ag 5qN

00y o, 00, 0d

Virtual work done by a force F




9.4 Principle of virtual work applied to
mechanical systems

9.4.1 Generalized coordinates and forces

Then,
N
oW = Q15q1 +Q25q2 +Q35q3 +"'+QN5qN - ZQié‘qi (9.23)

i=1
virtual work = generalized forces X generalized virtual displacements

« Externally applied load or internal force
N N
| E
oW, =Y Q'sq, W, = > QF s, (9.24)
i=1 i=1
« PVW eqgn.

SW, + W, ZQ 5q,+ZQ 5 Z[ QF |5g; =0

Qi' +QiE -0 i=1,2,3,---,N (9.25)

: : : : : : E
If arbitrary virtual displacements, reaction forces must be included in Qi

If Kinematically admissible displacements, reaction forces are eliminated.




9.5 Principle of virtual work applied to

truss structures

> Truss : like simple rectilinear spring of stiffness constant kK = EA/ L

bar slenderness = 100 J

Actual Truss Idealized Truss

Fig. 9.28. Planar truss and its idealization as an assembly of rectilinear springs.

9.5.1 Truss structures

» Elongation : displacement equations

displacement A = Alil +A, I2

e : elongation (L +e)* = (L +A1)2 +(L, "‘Az)2

A;, and A, small compared to the bar’s length — can be linearized.

i : ingle bar of a planar truss L I
Fig, 9.29. Single bar of a planar truss. e~ Al%+A2T2: Al COSH+A2 sin @ (9.27)

Elongation is the projection of the relative displacement along the bar’s direction




9.5 Principle of virtual work applied to
truss structures

9.5.1 Truss structures

» Internal virtual work for a bar : general planar truss member
Virtual work done by the root and tip forces

OW =F'-5u"+F'-ou' = Fb-(su' -5u")
Virtual work by the internal forces

oW, =—E"-6u" —F'-5u’ =_F5.(5gt —5gr) (9.28)

Fig. 9.30. Bar displacements and forces. Virtual elongation

5e=5-(5g‘—5gr)
Then, oW, =—Fde  (9.29)
Se = (sin Bi1 + cos Hiz)-(éuﬁl +Subiz —8ul s —5u;iz)

= (5UI —ou; )Sin 9+(5u; — U, )COSH (9.30)




9.5 Principle of virtual work applied to
truss structures

9.5.2 Solution using Newton’s law

» Internal virtual work for a bar : general planar truss member

I>D ¢ Pe___y0  5-barsplanar truss

C Newton’s law — equilibrium conditions at 4 joints A,B,C,D

Fep TP, Total 8 scalar egn.s (method of joints)
0 Fyc _ _
E).f\ lB F F. Py =Fup =0 Hy+Fg =0
P\F\D Pll ® 19
B - —

) A} . P,-F,.—-F,sind=0 —F,—-Fcos6=0
iy l" AB . (9.31)

FBC:O PC_FCD:O

Fig. 9.31. Configuration of the 5-bar truss.

Vp —F,p —FgpSind=0 H, +F, +F;pcos6=0




9.5 PVW applied to truss structures

‘ 9.5.3 Solution using kinematically admissible
virtual displacement

< Eq. (9.31)
» 5 corresponding to equilibrium in an unconstrained direction, multiplied by
virtual displacements (kinematically admissible)

[Py — Fuo ] 0U" +[ Py — Fye — Fyp sin ] ouy’
+[—Fac — Fgp €08 0] 0U; +[Fye |SUL +[ P — Fep |SU; =0 (9.32)

» Regrouping
OWe

P,5u* + P,SU + P.suS

~FadU? — Fp0Ul — Foc (SUF —6U° )~ Fop (8US sin 0+ U2 cos0) — Fpdu =0 (9.33)

Vo

é\NI = _FAB5eAB o FADaeAD o Fscaesc o FBDé‘eBD - |zcoé‘eco (9.35)
— SW =SW_ +6W, =0  (9.36)

® Principle 5 (PVW)
A structure is in static equilibrium if the sum of the internal and external virtual
work vanishes for all kinematically admissible displacements.




9.5 PVW applied to truss structures

‘ 9.5.4 Solution using arbitrary virtual displacements

< Eq. (9.31)
» 8 equilibrium multiplied by a virtual displacement

[PA — FAD]5U1A +[HA + FAB]5U£ +[PB —Fge —F5p Sin 9]5u13
+[—Fac — Fap €05 0]6U; +[Fyc [SU; +[P. — Fep]ou;
+[Vp + Fop + Fgp sin@]6u, +[Hy + Fep + Fyp c0s6]6u,’ =0 (9.37)

» Regrouping
OWe

iDAéulA +P,5u. +P.ou; +H 06Ul +V ou, + HD5u§

—F o5 (8U5 =50 ) = Fyp (0, =0 ) = Fye (SUP — 507 )

—Fy, [(5uf — 50, )sin 0 +(Sug —5uy )cos H} ~Fep (0U5 —6u7)=0  (9.38)

J

'

oW,

® Principle 6 (PVW)

A structure is in static equilibrium if the sum of the internal and external work
vanishes for all virtual displacements.




9.5 PVW applied to truss structures

Example 9.13 Three-bar truss using PVW

Simple hyperstatic truss with a single free joint
Subjected to a vertical load P at joint O, where the three bars are pinned

together

Cross sectional area of the bars A, B, and C: A,, Ag, A

Young's moduli: E,, E;, E.

Axial stiffness of the three bars: kA — (EA)A/LA = (EA)A COS Q/L ,

Kg =(EA)B/L’
ke =(EA). cosd/L

Hyperstatic system of order 1, can be solved using either the displacementor
force method (Example 4.4, 4.6)

Vil g Vsl B, Vel m
A B C
L
) ARLESA R,

Free body
diagrams




9.5 PVW applied to truss structures

Example 9.13 Three-bar truss using PVW
- Virtual displacement vector for point O

Su = Su i + U, i,

- Bar virtual elongation for A, B, and C, by Eq. (9.30)
o€, =0u,cosfd+du,sinb,
o€, =ouy,
o€, =ou,cosd—ou,sinf

- PVW: for kinematically admissible virtual displacements

SW = SW, + W,
=Péu, — F, (8u, cos @+ Su, sin @) — F,6u, — K, (Su, cos @ —u, sin 6)
=—[F,cos0+F, + F. cos@—P|su, —sind[F, — F.|6u, =0

- Two bracketed terms must vanish, leading to two equilibrium egns.

F,cos0+F,+F.cosé=P,F,=F.




9.5 PVW applied to truss structures

Example 9.13 Three-bar truss using PVW
- PVW: for arbitrary virtual displacements

OW, =V, 58U + H,8u. +V éu. + H ous +V.8u° +H.suy + Pou,
OW, =—F, (cos O +sin 0%, ) o| (uP -5} ) +(5uf - 8u' )T, |
~Faie| (8u? —ou’ )T +(sug —5ug)i, |

~F; (cos g —sin 67, ) e (8u? - ou )T +(sug - oug )7, |

- Invoking PVW Principle 6
[V, +F,cos8|ou’+[H, +F,sin8]ou, + [V, + F; |ou’ +[Hg]su,
+[V, + F; cos@]du; +[H. — F. sin@]du;
+[P—F,cos0 - F, — F. cos@]éu; +[F,sind—F.sind]su, =0

- All the bracketed terms must vanish.




9.6 Principle of Complementary

Virtual Work

% Fig. 9.33

Basic equations of linear elasticity (Chap.1)

ilibri i Physics d
» 3 Groups eqw_llbrl_um equations _ 1 ”‘i‘:ﬂ:’.’.‘ X m:m, s
strain-displacementrelations origin r
A , S . Lipeonel G BB W S
constitutive laws | (7 ¥ 2
4 L4 [ 2
Equations | Equilibrium Constitutive dls:Italrc:':rll-enl
» Strain compatibility equations: of elasticity | equations vy compatibility
. A
do not form an independent set
- . v - v
of equations and are not required Virwal [ Principle of
S work ! complementary
to solve elasticity problems | principles | virtual work e

'
i
L..

> However’ |t iS a Over_determined prob|em Fig. 9.33. Relationship between the equations of elasticity and virtual work principles.
since 6 strain components are expressed
in terms of 3 displacement components only




9.6 Principle of Complementary

Virtual Work

s Solution of any elasticity problem requires 3 groups of basic egn.s
(Fig. 9.33)

» PVW alone does not provide enough information to solve the problems
= PCVW will augment equilibrium equations and constitutive laws to derive
complete solutions, entirely equivalent to the compatibility equations

------- Tttt e L L L L L L L L L R R R R PR L R R P L L LR L R L]
Physics d
or science N‘IM"" . n:;:_‘:::' Geometry
origin g -
N Strain-
Equations | Equilibrium Constitutive displacement,
of elasticity equations laws compatibility
L T T T L P T T T TP LT
ikt ikt iy v - gl et i ey | ey e e 3
Virtual L ‘ Principle of
i work -rmc11p v ok complementary
i principles | Virtual wor virtual work




9.6 Principle of Complementary
Virtual Work

‘ 9.6.1 Compatibility equations for a planar truss

s Compatibility conditions

> Fig. 9.34 --- 2-bar truss, arbitrary elongations€a, € configuration of the truss
compatible with these elongationsis easily found

— intersection of 2 circles (of radiiL, +€,, L. +e.) — O’

Fig. 9.34. Two-bar truss in the original and
deformed configurations.

Active Aeroelasticity and Rotorcraft Lab.,



9.6 Principle of Complementary

Virtual Work

> Fig. 9.35 .- 3-bar truss, again arbitrary elongations€,, €. but configurations of
bar B is now uniquely defined, since it must join B and O’

e; =L; —L; 3 elongations are no longer independent

Fig. 9.35. Three-bar truss in the original and
deformed configurations.

» Some conclusioncan be reached by the elongation-displacement relationship
instead of the geometric reasoning

elongation --- projection of displacement vector along bar~s direction. Eq. (9.27)
e, =U,cosd+u,sind, €. =U, cosd—u,sind
--- for a 2-bar truss, final configuration is uniquely determined if the
2 displacementcomponents, U;and U, , are given




9.6 Principle of Complementary

Virtual Work

» 3-bar truss (Fig. 9.35)
e, =U,cosf+u,sing, e =U;, & =U, cosd—U,sing (9.44)
It is not possible to express the 2 displacement components in terms of
3 elongations. Because 3 elongations form an over-determined set for
2 unknown to eliminate 2 displacementcomponents

» However, it is possible to express to eliminate 2 displacement components to obtain
the compatibility equation

e,—2e;cosfd+e. =0 (9.45)
- 3 elongation in terms of 2 displacement components
—1 compatibility equation

» 2-bar truss --- isostatic, order of redundancy, number of equation = 0
3-bar truss --- hyperstatic, number of compatibility equation
= order of redundancy of the hyperstatic problem

» 3-bar truss - 3 force components, 2 equilibrium equations — hyperstatic of degree
1

3 elongation, 2 displacement components — 1 compatibility equation




9.6 Principle of Complementary

Virtual Work

‘ 9.6.2 PCVW for truss

s 3-bar truss under applied load

» Fig. 9.36 --- assumed to undergo compatible deformations so that the 3-bar
elongations satisfy the elongation-displacementrelationship, Eq.(9.44)

SW'=—[e, —u,cosd—u,sind|5F, —[e; —u,|6F; —[ec —u, cos@+u,sin|6F, (9.46)

™S T N

“Complementary VW” “virtual forces”
OW'=—-e,0F, —e;0F; —e.0F,
+U, (6F, cos @+ 6F; + 5F. cosd)+u,sin(S5F, —6F, ) =0 (9.47)

Fig. 9.36. Three-bar truss with applied
load.

Active Aeroelasticity and Rotorcraft Lab.,



9.6 Principle of Complementary

Virtual Work

» Free body diagram — equilibrium equations
F,cos0+F, +F. cosd=P, F,—F. =0
-+ A set of forces that satisfies these equilibrium equations is said to be
“statically admissible”

» “statically admissible virtual forces”
oF,cos0+0F, +6F.cosf =0
(9.48)

oF,—0F. =0
... do not include the externally applied loads since 6P =0,
geometry of the system is given — 50 =0

» EQ. (9.47) becomes much simpler due to Eq.(9.48)

SW'=—e,5F, —e,0F, —e.0F. =0
for all statically admissible virtual forces

(9.49)

» Eq. (9.49) - “internal complementﬁlry VW?”
oW, =—e,0F, —e,0F; —e.6F. =->_eF, (9.50)
i=1
Eq. (9.49) — SW'= 5WI' =0 (9.51)

for all statically admissible virtual forces




9.6 Principle of Complementary

Virtual Work

% 3-bar truss under prescribed displacement

» Fig. 9.37 --- instead of a concentrated load, downward vertical displacement is
prescribed of magnitude A

K

Fig. 9.37. Three-bar truss with prescribed
displacement.

» *“driving force” D required to obtain the specified displacement, as yet unknown
Eq. (9.46) — OW'=—[e, —u,cosd—u,sin0|6F, —[e; —u, +A|SF,

. (9.52)

—[ec —u, cos@+u,sinf]|6F, =0

=—e,0F, —€;0F;, —e.0F. — Aok,

(9.53)
+U, (COsO5F, + 5F, +cos 05 F ) +u,sin(S5F, —6F; )

Il
o




9.6 Principle of Complementary

Virtual Work

» Set of statically admissible virtual forces that satisfy the following equilibrium egns
O0F,cos0+6F, +5F.cos@d =0, o6F,—6F. =0, 6F, +6D =0 (9.54)

equilibrium at joint O equilibriumat joint B

» If the virtual forces are required to be statically admissible,
Eqg. (9.53) will be simpler

é\N’:AéDTeAéFA—eBéFB—eC5FCJ:0 (9.55)
external complementary VW — W, = A6D (true displacement x virtual) (9.56)

EqQ. (9.55) — OW'=0W." + W, =0 (9.57)
for all statically admissible virtual forces

® Principle 7 (PCVW)

A truss undergoes compatible deformations if the sum of the internal and external
complementary VW vanishes for all statically admissible virtual forces




9.6 Principle of Complementary

Virtual Work

» If the CVW is required to vanish for all arbitrary virtual forces, i.e., for all
independently chosen arbitrary 6F,, oF;, oF., 6D

— Eq. (9.55) e, =€, =€, = A =0 — truss can not deform
— NOT correct

» For statically admissible virtual forces, must satisfy Eq. (9.54),
3 equations for 4 statically admissible virtual forces
— possible to express 3 of the virtual forces in terms of the 4t:
SF, =—26F, cosf, SF. =6F,, 6D =25F, cosd
— PCVW: W' = A(26F, cosf)—e,0F, —e, (—26F, cosd)—e.OF,

=[2Acos@—e, +2e; cosf—e. |6F, =0

= (0 --- compatibility equation




9.6 Principle of Complementary

Virtual Work

{CVW: work done by virtual forces acting through real displacement
VW: work done by real forces acting through virtual displacement
L real quantities remain fixed

% Fig. 9.38 - not necessarily linear elastic material

W = ju kudu = 1 ku2 = 1 Fu Force , Complementary
0 2 2 virtual work
L____A linearly elastic material sF] | W'

FF 1 1 ST

0 K 2K 2 . Virtual

A w | [O%] work
only when linearly elastic material l )
u Displacement

ou

% Fig. 9.38 .- shaded areas for “VW” and “CVW”

Fig. 9.38. Work and complementary work and
their virtual counterparts.




9.6 Principle of Complementary

Virtual Work

‘ 9.6.4 Application to truss

< Planer truss with a number of bars connected of N nodes

>

» PVW — 2N equilibrium equations
PCVW — n equations produced for a hyperstatic truss of order n

for an isostatic truss, no compatibility equations

% PCVW --- enables the development of the force method,
in general, n<N, only a few eqn generated — simpler solution procedure
But major drawback - must be statically admissible virtual forces,
self-equilibrating, requires much more extensive work for generation of
the equations — PVW is used much more widely used




9.6 Principle of Complementary

Virtual Work

‘ 9.6.6 Unit load method for trusses

v PCVW — *“unitload method” --- determine deflections at specific points of structure

» Fig. 9.40 --- 2-bar truss
PCVW, imagine the displacement A prescribed at O,
external complementary work é\NE' =AoD
oD : virtual driving force

> PCVW — oW, +6W, =0, A6D =—-6W,’ (9.62)
for all statically admissible virtual forces

/" Virtual forces
oF, OF,




9.6 Principle of Complementary

Virtual Work

> Internal CVW: oW, = —e,5F, —e.5F,
then, Eg. (9.62) A5D e 5F + €. 5F
for a more general truss consistingof N, bars, AoD = Ze oF (9.63)

for all statically admissible virtual forces i=1
oD, oF,, o0F. - a set of statically admissible virtual forces, free body diagrams

— SF,—6F, =0, 5D —(SF, +6F. )cos@ =0
- 2 equilibrium equations of the system linking 3 virtual forces

> Unitload method - the virtual driving force is selected to be a unit load, 0D =1
—6F, =6F. =A6D/(2cos0)=1/(2cos0)
> Simplified notation - when 6D =1— 6F, = 5|£A, oF. = 5|£C
Ny
Eq. (9.63) »A=) Fe (9.64)
i1

F.: actual forces that develop due to the externally applied load must satisfy all
equilibrium conditions, and the associated elongations must be compatible

F: the unit forces -+ a set of statically admissible forces.
must satisfy the equilibrium equations, but the associated elongations
are NOT required to be compatible.

o0



9.6 Principle of Complementary

Virtual Work

> For a linearly elastic material, € = U

EA
EQ. (9.64) —> A = Z FIIEFI L (9.65)

> To determine rotation of the structure — : “unit moment method”
DOoM =-6W, (9.66)




9.6 Principle of Complementary

» Example. 9.16: Jointdeflectionin a simple 2-bar truss
- Step 1: determination of the bar forces and extensions due to externally

applied loads
P Fala FlLe
F,=F.=—— €)= 8 = ——=—
% (2cos6) " (EA), T (EA)
PL 1 PL 1

eA:(EA)A 2005249'eC (EA). 2cos® @

- Step 2: unit load applied at the point and in the direction of the desired
direction component. 1

(2cos8)

~

F.=F. =

Actual forces Virtual forces
A

L F,\ F( i\?.\ F(

Az %J‘LAI 5 1

P

Fig. 9.41. Two-bar truss with unsymmetric properties and vertical load at joint.




9.6 Principle of Complementary

» Example. 9.16: Jointdeflectionin a simple 2-bar truss
- Step 3: find the vertical displacement of joint O

Ny, 1 PL 1 PL
A = Fe =
L Z; & 080 2COSZ¢9(EA)A+2COS¢9 2cos® 0(EA),

__ P (EA), +(EA)
~4cos’0 (EA), (EA),

- Horizontal deflection component

1 A 1

. ) FC = .
(2sin6) (2sin0)

E, =

g PL 1 PL
ZZ; 2sm9 2cos? O(EA), 2sind 2cos® (EA),
PL (EA)A _(EA)C

~4sinfcos’ 6 (EA), (EA).




O.7 Internal virtual work

IN beams and solid

‘ 9.7.1 Beam bending

< Plane (E_z) plane of symmetry Mj pﬁs*
M (%) bending moment, @, (X, ) rotation, "
U,(x,) transverse displacement G -

» Infinitesimal slice of a beam (Fig. 9.48) &

— curvature of the differential element &, =®;=0;
Fig. 9.48. Bending deformation of an in-

finitesimal segment of a beam.

> Work done by the moment acting on the left-hand side: —M,®,
( (-) since moment and rotation are counted (+) about opposite axes)
Work done by the moment acting on the other side: |\/|3(q)3 +dq)3)

net work done by the 2 moments: dW =M,d®, = Ms(dq% ]dxl

dx,
total internal work done by the moment distribution acting along the beam
L dod L
3
W, = _Io M, dx, = _I M ;0% (9.66)
dx, 0

(-) due to internal moment, which is opposite to externally applied moment




O.7 Internal virtual work

IN beams and solid

< Internal VW
L
oW, :__[0 M 5K, dX, (9.66)

< Internal CVW

L
W = [ "1, 5M




O.7 Internal virtual work

IN beams and solid

‘ 9.7.2 Beam twisting

% Fig. 9.49
... differential rotation of 2 cross section"s
— twist rate of the differential element, &; = @]

Fig. 9.49. Torsional deformation of an in-
finitesimal segment of a beam.

> Work done by the torque acting on the left-hand side: —M,®,
( (-) due to the torque and rotation are (+) about opposite axes)

Work done by the torque acting on the other side: M, (@, +d®, )

net work by 2 torques: dW =M, d®, = Ml(ddq)leX1
X

total internal work done by the torque distribution

L dd L
W, =—[ "M, dxll d =—[ My, (9.71)

(-) due to internal torque




O.7 Internal virtual work

IN beams and solid

< Internal VW
L
oW, =—IO M, 0k, dx, (9.72)
< Internal CVW

L
W/ =~[ ", oM, dx,

based on the kinematics of Saint-Venant’s theory of uniform torsion




O.7 Internal virtual work
INn beams and solid

‘ 9.7.3 Three-dimensional solid

» Work done by each 6 stress components are computed separately and then are
summed up

/7

% Axial Stresses

» Fig. 9.50 - infinitesimal differential element of a solid
work done by the force, 0,dX,dX,, acting on the left side: —(GldXZdX3)U1
( (-) due to that force and displacement are counted (+) in opposite directions)
work done by the force acting on the other side: (aldxzdxg)(ul + dul)

ou
net work by the 2 forces: dW = (aldxdeS)dul = (Gldxzdx3)(a—l dx,
X
total internal work done by the axial stress distribution

ou
W, = _jv 0y G—Xi dx, dx,dx; = _.[v o5dV - (9.73) &

(-) due to the internal axial stresses

T
e

Active Aeroelasticity and Rotorcraft Lab., Seoul National



O.7 Internal virtual work

IN beams and solid

< Shear stresses ‘[lz :
. ] . . L. ’TH‘/ ----- _‘{
» Due to the principle of reciprocity, shear stress components wll |
will act on right, left edges, also on the top, bottom edges lfj Mg iRy

» Work done by the force, 7,,dx,dX, acting on the bottom edges: —(ledX1dX3)U1
( (-) due to that force and displacement are opposite)
Work done by the force, TldeldX3, acting on the top edges: (ledxldxs)(ul T dul)

ou
> Net work done by these 2 forces: dW = (ledxldxs)dul = (ledxldxs)a—xzdxz
2

> Work done by 7120%:0X;  acting on the left edge: _(ledxzdx3)uz
( () due to that force and displacementare counted (+) in opposite direction )
Work done by 7120%:0X; | acting on the right edge: 7,,0%,0x, ) (U, + du,

ou
> Net work done by these 2 forces: dW = (ledxzdx?,)du2 = (ledxzdxa)a—xjdx1




O.7 Internal virtual work

IN beams and solid

» Total internal work by the shear stress distribution

ou, au,
WI = —J‘ [6)( + a] XmdX dX = _IV leylde (972)

( (-) due to the internal shear stresses )




O.7 Internal virtual work

IN beams and solid

» Total work done by all 6 stress components

W, = —jv (algl + 0,8, + 0383 + TV o + Tia¥13 T Tio V1o ) dV (9.75)

— jv c'edV  (9.76)

> Internal virtual work oW, =— VgT5§dV ( )
9.77

> Internal CVW work oW, = —IV &' oodV




O.7 Internal virtual work

IN beams and solid

‘ 9.7.4 Euler-Bernoulli beam

% Viewed as a 3-dim. Solid
-~ in Euler-Bernoulli beam, all strain components vanish, except for the axial strain

Eq. (9.75) - W, = —_[V o,5dV = —J-OL IAal (&, + Xk, — X,k ) dAdX,

o o o[ xan e

l l J
N, by Eq. (5.8) M, M, by Eq. (5.10)

L —
W, =] (N,g +M,x, + Myx)dx,  (9.78)

> Internal VW 6W, = [ (N,6F, +M,dx, + My, ) dx,
> Internal CVW oW, = —[ (£6N, +5,0M, + k,6M; ) dx,

(9.79)




O.7 Internal virtual work
INn beams and solid

‘ 9.7.6 Unit load method for beams

X/

% If A is prescribed of a point of the beam

> PCVW, Eq. (9.57) - A6D+0oW, =0
for statically admissible virtual forces, (6D : virtual driving force)

> By Eq. (9.79b),
ASD = [ (58N, +K,0M, +k,6M,)dx,  (9.80)

> 6D=1and 6N, =N,, 6M, =M,,SM, = M,: resulting
statically admissible axial forces and bending moments

A=[ (NE+Myx, + My, )dx, (9.81)




O.7 Internal virtual work

IN beams and solid

> If{ linearly elastic material
the origin of the axis system is at the centroid of the cross section
— sectional constitutive law, Eq. (6.13) is applicable

A:IL[N1N1 n MZ(H%M2+H§1’>M3)+ M3<H§3M2+H§2M3)
01 S

d 0.82
A, A, X ( )

A = HSHSE ~HEHS

» If the principal axes of bending

— - NAlNl MZMZ I\ﬁBI\/I3
A—L[ S + + dx, (9.83)

C C
H22 H33
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0.7 Internal virtual work

» Example. 9.19: Deflection of a tip-loaded cantilevered beam
» Cantilevered beam of length L subjected to a concentrated load P at beams
tip, a=1
- evaluation of the bending moment distribution under the externally applied

loads
My (%) =P(x-L)

- vertical unit load applied at the tip

~

Ms (%) =-1(x~L)

- tip deflection by Eq. (9.83)

A= LM?’M?’Xm:I [Pxi L][ Xl L]
0 |-|§3 0

. PU

c dxl - c
H33 3H33

: .

(a) Actual loads (b) Unit load

Fig. 9.51. Cantilevered beam under tip load.




9.8 Application of the unit method

to hyperstatic problem

% Unit load method
--- determination of 2 sets of statically admissible forces corresponding to
2 distinct loading cases
{@ associated with the externally applied loads
@ associated with the unit load
— applied equally to iso- and hyperstatic systems

% Hyperstatic systems
{displacement or stiffness method
force or flexibility method
--- focuses on the determination of internal forces/ moments and reactions
key step: development of the compatibility equations
PCVW --- equivalent to the compatibility equations
— logical to combine the force method with PCVW

s Force method
- intuitively described as “method of cuts”
for each cut, the order of the hyperstatic system is decreased by 1.
statically admissible forces are then solely obtained from the equilibrium equations




9.8 Application of the unit method

to hyperstatic problem

% 2 crucial step
(D determine the relative displacements at the cuts under
the externally applied load alone
@ evaluate the internal forces applied at the cuts that are required to eliminate
the relative displacements at the cuts
— PCVW is a powerful total to solve both problems

% Fig. 9.65 .- single bar of truss
» R: set of self-equilibrating forces applied at the cut
» Cexternal VW W/ =d,6R—d,6R =(d; —d,)oR
relative displacementat the cut: A=d, —d,
> PCVW, Eq. (9.57) -+ OW{ +0W, =0
—  AOR=-0W/ (9.84)
.-+ very similar to Eq. (9.62), but A: relative displacement at the cut,
OR: set of self-equilibrating virtual forces applied at the cut




9.8 Application of the unit method

to hyperstatic problem

% Right of Fig. 9.65 :-- a cantilevered beam
» Cexternal VW: SW, =6,06M —-6,0M = (6, -6,)6M
» PCVW — ®SM =-6W, (9.85)

d, 0,

d, 0,
A
I I_; 4r_) o | ; ErrT
Bar R R Beam M M

Fig. 9.65. Relative displacements and rotations.




9.8 Application of the unit method

to hyperstatic problem

‘ 9.8.1 Force method for trusses

% Fig. 9.66
- 3-bar hyperstatic truss, hyperstatic system of order 1,
a single cut is applied at the middle bar
Then, the actual system is viewed as a superpositionof 2 problem

Internal
Actual system Isostatic system force system

Fig. 9.66. Force method for the three-bar truss.

Active Aeroelasticity and Rotorcraft Lab.,



9.8 Application of the unit method

to hyperstatic problem

@D Isostatic system subjected to the externally applied loads
» Unitload method is directly applicable

N EEL
A - 11
c ;—( T

where F : bar forces subjected to the externally applied loads

—~

F : statically admissible virtual forces corresponding to the

self-equilibrating unit load system applied at the cut
F,=F.=P/(2cosd), F, =0

F.=F. =-1/(2cos0), F, =1

U I PL
° |(EA), (EA), J4cos’0

@ Internal force system
- Relative displacement at the cut, A,, due to a unitinternal force in bar B

Np F-2 L
> Eq.(9.84) —»A =) ——=  (9.87
N 20e), D
A L k, +k +4k,k. cos®
" (EA), 4cos’6 KK

70




9.8 Application of the unit method

to hyperstatic problem

@ Superposition of 2 loading cases
» Compatibility condition at the cut
A +RA, =0  (9.88)
Ac K, +Ke

— R=——==———F——+ 9.89
A, Ktk +akk cose OBY

> Bar forces Fi+R|fi, 1=12,---,N, (9.90)




9.8 Application of the unit method

to hyperstatic problem

‘ 9.8.2 Force method for beams

» Beam structures becomes hyperstatic due to the presence of multiple supports

% Fig. 9.70
- cantilevered beam with additional mid-span support
— additional reaction R
» Eliminating or cutting the appropriate number of supports to render the beam isostatic

MA p(]
T YYYVYY Jr JV‘J X ETRER
MA Py ' 'IAC

F ;
G} YyYVVVYVVYVY 1L ‘L v {V YyYYVYY [ ISOStatlc SyStem
— 4 o 4 pi
F, ﬁ M,
R T o A
! 1tA
F

Actual system ¢ O
Unit load force system

Fig. 9.70. Cantilever with a mid-span support. The isostatic system is obtained by eliminating
the mid-span support.




9.8 Application of the unit method

to hyperstatic problem

i) A is computed py unit load method, Eq. (9.83)

L M,M
Ac :_[0 |—3|3CB3 dx, (9.91)

M, (Xi) bending moment distribution in the isostatic beam subjected to the

R externally applied loads
M, (Xi) statically admissible bending moment distribution in the isostatic beam

subjected to a set of self-equilibrating unit forces applied at the support

i) A, relative deflection at the support due to a set of self-equilibrating,

unit load. Eq. (9.84)
22

1i1) Displacement compatibility equation at the support
Ac+RA; =0 (9.93) R=-A./A, (9.94)

reaction forces  : F, +RF, ¢ th )
bending moments : M, + RMA at the roo
bending moments distribution M, (X, )+ RM;(x, )




9.8 Application of the unit method

to hyperstatic problem

» Alternative way to eliminate the support (or “releasing one constraint™)
.- Replacement of the root clamp by a simple support (Fig. 9.71)

Py
@,
p C YVYVVYY YYVYY Y VYVVYVYVY
M, ' _éﬁ_ _éﬁ_ Isostatic
G'l l l 3 LEEASASRAR FA FB System
+

A . ﬁ;' | o <>1 C D,
Actual systﬂem I o ST T © U Internal.
l A

A force system
Fy

Fs\

Fig. 9.71. Cantilever with a mid-span support. The isostatic system is obtained by eliminating
the mid-span support.

i) @, : relative root rotation in the isostatic structure, Eq (9.85)

i) @, : associated root rotation

Iii) root rotation compatibility eqn. : O, +M,® =0, M,=-D. /0,




9.8 Application of the unit method
to hyperstatic problem

» Example. 9.29: Cantilevered beam with a tip support
* Cantilevered beam of length L subjected to a uniform loading distribution p,,
- Isostatic system: the tip supportis eliminated (tip constraint is released)
- Tip deflection of the beam by unit load method
bending moment distribution in the isostatic beam

M, (17) ==p,L" (1-17)2/2,n =x/L

- statically admissible bending moment distribution associated with a unit load
applied at the tip

My ()= L(1-7)

- tip deflection of the isostatic beam

_ILM M Xl_ poL J‘L(l_n)3dn:_poL3

2Hg, *° 8H;,
M P
= J|‘| [
’ " Py TI LA LABEEELE
M, : ==
Gij'lll’llllllll i. Cp ]i;nslauisg.s[cm A,
Fx Actual system ﬁ C“

Internal force system | Tﬁ

Fig. 9.72. Cantilever with a redundant support.




9.8 Application of the unit method
to hyperstatic problem

- tip deflection of the isostatic beam subjected to a set of self-equilibrating tip
unit loads by unit load method
M3 (%) L IL

L
SRR

L3
3H_,

(1-7) dy

- Compatibility condition, Eq. (9.93), allows determination of the reaction force
at the tip support
A, p,L*3H;  3p,L

C

A, 8HS L 8

- Solution of the original hyperstatic problem: by superposition
Bending moment distribution

A 2
M, +RM, =— p°2L (1-n)+
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