11. Introduction to Helicopter Stability

2020

Prof. SangJoon Shin

Active Aeroelasticity and Rotorcraft Lab.

Overview

- I. Symbols
- II. Stability definitions
- III. Rotor characteristics
- ✤ IV. Control sensitivity
- ✤ V. Rotor static stability w/ speed and w/ AoA
- ✤ VI. Stability in hovering flight
- ✤ VII. Longitudinal stability in forward flight
- VIII. Dynamic stability in forward flight

Introduction

To be designed w/ satisfactory flying qualities

- Flying/handling quality ... stability and control characteristics
 - on the safety of flight
 - pilot's impressions on the case of flying and maneuvering
- Certain primary stability and control requirements
 - ··· depends on mechanical design (ex: control-friction limits)

primarily aerodynamic nature

(response of the rotor and fuselage to control or atmospheric disturbance)

- Subject
- helicopter control and rotor damping caused by pitching or rolling \rightarrow control sensitivity
- static stability w/ speed

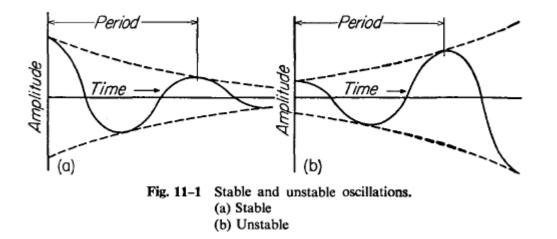
w/ AoA … objectionably deficient

- dynamic stability in hover / forward flight ··· determined by stability parameter above

I. Symbols, II. Stability definitions

✤ I. Symbols

- Nose up moment, angular displacement, velocities … (+)
- Lateral motion, which tends to raise the advancing side … (+)
- Changes in translation velocities to increase velocity, upward … (+)


II. Stability definitions

- Trim … in steady flight, resultant force, moment = 0
- A/C stability ··· behavior of A/C after it is disturbed slightly from trim
- Static stability … statically stable, if there is initial tendency for it to return to the trim condition
- Dynamic stability ... oscillation of A/C about its trim positions following a disturbance

I. Symbols, II. Stability definitions

• Fig. 11-1, if the envelope (dash line) decrease w/ time, dynamically stable

increase w/ time, dynamically unstable

• Time to double or half the amplitude ... measure of the degree of stability / instability

```
small time to half \rightarrow highly stable
```

small time to double \rightarrow highly unstable

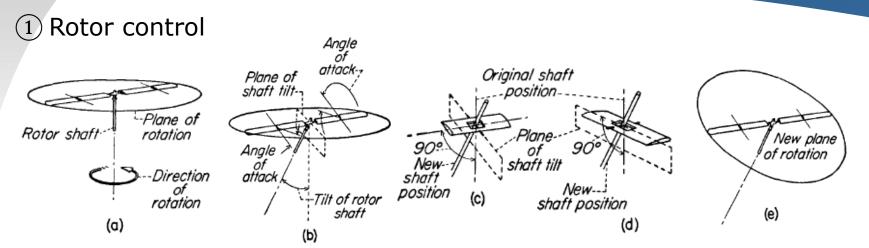


Fig. 11-2 The effect of a rotor shaft tilt on the plane of rotation.

- Fig. 11-2a ··· shaft rotating counterclockwise, 2 blades which are free to flap
- Sudden tilt of the shaft \rightarrow in vacuum, no aerodynamic forces

TPP would remain in its original position

In air, AoA of the blades change cyclically

Blade moving to the left ... increased lift, max. (+) displacement after 1/4 revolution after max. lift position

to the right ... decreased lift, max. (-) max. lift position

- \rightarrow a short time later, plane of rotation \perp rotor shaft (Fig. 11-2e)
- \therefore tilt \rightarrow cyclic change in blade AoA \rightarrow proper alignment

- Control stick movement is equivalent to the shaft tilt
- Rotor shaft tilt w.r.t. fuselage \rightarrow moment about helicopter CG
 - * Rotor T \perp TPP (qualitatively true, but not quantitatively correct)
- Another source of moment … flapping hinge offset, caused by CF on the blades

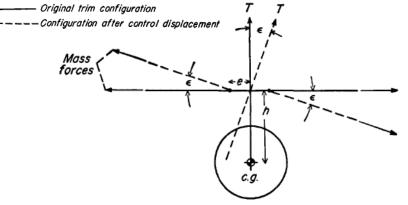


Fig. 11-3 Aerodynamic and mass moments about helicopter center of gravity.

- Fig. 11-3 … 2 sources of moments, can be increased by
 - vertical distance between rotor hub and helicopter CG flapping hinge offset (\leftarrow main design variable) -

 \rightarrow control power increase

Flapping hinge offset \rightarrow permits an increase in the allowable CG range

② Damping in pitch (or roll)

- Foregoing discussion … some delay exists between
 rapid shaft tilt
 realignment of the rotor w/ the shaft
 - TPP will continue to lag behind the rotor shaft

 \rightarrow aerodynamic moment to overcome continuously the flapping inertia during steady pitching or rolling

• For hover, angular displacement of the rotor plane w.r.t. the shaft per unit tilting velocity

$$\frac{\delta}{\omega} = \frac{16}{\gamma\Omega} \tag{1}$$

Dimension : time

... if the rotor shaft is tilting at any const. angular velocity, the thrust vector reaches a given attitude in space $\frac{16}{\gamma\Omega}$ sec. after the rotor shaft has reached that attitude.

- Fig. 11-4 \cdots helicopter is tilted at angular velocity, ensuring lag of the rotor plane
 - \rightarrow thrust vector movement \rightarrow moment about CG
- Hinge offset \rightarrow additional moment

 $\stackrel{\Delta M}{\longrightarrow}$, M_{ω} ... opposite to the tilting velocity \rightarrow stabilizing, (-)

$$\frac{\delta}{\omega} = \frac{16}{\gamma\Omega} \quad \cdots \quad (1)$$

• As in Eq. (1), δ is inversely proportional to Ω and γ ,

directly proportional to blade moment of inertia

Ex) small helicopter \cdots high Ω will tend to have less damping blade tip-jet helicopters \cdots reduced γ , more damping ig, (-) 8 *c.g.*

"damping in pitch (or rolling)"

Fig. 11-4 Damping moment arising from pitching velocity.

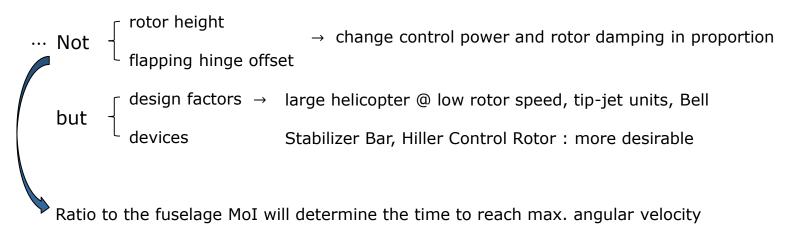
• In addition to γ and Ω , damping may be increased by devices to increase the rotor displacement due to a given rate of roll / pitch

Ex) rate gyro ... apply opposite control

increased effective damping \cdots Bell stabilizer bar, Hiller control rotor

IV. Control sensitivity

- Control power
 Control sensitivity"
 Damping in roll (or pitch)
 - \cdots max. rate of roll (or pitch) achieved by a unit displacement of the controls
 - Definition = $\frac{\text{control power}}{\text{rotor damping}}$ = $\frac{\frac{\text{control moment}}{\text{stick displacement}}}{\frac{\text{damping moment}}{\text{angular velocity}}}$ = $\frac{\frac{\text{angular velocity}}{\text{stick displacement}}}{\frac{\text{stick displacement}}{\text{stick displacement}}}$
 - Mechanism

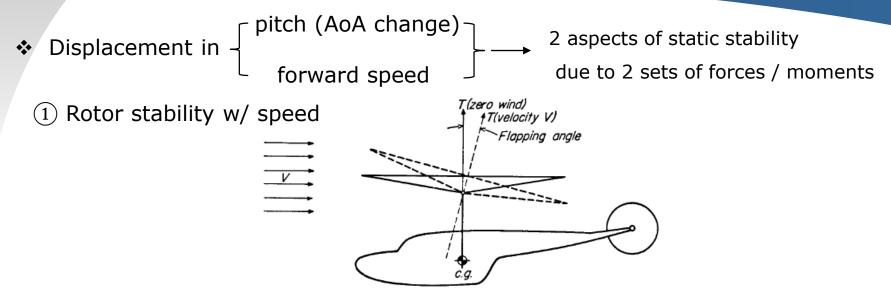

displacement in stick (lateral) \rightarrow initial angular acceleration at a const. rate

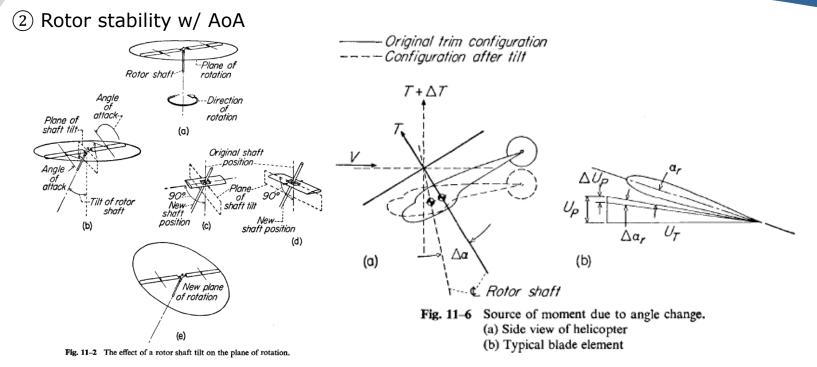
- \rightarrow opposing damping-in-roll moment increase until damping moment = control moment
- \rightarrow stabilized at that angular velocity
- If rotor damping > control power, max. rate of roll : small

rotor damping < control power, max. rate of roll : large

IV. Control sensitivity

- Small two-place helicopter … similar rate of roll as that in modern fighter airplanes But, high control sensitivity → overcontrolling → short-period, pilot-induced lateral oscillation
- Physical characteristics to reduce excessive control sensitivity




Fig. 11-5 Source of moment due to speed change.

• Fig. 11-5 \cdots translation velocity \rightarrow tilt of TPP in a direction away from the velocity of translation away from the velocity of translation

11

- Rotor plane will tilt farther backwards w/ translation speed \nearrow
 - \leftarrow velocity of the advancing side increases
- Nose-up moment when speed \nearrow , Nose-down speed \searrow
- $\frac{\Delta M}{\Delta v}$, M_v : measure of stability w/ speed

always (+)

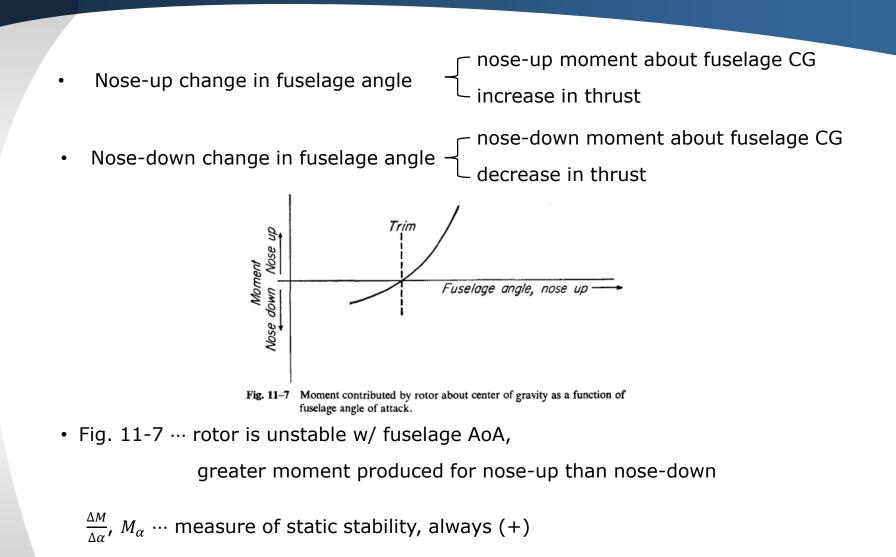
• Change in attitude in hover (Fig. 11-2) \rightarrow equal tilt of the rotor plane

 \cdots no rotor moment or change in thrust \rightarrow neutral stability

Forward flight … no rotor moment and thrust change

fuselage AoA change \rightarrow change in flapping \rightarrow rotor moment (Fig. 11-6)




Fig. 11-6 Source of moment due to angle change. (a) Side view of helicopter (b) Typical blade element

• Fig. 11-6 ... nose-up change in fuselage AoA (a)

 \rightarrow (b) changes in relative velocities and AoA of a blade element

- Change in blade-section AoA, $\Delta \alpha_r = \frac{\Delta U_p}{U_T}$
- Change in lift $\simeq \Delta \alpha_r U_T^2 \rightarrow \propto \Delta U_p U_T$
 - \cdots greater on the advancing side since U_T is highest

- i) Unequal increase in lift between
- advancing and retreating side
- ii) Increased lift at all sections
- \leftarrow compensated by flapping or backward tilt of the rotor cone \rightarrow increase in thrust

14

 $\frac{\Delta T}{\Delta \alpha}$, T_{α} ··· always (+)

1 Static stability

- Helicopter possesses neutral static stability in hover if it is displaced in roll or pitch
 - \rightarrow no restoring moment to its original position

resultant rotor thrust always passes through the helicopter CG

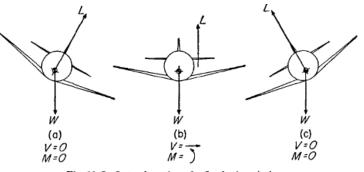


Fig. 11-8 Lateral motion of a fixed-wing airplane.

• Fixed wing A/C in FF … neutrally stable in roll, no restoring or upsetting moment in roll.

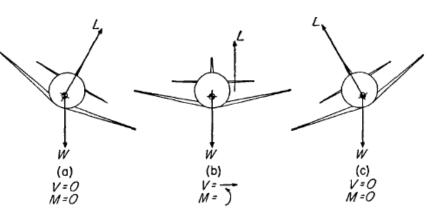
However, displacement in roll \rightarrow lateral velocity due to unbalanced lift

 \rightarrow dihedral + side slip velocity \rightarrow produces a moment tending to reduce its lateral velocity by tilting the A/c in opposite direction

··· A/C w/ wing dihedral is statically stable w/ lateral velocity

• Hovering helicopter ··· similar situation

Angular displacement \rightarrow no restoring moment, but translational velocity due to unbalanced horizontal components of thrust


 \rightarrow moment produced to tilt the helicopter

 \rightarrow reduce the translation speed to its initial 0

 \therefore helicopter is statically stable w/ changes in translation velocity

2 Dynamic stability in hover

Many similarities in a fixed-wing A/C

✤ Analogy with A/C

Fig. 11-8 Lateral motion of a fixed-wing airplane.

• Fig. 11-8 ··· A/C behavior when displaced in roll to the right (a)

(b) $\begin{cases} \text{wing dihedral} \\ \text{sideslip} \end{cases} \rightarrow \text{restoring moment to a level attitude} \end{cases}$

when reaching a level attitude , still lateral velocity to continue to roll

(c) zero lateral velocity, but displaced in roll to the left

- \rightarrow cycle of event is repeated in the form of oscillation
- \rightarrow either dynamically stable or unstable

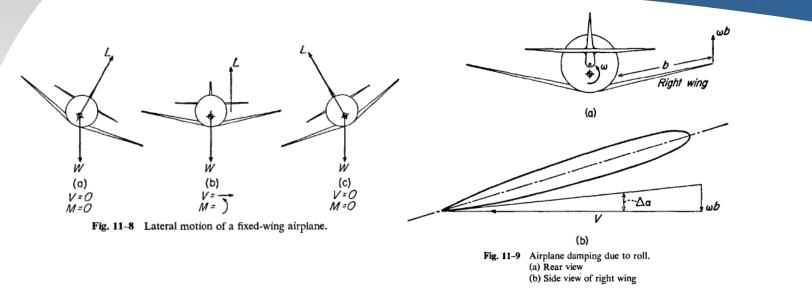


Fig. 11-8 (b), rolling velocity will reduce AoA of the right wing

(Fig. 11-9), increased AoA in the left wing \rightarrow clockwise moment

 \rightarrow clockwise moment \cdots oppose the counterclockwise angular velocity

- \therefore initial angular displacement in A/C \rightarrow oscillation, but 2 opposing moment

 - igsquir Damping moment by the angular velocity of A/C

Helicopter motion following a disturbance

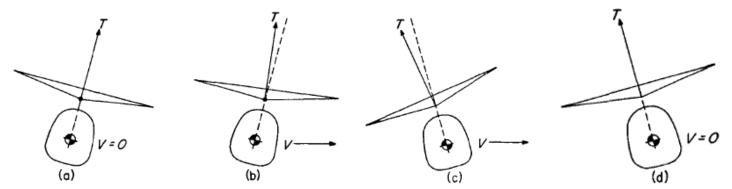
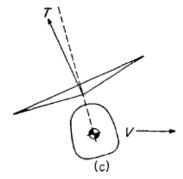


Fig. 11-10 Oscillation of a helicopter following an angular displacement in hovering (damping neglected).

- Helicopter ··· analogous motion
- Fig. 11-10 (a) ··· displaced in roll to the right
 - (b) \cdots resultant force to the right \rightarrow cause to move


but subjected to a counterclockwise moment due to stability w/ speed

 \rightarrow rolls the helicopter until (c) configuration

(d) horizontal force \rightarrow slow down the helicopter, zero horizontal velocity

But, still horizontal force to the left still present \rightarrow starts to move to the left

 \rightarrow the whole process repeats

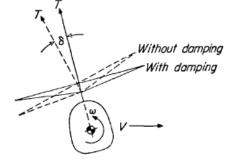
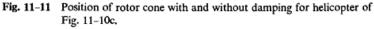



Fig. 11-10 Oscillation of a helicopter following an angular displacement in hovering (damping neglected).

- Lateral oscillation, angular velocity about its own axis
 - \rightarrow moment due to damping in roll
- Fig. 11-10 (c) ... counterclockwise angular velocity

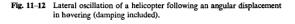
 \rightarrow small clockwise tilt of the rotor cone w/ damping included (Fig. 11-11)

- \cdots rotor cone lags behind the position it would have if no damping were present
- Initial angular displacement in helicopter \rightarrow oscillation, but

f stability w/ speed \rightarrow influences on the oscillation period damping in pitch (or roll) \rightarrow

Combined effects of $-\begin{cases} \text{stability w/ speed} \\ \text{damping in roll} \end{cases}$

Fig. 11-12 (a) initial roll angle displacement \rightarrow no moment about CG, but velocity to the right \rightarrow displaced to (b) configuration (b) Thrust vector inclination \rightarrow counterclockwise moment about CG due to stability w/ speed \rightarrow if fuselage MoI negligible, (e) V=0 counterclockwise angular velocity \rightarrow (c) configuration ω=0 (c) Damping in roll \rightarrow fuselage overtakes the rotor cone, rotor tilt due to stability w/ speed is neutralized but horizontal component of the forces to the right exists \rightarrow accelerates to the right, and then process is repeated (d) additional translation velocity \rightarrow additional thrust vector tilt to the left 63 \rightarrow counterclockwise moment \rightarrow increased angular velocity \rightarrow due to damping in roll, fuselage align itself w/ thrust vector \rightarrow additional tilt due to stability w/ speed neutralized (d) Returns to a level attitude, but repeats the previous cycles

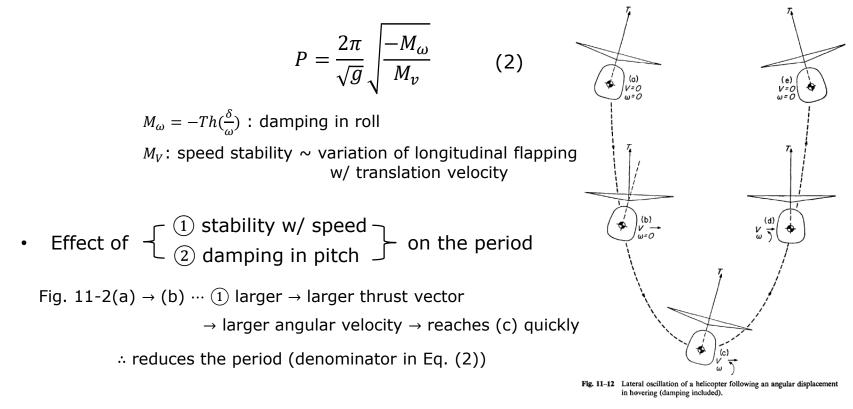

until (e) where V = 0, $\omega = 0$, Then =(a)

still horizontal component to the left, move the left,

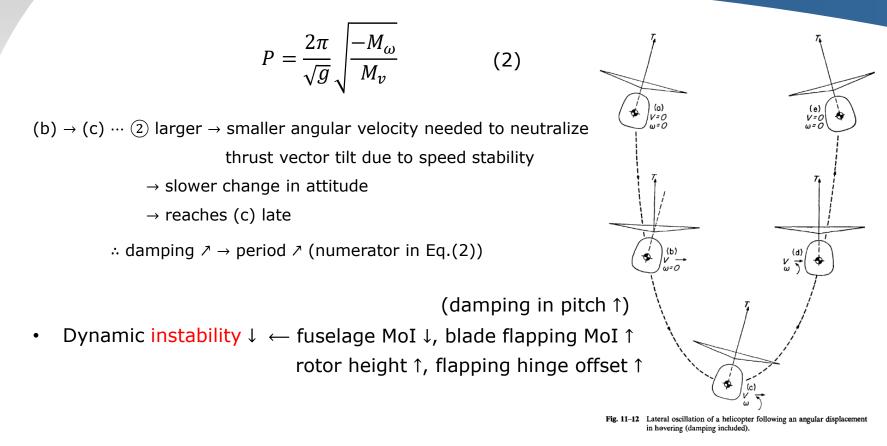
(a)-(e) process will be repeated \rightarrow oscillation

Half period of the oscillation $\frac{1}{21}$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University



(a)


V=0

(b)

• Period of oscillation for hovering helicopter w/o fuselage MOI

TR shaft mount location … above helicopter CG, TR adds to the stability w/ speed
 → reduces the period, due to the difference in TR inflow related with lateral velocity

- Single-rotor helicopter w/ conventional control systems
 - \cdots dynamically unstable, \leftarrow improved by additional devices

1 Static stability

- Analogy with the airplane
 - Initial A/C displacement from trim in
 forward speed

 \rightarrow 2 aspects of static stability \rightarrow 2 sets of forces/moments

• Incerase in AoA, const. speed … A/C is statically stable w.r.t. AoA

if it is a nose-down moment

(also dependent upon CG position)

 Change in speed, const. AoA … no aerodynamic moment → neutral stability (no change in lift or moment coeff.)

No changes in all aero. forces and moments acting in the same proportion

 \rightarrow maintain the trim

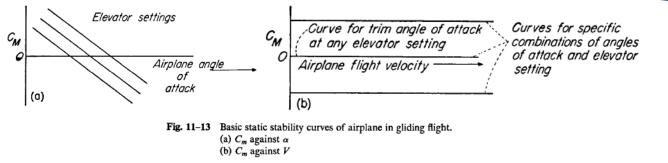


Fig. 11-13 ... plot of the moment coeff. against AoA and speed

(b) Moment coeff. Independent of speed

 \implies (a) \rightarrow Fig. 11-14 : const. elevator setting, corresponding trim AoA \rightarrow trim AoA converted to lift coeff.

(+) slope ... forward movement of stick (or down elevator) is required

at a decreased airplane AoA (or C_L)

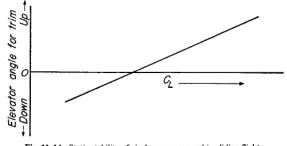


Fig. 11-14 Static stability of airplane as measured in gliding flight. Fig. 11-14 ... static stability of A/C of fixed CG \rightarrow single curve

But, when including the propeller effect, no longer sufficient

helicopter \cdots (+), not neutral static stability w/ speed \rightarrow not sufficient for a single curve

25

Static stability of the helicopter

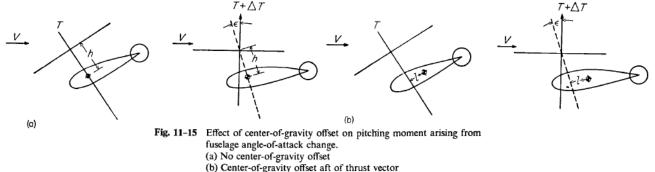
- Depends on the moments produced by rotor \leftarrow by change in speed at const. AoA
 - ← by change in AoA at const. speed

"Rotor characterictics" -

• Depends on the moments by fuselage and control surfaces \rightarrow 3 different ways

i) Variation of moment coeff. w/ AoA
 Fuselage … unstable w/ AoA → adds to rotor AoA instability
 Tail surface … stabilizing variation of moment

ii) Const. moment coeff. on stability w/ speed

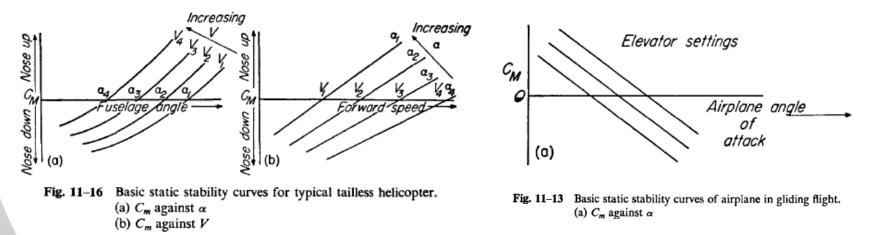

Fuselage ... nose-down moment in steady flight,

speed change \rightarrow destabilizing

Stabilizing surfaces \rightarrow nose-up moment \rightarrow stabilizing

iii) Thrust-axis offset from helicopter CG or stabilizing w/ AoA Offset of thrust axis … to compensate for an aero. pitching moment or fuselage or stabilizing surfaces

- fuselage … nose-down moment ← compensated by thrust vector offset ahead of CG
 - \rightarrow additional unstable moment variation w/ AoA (Fig. 11-15)


- Increase in fuselage AoA
- → nose-up rotor moment (=thrust increase × initial CG offset) > rotor moment w/ no CG offset Nose-down fuselage moment → thrust axis forward offset from CG → add to AoA instability of the rotor stabilizing surfaces … nose-up moment by a down load
- \therefore offset between $-\left\{\begin{array}{c} \text{thrust vector} \\ \text{helicopter CG} \end{array}\right\}$ counteracts rotor instability w/ AoA

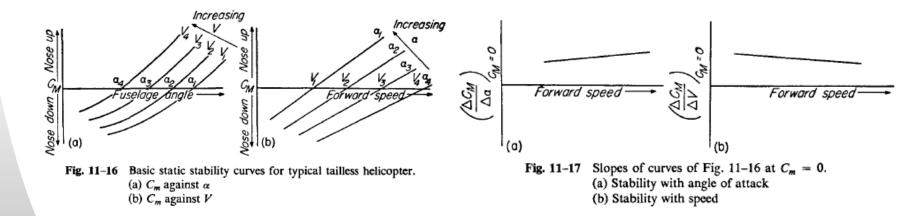
if great enough offset, statically stable w/ AoA

• Flapping hinge offset … similar contribution on static stability w/ AoA if CG is forward of the rotor shaft, CG will also forward the thrust vector

 \rightarrow rotor instability w/ AoA is counteracted

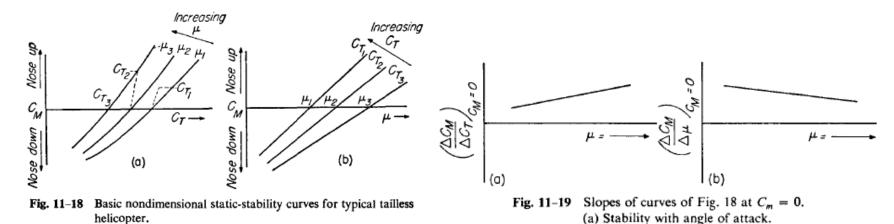
- 2 types of forward-flight static stability … Fig. 11-16
- (a) Variation of moment coeff. about helicopter CG
 w/ fuselage AoA at various speeds
 (b) Variation of moment coeff. about helicopter CG
 w/ speed for each trim AoA
- Fig. 11-16 (a) helicopter ··· separate curve for each speed
 11-13 (a) A/C ··· single curve
 Trim points and curves are shifted (Fig. 11-16(b))

28


Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Amount of static stability or instability
 - \rightarrow curves in Fig. 11-17, slopes of the curves in Fig. 11-16

• Fig. 11-17(a)
$$\cdots \frac{\Delta C_m}{\Delta \alpha}$$
 at $C_m = 0$ from Fig. 11-16 (a)


(b)
$$\cdots \frac{\Delta C_m}{\Delta \alpha}$$
 at $C_m = 0$ from Fig. 11-16 (b)

→ a typical tailess helicopter (w/ no horizontal tail surface)

• Effects of variations in GW, Ω , altitude \cdots stability plot in non-dim. form (Figs. 11-18, 19)

- variation in stick position
- variation in CG w/ fixed stick position
- variation in collective pitch
- variation of rotor speed \cdots autorotation, Ω is free to vary w/ speed or AoA,
 - \rightarrow power-speed characteristics of the engine affect the stability

(a) C_m against C_T
 (b) C_m against μ

(b) Stability with speed

✤ If assumed to have neutral static stability w/ AoA

- \rightarrow period of longitudinal oscillation depends $-\begin{cases} \text{static stability w/ speed} \\ \text{damping in pitch} \end{cases}$
 - Period of longitudinal oscillation

$$P = 2\pi \sqrt{\frac{\left(-M_{\omega} - \frac{WV}{g}\frac{M_{\alpha}}{T_{\alpha}}\right)}{M_{V}g}}$$
(3)

if
$$M_{\alpha} = 0$$
, (3) \rightarrow (2)

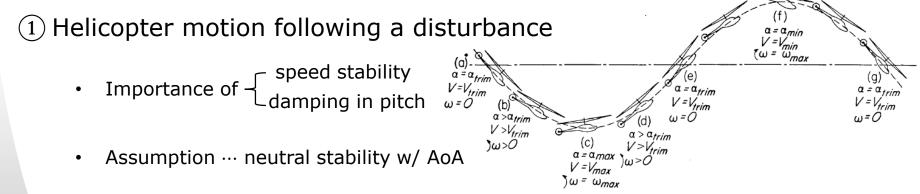


Fig. 11-20 Longitudinal oscillation of typical helicopter in forward flight.

• Initial disturbance \rightarrow trimmed helicopter \rightarrow nose-down, descend (Fig. 11-20(a))

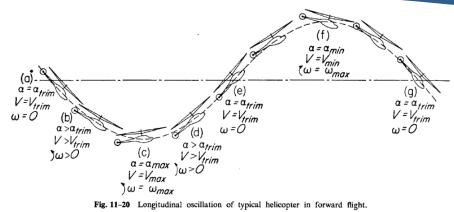


Fig. 11-20 (a) weight component along the flight path \rightarrow accelerate

- (b) speed stability \rightarrow backward tilt of the rotor plane
 - \rightarrow nose-up moment \rightarrow nose-up angular acceleration
 - \rightarrow damping in pitch \cdots thrust vector tilt due to stability w/ speed is neutralized,

But continuously increasing angular velocity until off the glide path \rightarrow (c)

(C) max. forward speed, max. nose-up angular velocity, max. fuselage AoA,

- Since T>W, climb weight opposes forward motion
- \rightarrow decelerate, backward tilt reduced

Rotor plane forward tilt … forward tilt due to damping in pitch> rearward tilt due to speed stability Nose-down moment reduces nose-up angular velocity

Damping in pitch neutralizes remaining backward tilt of the rotor plane due to speed stability \rightarrow (d)

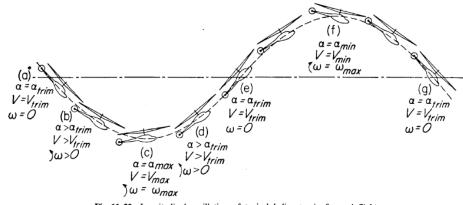


Fig. 11-20 Longitudinal oscillation of typical helicopter in forward flight.

Fig. 11-20 (d) weight component \rightarrow decelerate, preceding steps repeated

- (e) velocity, AoA = trim values, 0 angular velocity, but climbing continue to decelerate,(a)-(e) will be repeated except that all changes in opposite direction
- (f) min. forward speed, min. nose-down angular velocity min. fuselage AoA, (a)-(e) is repeated

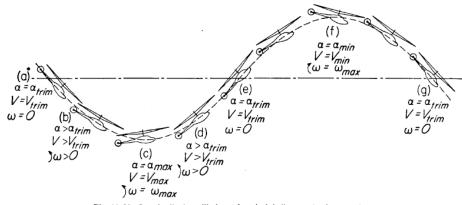
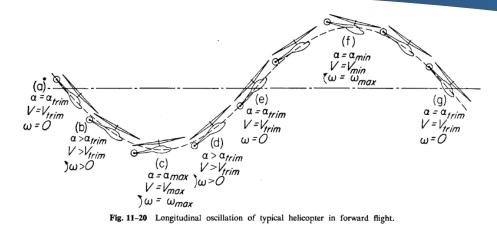


Fig. 11-20 Longitudinal oscillation of typical helicopter in forward flight.


(2) Effect of $\begin{cases} \text{static stability w/ speed} \\ \text{damping in pitch} \end{cases}$ on period of oscillation

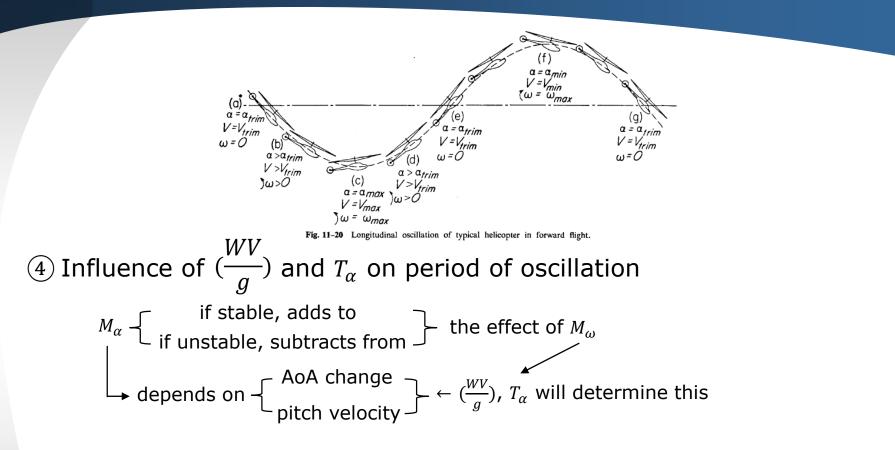
- Increase in speed stability \rightarrow larger nose-up moment in (b)
 - \rightarrow reaches (c) sooner

 \therefore reduces period (M_v denominator in (3))

- Increase in damping in pitch → smaller angular velocity in (b)
 - \rightarrow longer time necessary to reach (c)

 \therefore increase period (- M_{ω} numerator in (3))

③ Effect of AoA stability on period of oscillation


 \cdots M_{α} is to add to, or subtract from, damping in pitch M_{ω} in (3)

• If statically unstable w/ AoA, M_{α} (+), T_{α} (+)

 $(\frac{WV}{g})(\frac{M_{\alpha}}{T_{\alpha}})$ (+) \rightarrow numerator in (3) reduced, P reduced

- M_{α} on stability w/ AoA Fig. 11-20 (c) ··· max nose-up angular velocity \rightarrow max nose-down moment due to damping in pitch Max. AoA \rightarrow max. nose-down moment due to instability w/ AoA
- If stabilizing device longer time necessary to reach (c)
 - \rightarrow statically stable w/ AoA \rightarrow increased period

35

5 Effect of stability parameters on divergence of oscillation

• statically unstable w/ AoA \rightarrow also dynamically unstable, but

- large amount of damping in pitch \rightarrow will reduce the influence sacrifice in speed stability \rightarrow will reduce the influence

36