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Introduction

 To be designed w/ satisfactory flying qualities

• Flying/handling quality ⋯ stability and control characteristics

on the safety of flight

pilot’s impressions on the case of flying and maneuvering

• Certain primary stability and control requirements

⋯ depends on mechanical design (ex: control-friction limits)

primarily aerodynamic nature 

(response of the rotor and fuselage to control or atmospheric disturbance)

• Subject

- helicopter control and rotor damping caused by pitching or rolling → control sensitivity

- static stability w/ speed

w/ AoA ⋯ objectionably deficient

- dynamic stability in hover / forward flight ⋯ determined by stability parameter above
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I. Symbols,  II. Stability definitions

 I. Symbols

• Nose up moment, angular displacement, velocities ⋯ (+)

• Lateral motion, which tends to raise the advancing side ⋯ (+)

• Changes in translation velocities to increase velocity, upward ⋯ (+)

 II. Stability definitions

• Trim ⋯ in steady flight, resultant force, moment = 0

• A/C stability ⋯ behavior of A/C after it is disturbed slightly from trim

• Static stability ⋯ statically stable, if there is initial tendency for it to return to the trim 

condition

• Dynamic stability ⋯ oscillation of A/C about its trim positions following a disturbance
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I. Symbols,  II. Stability definitions

• Fig. 11-1, if the envelope (dash line) decrease w/ time, dynamically stable

increase w/ time, dynamically unstable

• Time to double or half the amplitude ⋯ measure of the degree of stability / instability

small time to half → highly stable

small time to double → highly unstable
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III. Rotor characteristics

① Rotor control

5

• Fig. 11-2a ⋯ shaft rotating counterclockwise, 2 blades which are free to flap

• Sudden tilt of the shaft → in vacuum, no aerodynamic forces

TPP would remain in its original position

• In air, AoA of the blades change cyclically

Blade moving to the left ⋯ increased lift, max. (+) displacement after ¼  revolution after max. lift position

to the right ⋯ decreased lift, max. (-) max. lift position

→ a short time later, plane of rotation ⊥ rotor shaft (Fig. 11-2e)

∴ tilt → cyclic change in blade AoA → proper alignment
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III. Rotor characteristics

• Control stick movement is equivalent to the shaft tilt

• Rotor shaft tilt w.r.t. fuselage → moment about helicopter CG

*  Rotor T ⊥ TPP (qualitatively true, but not quantitatively correct)

• Another source of moment ⋯ flapping hinge offset, caused by CF on the blades

• Fig. 11-3 ⋯ 2 sources of moments, can be increased by 

vertical distance between rotor hub and helicopter CG

flapping hinge offset (← main design variable)

Flapping hinge offset → permits an increase in the allowable CG range

6
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III. Rotor characteristics

 Foregoing discussion ⋯ some delay exists between 

rapid shaft tilt

realignment of the rotor w/ the shaft

• TPP will continue to lag behind the rotor shaft

→ aerodynamic moment to overcome continuously the flapping inertia during steady 

pitching or rolling

• For hover, angular displacement of the rotor plane w.r.t. the shaft per unit tilting velocity

𝛿

𝜔
=
16

𝛾Ω

Dimension : time

⋯ if the rotor shaft is tilting at any const. angular velocity, the thrust vector reaches a given 

attitude in space 
16

𝛾Ω
sec. after the rotor shaft has reached that attitude.
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② Damping in pitch (or roll)

blade inertia
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III. Rotor characteristics

• As in Eq. (1), 𝛿 is inversely proportional to Ω and 𝛾, 

directly proportional to blade moment of inertia

Ex) small helicopter ⋯ high Ω will tend to have less damping

blade tip-jet helicopters ⋯ reduced 𝛾, more damping

• In addition to 𝛾 and Ω, damping may be increased by devices to increase the rotor 

displacement due to a given rate of roll / pitch

Ex) rate gyro ⋯ apply opposite control

increased effective damping ⋯ Bell stabilizer bar, Hiller control rotor
8

“damping in pitch (or rolling)”

• Fig. 11-4 ⋯ helicopter is tilted at angular velocity, ensuring lag of the rotor plane

→ thrust vector movement  → moment about CG

• Hinge offset → additional moment

∆𝑀

∆𝜔
, 𝑀𝜔 ⋯ opposite to the tilting velocity → stabilizing, (-)

𝛿

𝜔
=
16

𝛾Ω
⋯ (1)
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IV. Control sensitivity

9

 Control power

Damping in roll (or pitch)

⋯ max. rate of roll (or pitch) achieved by a unit displacement of the controls

• Definition     =                      =                           =

• Mechanism

displacement in stick (lateral) → initial angular acceleration at a const. rate

→ opposing damping-in-roll moment increase until damping moment = control moment 

→ stabilized at that angular velocity

• If rotor damping > control power, max. rate of roll : small

rotor damping < control power, max. rate of roll : large 

control moment
stick displacement
damping moment
angular velocity

control power

rotor damping

angular velocity

stick displacement

“control sensitivity”
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IV. Control sensitivity

10

 Small two-place helicopter ⋯ similar rate of roll as that in modern fighter airplanes

But, high control sensitivity → overcontrolling → short-period, pilot-induced lateral oscillation

 Physical characteristics to reduce excessive control sensitivity

rotor height 

flapping hinge offset

design factors  →

devices

Ratio to the fuselage MoI will determine the time to reach max. angular velocity

⋯ Not

large helicopter @ low rotor speed, tip-jet units, Bell 

Stabilizer Bar, Hiller Control Rotor : more desirable

→ change control power and rotor damping in proportion

but



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

V. Rotor static stability w/ speed and w/ AoA

pitch (AoA change)

forward speed

• Fig. 11-5 ⋯ translation velocity → tilt of TPP in a direction away from the velocity of 

translation away from the velocity of translation

• Rotor plane will tilt farther backwards w/ translation speed ↗

← velocity of the advancing side increases

• Nose-up moment when speed ↗, Nose-down speed ↘

•
∆𝑀

∆𝑣
, 𝑀𝑣 : measure of stability w/ speed

2 aspects of static stability

due to 2 sets of forces / moments

 Displacement in

① Rotor stability w/ speed

always (+) 11
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V. Rotor static stability w/ speed and w/ AoA

② Rotor stability w/ AoA

• Change in attitude in hover (Fig. 11-2) → equal tilt of the rotor plane

⋯ no rotor moment or change in thrust → neutral stability

• Forward flight ⋯ no rotor moment and thrust change

fuselage AoA change → change in flapping → rotor moment (Fig. 11-6)
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V. Rotor static stability w/ speed and w/ AoA

• Fig. 11-6 ⋯ nose-up change in fuselage AoA (a)

→ (b) changes in relative velocities and AoA of a blade element

• Change in blade-section AoA,  ∆𝛼𝑟 =
∆𝑈𝑝

𝑈𝑇

• Change in lift ≃ ∆𝛼𝑟𝑈𝑇
2 → ∝ ∆𝑈𝑝𝑈𝑇

⋯ greater on the advancing side since 𝑈𝑇 is highest

← compensated by flapping or backward tilt of the rotor cone

i) Unequal increase in lift between 

advancing and retreating side

ii) Increased lift at all sections

→ increase in thrust
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V. Rotor static stability w/ speed and w/ AoA

nose-up moment about fuselage CG

increase in thrust

nose-down moment about fuselage CG

decrease in thrust

• Nose-up change in fuselage angle

• Nose-down change in fuselage angle

• Fig. 11-7 ⋯ rotor is unstable w/ fuselage AoA,

greater moment produced for nose-up than nose-down

∆𝑀

∆𝛼
, 𝑀𝛼 ⋯ measure of static stability, always (+)

∆𝑇

∆𝛼
, 𝑇𝛼 ⋯ always (+)
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VI. Stability in hovering flight

• Helicopter possesses neutral static stability in hover if it is displaced in roll or pitch

→ no restoring moment to its original position

resultant rotor thrust always passes through the helicopter CG

• Fixed wing A/C in FF ⋯ neutrally stable in roll, no restoring or upsetting moment in roll.

However, displacement in roll → lateral velocity due to unbalanced lift

→ dihedral + side slip velocity 

⋯ A/C w/ wing dihedral is statically stable w/ lateral velocity

→ produces a moment tending to reduce its lateral  

velocity by tilting the A/c in opposite direction

① Static stability
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VI. Stability in hovering flight

Angular displacement 

∴ helicopter is statically stable  w/ changes in translation velocity

→ no restoring moment, but translational velocity

due to unbalanced horizontal components of thrust

→ moment produced to tilt the helicopter

→ reduce the translation speed to its initial 0

• Hovering helicopter ⋯ similar situation
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VI. Stability in hovering flight

 Analogy with A/C

• Fig. 11-8 ⋯ A/C behavior when displaced in roll to the right (a)

→ restoring moment to a level attitude

② Dynamic stability in hover

• Many similarities in a fixed-wing A/C

wing dihedral

sideslip
(b)

when reaching a level attitude , still lateral velocity to continue to roll

(c) zero lateral velocity, but displaced in roll to the left

→ cycle of event is repeated in the form of oscillation

→ either dynamically stable or unstable

17
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VI. Stability in hovering flight

 Fig. 11-8 (b), rolling velocity will reduce AoA of the right wing 

(Fig. 11-9), increased AoA in the left wing → clockwise moment 

→ clockwise moment ⋯ oppose the counterclockwise angular velocity

∴ initial angular displacement in A/C → oscillation, but 2 opposing moment

Moment by the sideslip velocity

Damping moment by the angular velocity of A/C

18
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VI. Stability in hovering flight

• Helicopter ⋯ analogous motion

• Fig. 11-10 (a) ⋯ displaced in roll to the right

(b) ⋯ resultant force to the right → cause to move

but subjected to a counterclockwise moment due to stability w/ speed

→ rolls the helicopter until (c) configuration

(d) horizontal force → slow down the helicopter, zero horizontal velocity

But, still horizontal force to the left still present → starts to move to the left

→ the whole process repeats

 Helicopter motion following a disturbance

19
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VI. Stability in hovering flight

• Lateral oscillation, angular velocity about its own axis

→ moment due to damping in roll

Fig. 11-10 (c) ⋯ counterclockwise angular velocity 

→ small clockwise tilt of the rotor cone w/ damping included (Fig. 11-11)

⋯ rotor cone lags behind the position it would have if no damping were present

• Initial angular displacement in helicopter → oscillation, but 

stability w/ speed 

damping in pitch (or roll)
→ influences on the oscillation period

20
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VI. Stability in hovering flight

Fig. 11-12 (a) initial roll angle displacement → no moment about CG, 

but velocity to the right → displaced to (b) configuration

(b) Thrust vector inclination → counterclockwise moment about CG

due to stability w/ speed → if fuselage MoI negligible,

counterclockwise angular velocity → (c) configuration

(c) Damping in roll → fuselage overtakes the rotor cone,

rotor tilt due to stability w/ speed is neutralized

but horizontal component of the forces to the right exists

→ accelerates to the right, and then process is repeated

additional translation velocity → additional thrust vector tilt to the left

→ counterclockwise moment → increased angular velocity

→ due to damping in roll, fuselage align itself w/ thrust vector

→ additional tilt due to stability w/ speed neutralized

(d) Returns to a level attitude, but repeats the previous cycles

until (e) where V = 0, 𝜔 = 0, Then =(a)

still horizontal component to the left, move the left,

(a)-(e) process will be repeated → oscillation

Half period of the oscillation

• Combined effects of
stability w/ speed

damping in roll
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VI. Stability in hovering flight

• Period of oscillation for hovering helicopter w/o fuselage MOI

Fig. 11-2(a) → (b) ⋯ ① larger → larger thrust vector 

→ larger angular velocity → reaches (c) quickly 

𝑃 =
2𝜋

𝑔

−𝑀𝜔

𝑀𝑣

𝑀𝜔 = −𝑇ℎ(
𝛿

𝜔
) : damping in roll

𝑀𝑉: speed stability ~ variation of longitudinal flapping
w/ translation velocity

∴ reduces the period (denominator in Eq. (2))

• TR shaft mount location ⋯ above helicopter CG, TR adds to the stability w/ speed

→ reduces the period, due to the difference in TR inflow related with lateral velocity

• Effect of                                           on the period 
① stability w/ speed

② damping in pitch

(2)
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VI. Stability in hovering flight

(b) → (c) ⋯ ② larger → smaller angular velocity needed to neutralize 

thrust vector tilt due to speed stability 

→ slower change in attitude

→ reaches (c) late

• Dynamic instability ↓

∴ damping ↗ → period ↗ (numerator in Eq.(2))

• Single-rotor helicopter w/ conventional control systems 

⋯ dynamically unstable, ← improved by additional devices

⟵ fuselage MoI ↓, blade flapping MoI ↑

(damping in pitch ↑)

rotor height ↑, flapping hinge offset ↑

𝑃 =
2𝜋

𝑔

−𝑀𝜔

𝑀𝑣
(2)
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VII. Longitudinal stability in forward flight

 Analogy with the airplane

• Initial A/C displacement from trim in

① Static stability

• Incerase in AoA, const. speed ⋯ A/C is statically stable w.r.t. AoA

if it is a nose-down moment

(also dependent upon CG position)

pitch (AoA change)

forward speed

→ 2 aspects of static stability → 2 sets of forces/moments

• Change in speed, const. AoA ⋯ no aerodynamic moment → neutral stability

(no change in lift or moment coeff.)

No changes in all aero. forces and moments acting in the same proportion

→ maintain the trim

24



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

VII. Longitudinal stability in forward flight

(b) Moment coeff. Independent of speed

(a) → Fig. 11-14 : const. elevator setting, corresponding trim AoA → trim AoA converted to lift coeff.

Fig. 11-13 ⋯ plot of the moment coeff. against AoA and speed

Fig. 11-14 ⋯ static stability of A/C of fixed CG → single curve

But, when including the propeller effect, no longer sufficient

helicopter ⋯ (+), not neutral static stability w/ speed → not sufficient for a single curve

(+) slope ⋯ forward movement of stick (or down elevator) is required 

at a decreased airplane AoA (or 𝐶𝐿)
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VII. Longitudinal stability in forward flight

 Static stability of the helicopter

• Depends on the moments produced by rotor ← by change in speed at const. AoA

← by change in AoA at const. speed

“Rotor characterictics”

i) Variation of moment coeff. w/ AoA

Fuselage ⋯ unstable w/ AoA → adds to rotor AoA instability

Tail surface ⋯ stabilizing variation of moment

ii) Const. moment coeff. on stability w/ speed

Fuselage ⋯ nose-down moment in steady flight, 

speed change → destabilizing

Stabilizing surfaces → nose-up moment → stabilizing

iii) Thrust-axis offset from helicopter CG or stabilizing w/ AoA

Offset of thrust axis ⋯ to compensate for an aero. pitching moment or fuselage or stabilizing surfaces

• Depends on the moments by fuselage and control surfaces → 3 different ways

26
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VII. Longitudinal stability in forward flight

• fuselage ⋯ nose-down moment

∴ offset between                               counteracts rotor instability w/ AoA
helicopter CG

if great enough offset, statically stable w/ AoA

← compensated by thrust vector offset ahead of CG

→ additional unstable moment variation w/ AoA (Fig. 11-15)

→ nose-up rotor moment (=thrust increase × initial CG offset) > rotor moment w/ no CG offset

→ add to AoA instability of the rotor

thrust vector

stabilizing surfaces ⋯ nose-up moment by a down load

• Increase in fuselage AoA

Nose-down fuselage moment → thrust axis forward offset from CG

• Flapping hinge offset ⋯ similar contribution on static stability w/ AoA

if CG is forward of the rotor shaft, CG will also forward the thrust vector

→ rotor instability w/ AoA is counteracted
27
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VII. Longitudinal stability in forward flight

• 2 types of forward-flight static stability ⋯ Fig. 11-16

Trim points and curves are shifted (Fig. 11-16(b))

• Fig. 11-16 (a) helicopter ⋯ separate curve for each speed

11-13 (a) A/C ⋯ single curve

(a) Variation of moment coeff. about helicopter CG 

w/ fuselage AoA at various speeds

(b) Variation of moment coeff. about helicopter CG 

w/ speed for each trim AoA
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VII. Longitudinal stability in forward flight

 Amount of static stability or instability

→ curves in Fig. 11-17, slopes of the curves in Fig. 11-16

• Fig. 11-17(a) ⋯
∆𝐶𝑚

∆𝛼
𝑎𝑡 𝐶𝑚 = 0 from Fig. 11-16 (a)

(b) ⋯
∆𝐶𝑚

∆𝛼
𝑎𝑡 𝐶𝑚 = 0 from Fig. 11-16 (b)

• In power-on flight
unstable w/ AoA

stable w/ speed

principal stability deficiency

a typical tailess helicopter (w/ no horizontal tail surface)
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VII. Longitudinal stability in forward flight

 Effects of variations in GW, Ω, altitude ⋯ stability plot in non-dim. form (Figs. 11-18, 19)

• variation in stick position

• variation in CG w/ fixed stick position

• variation in collective pitch

• variation of rotor speed ⋯ autorotation, Ω is free to vary w/ speed or AoA, 

→ power-speed characteristics of the engine affect the stability

30



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

VIII. Dynamic stability in forward flight

 If assumed to have neutral static stability w/ AoA

→ period of longitudinal oscillation depends 

• Period of longitudinal oscillation

static stability w/ speed

damping in pitch

𝑃 = 2𝜋
(−𝑀𝜔 −

𝑊𝑉
𝑔
𝑀𝛼
𝑇𝛼
)

𝑀𝑉𝑔
(3)

if 𝑀𝛼 = 0, (3) → (2)

① Helicopter motion following a disturbance

speed stability

damping in pitch
• Importance of

• Assumption ⋯ neutral stability w/ AoA

• Initial disturbance → trimmed helicopter → nose-down, descend (Fig. 11-20(a)) 
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VIII. Dynamic stability in forward flight

Fig. 11-20 (a) weight component along the flight path →accelerate

(b) speed stability → backward tilt of the rotor plane 

→ nose-up moment → nose-up angular acceleration 

→ damping in pitch ⋯ thrust vector tilt due to stability w/ speed is neutralized,

But continuously increasing angular velocity until off the glide path → (c)

(C) max. forward speed, max. nose-up angular velocity, max. fuselage AoA,

Since T>W, climb weight opposes forward motion

→ decelerate, backward tilt reduced

Rotor plane forward tilt ⋯ forward tilt due to damping in pitch> rearward tilt due to speed stability

Nose-down moment reduces nose-up angular velocity

Damping in pitch neutralizes remaining backward tilt of the rotor plane due to speed stability → (d)
32



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

VIII. Dynamic stability in forward flight

Fig. 11-20 (d) weight component → decelerate, preceding steps repeated

(e) velocity, AoA = trim values, 0 angular velocity, but climbing continue to decelerate,

(a)-(e) will be repeated except that all changes in opposite direction

(f) min. forward speed, min. nose-down angular velocity

min. fuselage AoA, (a)-(e) is repeated
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VIII. Dynamic stability in forward flight

② Effect of                                           on period of oscillation

• Increase in speed stability → larger nose-up moment in (b)

→ reaches (c) sooner 

• Increase in damping in pitch → smaller angular velocity in (b)

→ longer time necessary to reach (c)

static stability w/ speed
damping in pitch

∴ reduces period (𝑀𝑣 denominator in (3))

∴ increase period (-𝑀𝜔 numerator in (3))
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VIII. Dynamic stability in forward flight

③ Effect of AoA stability on period of oscillation

• 𝑀𝛼 on stability w/ AoA

Fig. 11-20 (c) ⋯ max nose-up angular velocity → max nose-down moment due to damping in pitch

Max. AoA → max. nose-down moment due to instability w/ AoA

(
𝑊𝑉

𝑔
)(
𝑀𝛼

𝑇𝛼
)

• If statically unstable w/ AoA, 𝑀𝛼 (+), 𝑇𝛼 (+)

(+) → numerator in (3) reduced, P reduced

⋯ 𝑀𝛼 is to add to, or subtract from, damping in pitch 𝑀𝜔 in (3)

reduce the effect → reduce period

• If stabilizing device longer time necessary to reach (c) 

→ statically stable w/ AoA → increased period
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VIII. Dynamic stability in forward flight

④ Influence of         and 𝑇𝛼 on period of oscillation

• statically unstable w/ AoA → also dynamically unstable, but

(
𝑊𝑉

𝑔
)

𝑀𝛼

← (
𝑊𝑉

𝑔
), 𝑇𝛼 will determine this

if stable, adds to

if unstable, subtracts from
the effect of 𝑀𝜔

depends on
AoA change

pitch velocity

⑤ Effect of stability parameters on divergence of oscillation

large amount of damping in pitch

sacrifice in speed stability
→ will reduce the influence
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