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Chapter 11 Columns

11.1 Introduction

® Buckling Failures of Columns

junhosong@snu.ac.kr

1. Failures investigated so far in this course: failures caused by excessive s

ord -> strength and stiffness of members are important

Buckling failure of columns: long, slender

p P
members loaded axially in ¢ deflects 1

B — B
I 2>b - may collapse
eventually (instead of failures by direct
compression of the material) L
Example: compressing a plastic slender ruler,

. . : A — A

stepping on an aluminum can, think plate of a
bridge under compression, etc.

(a) (b)

Buckling is one of the major causes of failures in

structures - should be considered in design process

11.2 Buckling and Stability

®

1. Rigid bars AB and BC joined by a

pin connection ~ rotational spring

with stiffness By is added at the pin %

—

‘i

Idealized Structure to Investigate Buckling and Stability (“Buckling Model”)

I\)‘ ~

m‘ ~

-> an idealized structure analogous \ﬁﬂ

A .
to the column structure shown L/

Rigid

above (elasticity is concentrated vs bar_ |
distributed) AR
Hooke’s law for the rotational spring @
M = BRG

(b)

If the bars are perfectly aligned, the axial load P acts through the longitudinal line >

spring is uns , and the bars are in direct c

Suppose point B moves a small distance laterally (by external disturbances, forces

or imperfect geometry) -> rigid bars rotate through small angles 6
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5. Axial forces and “restoring moment” My developed in the spring show opposite

effects = Axial force tends to
to it

the lateral displacement, and My tends

6. What happens after the disturbing force is removed?

1) Small P - 6 keeps

2) Large P > 0 keeps

-> returns to the original position: Stable

- fails by lateral buckling: Unstable

“How large P should be to make the system unstable?” - Critical load

© Critical Load P.,
1. Moment in the spring: My = 2856

2. Under small angle 6, the lateral

displacement at point B: 6L/2

3. Moment equilibrium for bar BC

() =0
B 2 -

=000

Rigid
bar

m| ~

Rigid
bar

pa—

m‘ ~

4. First solution of equilibrium equation: 6 = 0 -> trivial solution representing the

equilibrium at perfectly straight alignment regardless of the magnitude of the load

5. Second solution of equilibrium equation:

4B
fr =7

- The structure is in equilibrium regardless of the magnitude of the angle 6

-> Critical load is the only load for which the structure will be in equilibrium in the

disturbed position, i.e. 8 =0

6. Whatif P # P, i.e. can't sustain the equilibrium?

1) If P <P, restoring moment is dominant > structure is

2) If P> P, effect of the axial force is dominant - structure is

7. From the critical load derived above, it is seen that one can increase the stability by

ing stiffness or

ing length
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® Summary P
/Unstable equilibrium

1. 6 = 0: no disturbance > equilibrium for any P _mt
B

2. Disturbance introduced to cause 6 # 0 and the - S

Neutral equilibrium

source of the disturbance removed I
JPCI’

. .
1) P < P, goes back to the original equilibrium Stable equilibrium

(stable equilibrium) V

2) P = P, can sustain the equilibrium regardless

of 8 (neutral equilibrium) ~ “bifurcation” point
3) P > P..: cannot sustain the equilibrium (unstable equilibrium)

3. These are analogous to a ball placed upon a smooth surface

A, . ﬁ-\_ Y

, € o«
\I\Z/ /\\*/\ \ 4

® Example 11-1: Consider two idealized columns. The first one consists of a single rigid
bar ABCD pinned at D and laterally supported at B by a spring with translational
stiffness (. The second column consists of two rigid bars ABC and CD that are joined

at C by an elastic connection with rotational stiffness Sz = (é) BL?. Find an expression

for critical load P, for each column.

p Initial
position
[
A

L2

L2
LAC = 6pL

Structure 1
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Initial
position

ABZO
._/BC = ZBD
L2

’AC = BDL
Structure 2

fp
~
1L

Br
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11.3 Columns with Pinned Ends

© Differential Equation for Deflection of an “ldeal Column” (i.e. perfectly straight) with
Pinned Ends

1. Bending-moment pl P
equation:
Elv'' =M
2. Moment equilibrium L

equation:

o

M+Pv=20 y
3. Therefore, the deflection
equation of the @) (b) (©

deflection curve is
Elv" +Pv=0
4. Homogeneous, linear, differential equation of second order with constant coefficients
® Solution of Differential Equation
1. For convenience, we introduce k? = P/EI
2. Reuwrite the differential equation:
v'+k?v=0
3. From mathematics, the general solution of the equation is
v = (;sinkx + C, coskx
4. Boundary conditions to determine C; and C,:
v(0) = v(L) =
5. From the first condition, C, =
6. Thus the deflection of the column is v(x) = C; sinkx
7. From the second condition, C; sinkL =
8. Casel: ¢, = 2> v(x) = , i.e. the column remains straight (for any kL)

9. Case 2: sinkL = -> “Buckling equation”
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The column sustains equilibrium if kL = nm, n =1,2,3, ...
The corresponding axial (critical) loads are

n?m?El
12

10. Deflection curves at neutral equilibrium at critical loads are

nmx
v(x) = Cysinkx = C; sinT

® Critical Loads
1. The lowest critical load for a column with pinned ends:

m2El
cr = 12

2. The corresponding buckled shape (mode shape):

X
v(x) =C sinT

3. Note: the amplitude C; of the buckled shape is un (but small)
4. n=1:"Fundamental” buckling mode
5. As n increases, “higher modes” appear

- No practical interest because the fundamental load is reached first

- To make higher modes occur, lateral supports should be provided at intermediate

points

1

(a) (b) (c)


mailto:junhosong@snu.ac.kr

Dept. of Civil and Environmental Engineering, Seoul National University Junho Song

457.201 Mechanics of Materials and Lab.

junhosong@snu.ac.kr

11.1 Columns with Pinned Ends (continued)

® Critical Stress

1. Critical stress: the stress in the column when P =

P, m?El
A AL2

2. Using the radius of gyration r =,/I/A

3 m2E
e = (L/r)?

where L/r is called “slenderness ratio”

3. Euler’s curve: critical stress versus the

slenderness ratio

- Long and slender columns: buckle at

stress

- Short and stubby columns: buckle at

stress

B —
L
y— Al
350 M
oo (MPa) = Opl = 250 MPa
280 - }f" % Euler’s curve
”””” \ £=200GPa
210 + ]

140 |-

70

I .II/ ! I I
0 50 100 150 200 250
L

-

- The curve is valid only for ¢ < o, because we use 's law

© Effects of Large Deflections, Imperfections, and Inelastic Behavior

1. Ideal elastic column with small defections (Curve

A): No deflection or undetermined deflection at P =

PCI‘

2. ldeal elastic column with large deflection (Curve B):
Should use exact (nonlinear) expression for the
curvature, i.e. instead of v’ - Once the column

begins buckling, an increasing load is required to

cause an increase in the deflections

o v

3. Elastic column with imperfections (Curve C): imperfections such as initial curvature

-> imperfections produce deflections from the onset of loading; the larger the

imperfections, the further curve C moves to the right

4. Inelastic column with imperfections (Curve D): As the material reaches the

proportional limit, it becomes easier to increase deflections
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® Example 11-2: Along, slender column ABC is pin

supported at the ends and compressed by an

-

axial load P. Lateral support is provided at the e
midpoint B (only in the direction within the plane). et | :’l:,
The column is constructed of a standard steel - 3—'|I—-‘
shape (IPN 220; Table E-2) having E = 200 GPa &«uii .

and proportional limit op,; = 300 MPa. The total

length L = 8 m. Determine the allowable load ]

P.now Using a factor of safety n = 2.5 with

respect to Euler buckling of the column.
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11.4 Columns with Other Support Conditions

® Column Fixed at the Base and Free at the Top P P, x
1 1 0
1. Bending moment at distance x from the base is By 1 B
Vie—
M =P(§—v)
L
2. Bending moment equation: ElIv"' =M = X
3. Using the notation k2 = P/EI again, the equation ALV vy Al
becomes b 2E]
oo4r?

v +k%v = k%5 @ .
4. Homogeneous solution (the same as the pinned-pinned case):
vy = Cy sinkx + C, cos kx
5. Particular solution:
vp =
6. Consequently, the general solution is
v(x) = vy +vp = C; sinkx + C, coskx +
7. Boundary conditions: v(0) = , v'(0) = and v(L) =
8. From the first condition, C, =

9. From the second boundary condition, C; =

10. Finally, the solution is v(x) = §(1 — coskx) -> shape is identified but the amplitude

is und
11. From the third boundary condition, & coskL =

12. The nontrivial solution (i.e. buckling equation) is
coskL =0

13. Therefore, kL = "2—“ n=135,..

14. The critical loads are

n*m2El n2El
PCI‘ = T, n = 1,3,5, ... and forn = 1'PCF = m
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15. Buckled mode shapes are v(x) =& (1 — cos T)

Effective Lengths of Columns

1. Effective length of a column: the length of the P
equivalent pinned-end column having a deflection

curve matching the deflection of the given column

2. As seen in the figure, the effective length of a

column fixed at the base and free at the top is
L, =

3. From the critical loads of the two column cases, we

can derive a general formula for the critical load,

_ m2EIl

cr —
Le

Column with Both Ends Fixed against Rotation

1. According to the deflected
shape sketched based on the P
boundary conditions, it is noted
that L, = B

2. Therefore, the critical load is L L

_ 4m?El

cr 12 A A

Column Fixed at the Base and

Pinned at the Top

1. By solving the differential
equation (details in the
textbook), we find the buckling L

equation

kL = tankL

2. Solving this equation
numerically, kL = 4.4934

__ 20.19EI __ 2.046m%EI

3. The corresponding critical load is T 0

PC r

Junho Song

junhosong@snu.ac.kr

L,=2L
]
¥
L ]
.
r
]
[]
' y
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(b)
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1
|
| L
)! —} 4
Mok
P
20.19 E1
cr= 12
B
L,=0.699L

(c)
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4. The effective length is L, = 0.699L ~ 0.7L

® Summary of Results

(@) Pl:gli(f]—]ilnmd (b) Fixed-free column | (c) Fixed-fixed column| (d) Fixed-pinned column
. ; 412 EI 2.046 w2 EI
Pe= TEEEI Pe= _fLEE‘I Pe,= 13 Pe = LQT-
T/ L,
L L L, L L
L,=L L,=2L L,=05L L,=0.699L
K=1 K=2 K=0.5 K=0.699

® Example 11-3: A viewing platform

is supported by a row of

aluminum pipe columns having %

length L =3.25m and outer

diameter d = 100 mm. Because

of the manner in which the '

columns are constructed, we I
model each column as a fixed- L
pinned column. The columns are ®
being designed to support

compressive loads P = 200 kN. Determine the minimum required thickness t of the
columns if a factor of safety n = 3 is required with respect to Euler buckling. The
modulus of Elasticity of the aluminum is E = 72 GPa and the proportional stress limit is

480 MPa.
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11.5 Columns with Eccentric Axial Loads

© Differential Equation of Columns with Eccentricity

1.

Consider a column with a small

eccentricity e under axial load P p

()
—_—>
This is equivalent to a column under u

centric load P but with additional couples
Mo =

Bending moment in the column is

obtained from a free-body-diagram from

the moment equilibrium (around A) A v
M =My + P(—v) = Pe — Pv HPA”J
Differential equation

Elv' =M = Pe — Pv

v +k%v =

The general solution: v = C; sinkx + C, coskx + e
Boundary conditions: v(0) = v(l) =

These conditions yield

C, =

e(1—coskL) kL
Y )

The equation of the deflection curve is

kL
v(x) = —e (tan7sin kx + coskx — 1)

Undetermined (centric load) vs determined (eccentric load)
Critical load (both pinned ends)

3 m2EIl

cr Lz

Junho Song
junhosong@snu.ac.kr

Note: the deflection for the centric load was v(x) = C; sinkx = C; sin%


mailto:junhosong@snu.ac.kr

Dept. of Civil and Environmental Engineering, Seoul National University Junho Song
457.201 Mechanics of Materials and Lab. junhosong@snu.ac.kr

® Maximum Deflection

1. Maximum deflection § occurs at the midpoint, thus

bl

kL kL kL
= e(tan7sm7+ cos7— 1)
_ kL
= e(sec7— 1)

2. Consider an alternative expression for k

= P_ PT[Z_TL’ P
- JEI T |PyL2 L |P.

3. Using this, the maximum deflection is described in terms of the ratio P/P.,

4. Load-deflection diagram (.7)

- The deflection increases as the load P increases, but nonlinear even if linear

elastic material is used 2 s rule does not work

- When the imperfection is increased from e; to e,: the maximum deflection

increases by

- Astheload P approaches the critical load P.. the deflection increases without

limit

- Anideal column with a centrally applied load (e = 0) is the limiting case of a

column with an eccentric load (e > 0)
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® Maximum Bending Moment M ax
1. Maximum bending moment occurs when v =
Mpax = P(e+ )

2. Thus the maximum bending moment is

Pe
kL m | P
M. = Pe sec—- = Pe sec 3 E y P -,

® Example 11-4: A brass bar AB projecting
from the side of a large machine is loaded ’(\L’
atend B by aforce P = 7KkN with an A)—

eccentricity e = 11 mm. The bar has a

rectangular cross section with height h = . Brass bar
30 mm and width b = 15 mm. What is the |
longest permissible length L,,, of the bar

if the deflection at the end is limited to 3 mm? For the brass, use E = 100 GPa.
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11.6 Secant Formula for Columns

® Maximum Stress in a Column under an Eccentric Load

1. Maximum stress occurs at the (concave/convex) side of the column

o — B MmaXC
max A I

2. Maximum moment

3. From P, =m2EI/L?* and I = Ar? where r is the radius of gyration, the maximum

moment is described as

L [P
Mimax = Pesec| 5= g2 .,
_____ = ,

E =200 GPa
4. Substituting this into the maximum i \

stress formula above,

& max= 250 MPa

_—Euler's curve
2

F
P 3.
A ({MPa)

' 140
P Pec L |P
Omax = 7+ sl oF [Ea

~

50 100 150 200
L

5. This so-called “secant formula” £

describes the maximum compressive stress in a column under eccentric load in

terms of E,P/A, L/r (s ratio) and ec/r? (ecc ratio)

6. Forgiven o, and E, one can find the possible pairs of P/A and L/r for each

eccentricity level (ec/r?) and plot a graph of secant formula (1)
7. For centric load, i.e. ec/r?> = , the critical stress is

Py m?El  m’E
A A2 (L)r)?

8. Secant formula and graph let us know the load-carrying capacity of a column in

terms of slenderness and eccentricity (Trend?)
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®© Example 11-5: A steel wide-flange column of HE 320A |

shape is pin-supported at the ends and has a length of HE 320A

7.5 m. The column supports a centrally applied load P, = | M 5
1

1800 kN and an eccentrically applied load P, = 200 kN.
Bending takes place about axis 1-1 of the cross section,
and the eccentric load acts on axis 2-2 at a distance of

(a)
400 mm from the centroid C.

P =1800kN P,=200kN

«—400 mm-—
c

T
I
1
|
1

(a) Using the secant formula, and assuming E =

210 GPa, calculate the maximum compressive stress

in the column.

(b) If the yield stress for the steel is g, = 300 MPa, what Bracket

is the factor of safety with respect to yielding? Column

(b)

‘| P = 2000 kN

1
|
|
i

(c)
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(Intended Blank for Notes)

L3

I = Many thanks for your hard work in this semester to learn Mechanics of
I - Materials. | wish y very best on your remaining course work and
I ) future career ar1d life.

I D Cheers,

i B Junho

—9
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