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12.1 Introduction

* Toy model: Configuration of molecules in a room

> Initial state which 4 molecules exist at left side

> How many rearrangement if one molecule moves to right side?

o0 O
oo o O 0 |0
“ ‘ Case 3

o0 ©

O

w = 4Cs X 4C1 = 16 : sixteen
rearrangements!
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12.1 Introduction

° Rearrangements for all states
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probable
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12.1 Introduction

° What if there are large number of molecules and spaces

100 molecules with 200
spaces

>
Nieft

1000 molecules with 2000

WA

spaces

Nieft

For a large system, only most probable state is

possible.

Nature always converge to most probable state
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12.1 Introduction

* Equilibrium of macroscopic system

A
€
: - / . energy state (quantum state)
Energy level | Microstate |
T " 50 -@ (# of molecules in each energy state)
_- EEEBE . degeneracy
N

Macro State ( # of molecules in each energy level )

Thermodynamic probability : # of microstates which leads a given microstate
( # of ways ) #1
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12.2 Coin-Tossing Experiment

* Coin tossing experiment: A simplified model of thermodynamic system

How many coins of heads when tossing 4 coins on the floor?

macro state : number distribution of coins of head and tails

micro state : rearrangements of coins of head and tails

http://splatter.com/
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12.2 Coin-Tossing Experiment

Macro state Macro state : Therm_o True
level specification Micro state SHIMEIE probability
probability
k N, N, coin 1 coin 2 coin 3 coin 4 Wy Dk
1 4 0 H H H H 1 1/16
H H H T
H H T H
2 3 1 4 4/16
H T H H
T H H H
H H T T
T T H H
H T H T
3 2 2 6 6/16
T H T T
H T T T
T H H T
H T T T
T H T T
4 1 3 4 4/16
T T H H
T T T H
5 0 4 T T T T 1 1/16
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12.2 Coin-Tossing Experiment

o P N W M OO O N

A macro state with N; = N/2 has largest number of u-state.

N!
Wmax =N CN/Z = (N/Z)' (N/Z)'

most probable micro state (equilibrium)
WA

>
Neoin = 4 Neoin = Nieft

Wiax = Wimax = 70 Repeating numerous times
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12.2 Coin-Tossing Experiment

1000!
(500)!(500)!

When repeat tossing 1000 times, w5, =

For such a large numbers, Stirring's approximation can be used
In(n!) = nln(n) — n

Then
In(W,,,q,) = In(1000!) — 2In(500!) = 693
log(Wy,qx) = log(e)In(w,,,,) = 0.4343 - 693 =~ 300

. — 300

For a large system, the total number of microstates is very nearly equal

to the maximum number; Q =) wy, = W4
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12.3 Assembly of Distinguishable Particles

* Distribution among energy levels for equilibrium state

€ A N;

>Ni =N
&+ 000 N3

> Nigj =U
e+ b N2
er+ 0 N1
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12.3 Assembly of Distinguishable Particles

* Ex) N=3,U=3¢, &=0, ¢, 2¢, 3¢

Macro state Macro state . Thermp True
level specification LLEISENS dy“a”?'.c probability
probability
k NO Nl Nz N3 A B C Wy Pk
0 0 3e
1 2 0 0 1 0 3¢ 0 3 0.3
3¢ 0 0
0 € 2¢€
0 2¢e €
€ 0 2¢€
2 1 1 1 O
€ 2¢ 0
2¢ 0 €
2 e o Most Probable — Equilibrium
3 0O 3 0 O € > > 1 0.1
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12.4 Thermodynamic Probability and entropy

* Statistical concept of entropy

Ludwig Boltzmann constructed the connection between the classical
concept of entropy and the thermodynamic probability.
He interpreted entropy as a degree of organization of microscopic

energy.

S =fw)
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12.4 Thermodynamic Probability and entropy

There are a few characteristics for the function of entropy.

@ f(w) must be a single valued, monotonically increasing function.
2 Entropy is an extensive property. Thatis, Sy.g =S4 + Sp

(3 Configuration of the system satisfies, w,, 5 = wywpg

) f(Wy,p) = f(Wa) + f(wp)

Sa = f(Wa) Sp = f(ws)
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12.4 Thermodynamic Probability and entropy

The only function for which this statement is true is the logarithm. Thus,

Ludwig Boltzmann postulated the function of entropy as below.

S=klnw

k : Boltzmann constant ( = 1.38 x 10-23 J/k)

w . Number of rearrangements
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12.5 Quantum states and Energy levels

* Schrodinger’s Equation (Postulate)

. . . time dependent
Y(x,y,zt) =Yy, z)p(t) wave function

2 L. probability distribution function
¥ [probability density

h o9  h? 02tp+azlp+azlp -
om0t 8r2m ox? dy? 572 T

potential energy

h : Planck constant

Postulated by Schrodinger based on physical phenomena of matter wave

Also, Max born suggested statistical meaning of wave function.
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12.5 Quantum states and Energy levels

* Schrodinger’s Equation

+ +
2mi Ot

0x? 0y? 0z?

h? (0°® 0%*Y 0%Y¥ h oW
~ 8r7m + VY

° Separation of variables

Y(x,y,zt) =P(x,y,2)p(t) Energ()(/: g:l ;rt\:n%article

2 2 2 2 \
1[_ h (a¢ 0% 0¢>+V¢] h 1dp _

o | 8zm\ oz T 557 T a2 T 2mi g dt
fx,y,z) f ()
(space) (time)
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12.5 Quantum states and Energy levels

* Time dependent part

d_(]5 _ 2miE _ZniEt
dt h

[eie = cos 0 + sin 9]

* Spatial part

92y 8%y 9% 8mPm 1
oxz Ty Tzt Tz BTV =0 i

/!

Y(x,y,z) =Xx)YW)Z(2), E=E.+E, t+E,

02X :
—> EY) =0 —> X = Acospx + Bsinpx
\ pz
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12.5 Quantum states and Energy levels

° Boundary condition

B.C.

X(0) = 0 X(L) =0
( x=0,X=0 )
x=LX=0
from

X = Acospx + Bsinpx

PL=nmt (n=0,12,...)

p= 21,/ 2mEy

h
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12.5 Quantum states and Energy levels

For linear motion of a free particle

nmw 21/ 2mEy

X = Xpsin—x = X, si
0 SIn——x o Sin r X

The last step is to normalize the wave function

L 2
fXde=1_)X0=\/:
0 L

Thus, the wave function is given as below

\/E - 2m\/2mEy
X = Zsm

N X
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12.5 Quantum states and Energy levels

at high E level,

almost equally distributed

20/31



12.5 Quantum states and Energy levels

Z
A
* Energy of a particle in 3-D space

For a particle in a box,
— constrained to stay in a box c

y
= no external force >

a
b

02 02 02 8mimE
v, ow, 0w Srm
d0x? 0dy? 0z? h?
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12.5 Quantum states and Energy levels

* Out side the boxyp =0 (V — o)

— continuous wave function

—-»1YP=0a x=0a
y=0,b B.C.
z=0,c
1
] 87T2mEX /2
X = Asin %, x|+ B cos

Y=0 at x=0 -B=0

87T2mEX

(

hZ

)"
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12.5 Quantum states and Energy levels

Yp=0 at x=a —>0=Asin(

n,m (n,:integer)

— Energy of a particle is quantized!

. h? (n,?2 n,®  n,?
e E=EX+EY+EZ=8m a2+b2+cz
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12.5 Quantum states and Energy levels

* Wave function

NeX  NyMY  N,NZ
sin sin

l/) = XOYOZO sin

a b C
[[[ wwav =1
8
2v 2,2 _ 9
XYy Z, = c

If a=b=c, (cube)

h? 1

= BmE(nxz +n,? 4+ n,?)
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12.5 Quantum states and Energy levels

° Degeneracy (statistical weight of the energy level)

Excited
state

g + OOOQO 4

g2+ O 0O 2

g1+ O 1

Ground
state
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12.5 Quantum states and Energy levels

* Hydrogen atom in quantum mechanics

Because their exist only one proton and one electron, hydrogen atom

IS an easiest model to examine quantum state of an electron

Coulomb’s potential :
e’ 1

dteg r

Velec =

Schrodinger’s equation :

2
8t m,

l721/)(9160 + < 2 ) + (Eelec - Velec)lpelec =0

Bohr’s hydrogen model
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12.5 Quantum states and Energy levels

Wave function of an electron in spherical coordinate :

3(n—-1-1)! _p
Puim (7,6, 9) = J (E) S e B 2 ()0, 0)

The wave state is discretized with 3 quantum numbers, n, |, and m

r — coordinate, n n=123--0
6 — coordinate, [ [ =1(s),2(p),3(d) --*n—1
@ — coordinatem m=0,+1,+2 - +1

B

x(r,6,0)
S
roo
f.f i

g .
=

'\-|.
b
; :
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12.5 Quantum states and Energy levels

* Hydrogen electron orbitals

) e N,
k***
8 S o

http://chemwiki.ucdavis.edu/ogen orbitals

Probability densities of
hydrogen electron
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12.6 Density of Quantum states

* Degeneracy of energy state

— For an energy level of a particle, there exist several states that meet the

energy condition.
— This number of state for an energy level is defined as degeneracy, g(¢)

— For example, degeneracy of first excited energy level is as below

n-combinations L 3
Ny ny n, €1 = W(nxz + lez + nzz) = Imy2l3 = 2¢
State 1 2 1 1
State 2 1 2 1 g(el) =3
State 3 1 1 2
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12.6 Density of Quantum states

8mV3e
= n2 = R? LI I I B
hz e 6 6 6 06 06 0 O
et+de A EEEX
& e 6 06 ©
g(e)de ces
: number of quantum state e < < e+ de L O S
M
dn(e
g(e)de = n(e+de) —n(e) = d(g)de
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12.6 Density of Quantum states

3 3
(4 0\ 14 (4my?e\2 @ (gm\Tz
n(e)=§ §7TR =—==T T =gV — £

83
T

Positive integer area

2 Degeneracy

o (2%2m?/3\3 1 42mV 3 1
g(e)de ==V — 3 §£2d£= P m2e2de

6
R

# of integer point
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