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7 5 o nt 10 s . . . 3 H H 1
Noting that m is a diagonal matrix with m;; = m, this can be rewritten as

N N

mih; = —I(': Lt & . hMm* ‘ o
2 MY = 2 e E
/\4” 1 ”MUI 1 I

Jj=1 =l

wherein Eq. (13.2.9) has been used. This provides a proof for Eq. (13.2.17).
Example 13.5 /

Determine the effective modal masses and effective modal heights for the two-story shear
frame of Example 13.2. The height of each story is A.

Solution In Example 13.2 the m, Kk, w,, and ¢, for this system were presented, and L’,’i
and M,, for each of the two modes computed. These are listed next, together with the new
computations for M;* and k. For the first mode: L =2m, My = 3m/25M5 = (L2 /My =
$m, LY = h@m)L+2h(m)1 = 3hm, and b} = L{ /L" = 3hm/2m = 1.5h. Similarly, for the
second mode: L% = —m, My = 3m, M} = (LAY /My = 5m; LG = h(@m)(=1) +2h(m)1 =
Dsandl b8 = B s = '

Observe that M} + M} = 3m, the total mass of the frame, confirming that Eq. (13.2.1 4)
is satisfied; also note that the effective height for the second mode is zero, implying that the
base overturning moment M) () due to that mode will be zero at all ¢. This is an illustration
of a more general result developed in Example 13.6. ol TR

Example 13.6

Show that the base overturning moment in a multistory building due to the sercornidiglnd higher

modes is zero if the first mode shape is linear (i.e., the floor displacements are proportional to
floor heights above the base).

Solution Equation (13.2.15) gives the nth-mode contribution to the base overturning mo-
ment. A linear first mode implies that ¢j1 = hj/hn, where h; is the height of the jth floor

above the base and A is the total height of the building. Substituting h; = hy¢;1 in (13.2.9b)
gives FIREORT VT

j=1
and this is zero for all n # 1 because of the orthogonality property of modes. Therefore, for

== {

all n # 1, ki = 0 from Eq. (13.2.9a) and Mp,(t) = 0 from Eq. (13.2.15). {75 §e3 B4 § A

SR e 22T
7 @ Example: Five-Story Shear Frame ’ & fx & fw 5 A= hy
%ol MG Bagaatt L3 =O

In this section the earthquake analysis procedure summarized in Section 13.2.4 is imple-

mented for the five-story shear frame of Fig. 12.8.1, subjected to the_El Centro groung_‘r

motion  shown in Fig. 6.1.4. The resy ts presented are accompanied by interpretive
i comments that should assist us in developing an understanding of the response behavior of
. . p ] d
multistory buildings. ' f’. w3, S« ’{_): (p. 43v)

_Lo['o w/ f
; System properties. The lumped mass m; = m = 100 kips/g at each floor,
the lateral stiffness of each story is kj = k = 31.54 kips/in,, and the height of each

9 —
N it L e (O
LS =" hmjdjn=hnoi pi i o
oy A jmjdjn = hy Py men BLol & o iy
(= //0 //\f,/ 0
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story is 12 ft. The damping ratio for all natural modes is &, = 5%. The mass matrix m,
stiffness matrix ke natural frequencies, and natural modes of this system were presenteq
in Section 12.8¢ For the given k and m, the natural periods are ;T,, = 2.0, 0.6852, 0.434¢
0.3383. and 0.2966;sec. (These natural periods, which are much longer than for TYPiCai
five-story buildings, were chosen to accentuate the contributions of the second through
§fth modes to the structural response.) Thus steps 1, 2, and 3 of the analysis procedure
(Section 13.2.4) have already been completed. o-j
. ?c; M5

Modal expansion of ;1 To implement step 4 of the analysis procedure (Sec-
Gon 13.2.4), the modal properties M,, L", and L, are computed from Egs. (13.2.3) and
(13.2.9b) using the known modes ¢, (Table 13.2.2). The I',, are computed from Eq. (13.2.3)

il ck ﬁ/\‘v[/
TABLE 13.2.2 MODAL B O
PROPERTIES/ B . pAash
Gw A ZN
Mode (M, Tk n ak?
/4 W
R o0 067k 50 Stho~
2 1.000 —0336 0.404 :
B 16000 0 055 e
4 1.000 —0.099 0.059 V34
5 1.000 0045 0.023 S

and substituted in Eq. (13.2.4), together with values for m;j and ¢;,, to obtain the s,, vectors
shown in Fig. 13.2.4. Observe that the direction of forces s, is controlled by the algebraic
sign of ¢jy (Fig. 12.8.2). Hence, these forces for the fundamental mode act in the same
direction, but for the second and higher modes they change direction as one moves up the
structure. The contribution of the fundamental mode to the force distribution s = m1 of
the effective earthquake forces is the largest, and the modal contributions to these forces

decrease progressively for higher modes.

[ 2850m; T -0.362m »0.159m 1 -0.063m 0.015m
e 15 0m 4-0.112m 4-0.113m L0.116m -0.040m
L+ 0.956m b-0.215m <4-0.191m -0.033m 0.053m
= = 0.684m e L+ 0.394m g 0.059m U {-0.088m + -0.049m
e 0.356m e 0.301m b-0.208m L0.106m 0.029m
S /) § S4 33

. X ’
Figure 13.2.4 Modal expansion of ml.

Modal static responses. Table 13.2.3 gives the results for four responf)ef
quantities—base shear Vj, fifth-story shear Vs, base overturning moment My, and 10
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TABLE 13.2.3 MODAL STATIC RESPONSES

S vl st St st
Mode V,©/m ‘ Ve, /m My /mh us,

(@308) | 12520 1545 0127

1
B et 2 043 |-0362 -0525 -—0.004
L bl O R G
L 143w 4 0037 |-0.063 —0.022 —0.0002
Al 5 0008 { 0.015 0.004  0.00003

g\*’f 1
= g%

displacement us—obtained using the equations in Table 13.2.1 and the known s;,, ®s,.
and w; (step Sa of Section 13.2.4). Observe that the modal static responses are largest
for the first mode and decrease progressively for higher modes. The effective modal

masses M, = V, and effective modal heights 7% = M;' /VS are shown schemati-
cally in Fig. 13.2 57 note that h* are plotted with raic signs. Observe that
>~ M, = 5m, copfirming that Eq. (13.244¥issatisfied. Also note that 3 h* M = 15mh;

m ULV //% ’22 |
) =T
iid /° Zrm‘/\ S\
e v
gsicam
m = ) = 0/ YhO (\“Q
O z 0.436m % 2. Wga/\
- B P ik Ll —qUhel
§ % § %.037)71 < 0.008m Lvﬁ/‘/;i’y]'m
AT £ C? o v
= T ig(1) = = o ldg(1) (X4%
Mode 1 2 3 4 5 )

—

Figure 13.2.5 Effective modal masses and effective modal heights. j\ O lr'~zo

Earthquake excitation. The ground acceleration ii, (¢) is defined by its numer-
ical values at time instants equally spaced at every At. This time step Ar = 0.01 sec
is chosen to be small enough to define iig(7) accurately and to determine accurately the
response of SDF systems with natural periods 7, twgt of which is 0.2966 sec.

Response of SDF systems. The deformation response D, (¢) of the nth-mode
SDF system with natural period 7, and damping ratio ¢, to the ground motion is deter-
mined (step 5b of Section 13.2.4). Thm-s_tgpmg_]w@ ation method (Chap-
ter 5) was implemented to obtain discrete values of D, at every Ars. For convenience,
however, we continue to denote these discrete values as D, (). At each time instant
the pseudo-acceleration is calculated from A, (1) = w?D, (). These computations are
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Figure 13.2.6 Displacement D, (r) and pseudo-acceleration A, (t) responses of modal SDF

systems. v
o bl Ma T YEmpwd 2GS 2%

g oA, AP

implemented for the SDF systems corresponding to each of the five modes of the struc-
ture, and the results are presented in Fig. 13.2.6.

Modal responses. Step 5c of Section 13.2.4 is implemented to determine the
contribution of the nth mode to selected response quantities: Vj, Vs, My, and us. The
modal static responses (Table 13.2.3) are multiplied by A, (Fig. 13.2.6) at each time step
to obtain the results presented in Figs. 13.2.7 and 13.2.8. o

These results give us a first impression of the relative values of the response con-
tributions of the various modes. The modal static responses (Table 13.2.3) had suggested
that the response will be largest in the fundamental mode and will tend to decrease in
the higher modes. Such is the case in this example for roof displacement, base shear,
and base overturning moment but not for the fifth-story shear. How the relative modfll
responses depend on the response quantity and on the building properties is discussed 1n
Chapter 18.

«

Total responses. The total responses, determined by combining the modal con-
tributions r,(t) (step 6 of Section 13.2.4) according to Eq. (13.2.10), are Shf)Wrl n
Figs. 13.2.7 and 13.2.8. The results presented indicate that it is not necessary (0 .1nclude
the contributions of all the modes in computing the response of a multistory building; the
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Figure 13.2.7 Base shear and fifth-story shear: modal contributions, Vj, (t) and Vs, (1), and total
responses, V), (1) and Vs (1).

lower few modes may suffice and the modal summations can be truncated accordingly. In
this particular example, the contribution of the fourth and fifth modes could be neglected;
the results would still be accurate enough for use in structural design. How many modes
should be included depends on the earthquake ground motion and building properties. This
issue is addressed in Chapter 18.

Before leaving this example, we malgﬁ three.additional observations that will be es-
pecially useful in Part B of this chapter. \-First,ﬁ,ﬁs seen in Chapter 6, the peak values
of D, (t) and A,(t), noted in Fig. 13.2.6, can be determined directly from the response
spectrum for the ground motion. This fact will enable us to determine the peak valug of
the nth-mode contribution to any response quantity directly from the response spectrum.

econd) the contribution of the nth medg to every response quantity attains its peak value
at the same time as A, (1) does. éhir%he peak value of the total response occurs at a
time instant different from when the individual modal peaks are attained. Furthermore,
the peak values of the total rgsponses for the four response quantities/occur-at different
time instants because the reldtive values of the modal contributions vary with the response

quantity. i 20 5
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Figure 13.2.8 Roof displacement and base overturning moment: modal contributions, us, (¢) and
My, (), and total responses, us(t) and Mpy(t).

13.2.7 Example: Four-Story Frame with an Appendage

This section is concerned with the earthquake analysis and response of a four-story build-
ing with a light appendage—a penthouse, a small housing for mechanical equipment, an

advertising billboard, or the like. (This example is presented because it brings out certain
special response features representative of a system with two natural frequencies that are
| two natural frequencies that are

)

System properties. The lumped masses at the first four floors are m; = m, the
appendage mass ms = 0.01m, and m = 100 kips/g. The lateral stiffness of each of the first
four stories is k; = k, the appendage stiffness ks = 0.0012k, and k = 22.599 kips/in. The
height of each story and the appendage is 12 ft. The damping ratio for all natural modes is
¢n = 5%. The response of this system to the El Centro ground motion is determined. The

analysis procedure and its implementation are identical to Section 13.2.6; therefore, only &
summary of the results is presented.
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where D(t, @y, ¢) and A(f, wy, ¢) denote the deformation and pseudo-acceleration responseg
respectively, of an SDF system with natural frequency wy and damping ratio ¢ to gr()uﬁ(i
acceleration iy (). Frames B and C would experience no forces.

For the symmetric-plan system associated with Example 13.8, wy, = 6.344 (see Exam_.
ple 10.7) and the damping ratio is the same, ¢ 5%. The response of this SDF system b
computed from Egs. (a) to (¢) and shown in Fig. E13.9, where it is also compared with thé

response of the unsymmetric plan system (Example 13.8). Itis clear that plan asymmetry hag
the effect of (1) modifying the lateral displacement and base shear in frame A, and (2) cays.
ing torsion in the system and forces in frames B and C that do not exist if the building plan
is symmetric. In this particular case, the base shear in frame A is reduced because of plap
asymmetry, but such is not always the case, depending on the natural period of the structure,
ground motion characteristics, and the location of the frame in the building plan.

13.4 TORSIONAL RESPONSE OF SYMMETRIC-PLAN BUILDINGS

In this section the torsional response of multistory buildings with their plans nominally
symmetric about two orthogonal axis is discussed briefly. Such structures may undergo
“accidental” torsional motions for mainly two reasons: the building is usuall}@ not perfectly’
symmetric, andthe spatial variations in ground motion may cause rotation (about the ver-
tical axis) of the building’s base, which will induce torsional motion of the building even
if its plan is perfectly symmetric.

Consider first the analysis of torsional response of a building with a perfectly sym-
metric plan due to rotation of its base. For a given rotational excitation i g (1), the gov-
erning equations (9.6.1) can be solved by the modal analysis procedure, considering only
the purely torsional vibration modes of the building. This procedure could be developed
along the lines of Section 13.3. It is not presented, however, for two reasons: (1) itis
straightforward; and (2) in structural engineering practice, buildings are not analyzed for
rotational excitation. Therefore, in this brief section we present the results of such analysis
and compare them with building torsion recorded during an earthquake.

Consider the building shown in Fig. 13.4.1, located in Pomona, California. This
reinforced-concrete frame building has two stories, a partial basement and a light pent-
house structure. For all practical and code design purposes, the building has a nominally
symmetric floor plan, as indicated by its framing plan in Fig. 13.4.2. The lateral force-
resisting system in the building consists of peripheral columns interconnected by longitu-
dinal and transverse beams, but the L-shaped exterior corner columns as well as the interior

coW@gned especially for-carthquake fesistance. The 00r
decking system is formed by a 6-in.-thick concrete slab. The building also includes wall§ mn
the stahlveH\S}EEm—concrete walls in the basement and masonry walls in upper stories:
Foundations of columns and interior walls are supported on piles.

The accelerograph channels located as shown in Fig. 13.4.3 recorded the motion of
the building during the Upland (February 28, 1990) earthquake, including three channels

of horizontal motion at each of three levels: roof, second floor, and basement. The.Peak
accelerations of the basement were 0.12g and 0.13g in the x and y directions, respectlvel)’-

T —

7[1»:««)

-~

)
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Figure 13.4.1 First Federal Savings building, a two-story reinforced-concrete building
(with a partial basement) in Pomona, California. (Courtesy of California Strong Motion

Instrumentation Program.) 2 lg 1 ”,L ? i/h =

2

These motions were amplified to 0.24¢g in the x-direction and 0.39g in the y-direction at
the roof. The building experienced no structural damage during this earthquake.

——Some of the recorded motions are shown in Fig. 13.4.4. These include the
x-translational accelerations at two locations at the basement of the building and at two
locations at the roof level. By superimposing the motions at two locations on the roof in
Fig. 13.4.5 it is clear that this building experienced some torsion; otherwise, these two }-0 g
motions would have been identical. Assuming rigid base, its rotational acceleration 1s
compu?ed as the difference between the two x-translational records at the basement of the +2 «.<¢
building divid(m%%bMtational base accelera-
tion is mulfiplied by /2, where the building-plan dimension b = 109.75 ft, and plotted in
Fig. 13.4.6. The peak value of (b/2)iig(t) is 0.029g compared with the peak acceleration
of 0.12¢ in the x-direction. 0.03

The torsional response of the building to the rotational motion of the basement,
Fig. 13.4.6, is determined by modal solution of Eq. (9.6.1) with modal damping ratios
of 5%. These damping ratios were estimated from the recorded motions at the roof and
basement using some of the procedures mentioned in Chapter 11, Part A. The response
history of the shear force in a selected column of the building is presented in Fig. 13.4.7.
This is only a part of the element force due to the actual torsional motion of the building
during the earthquake, as will be demonstrated next.

Approximate values of the element forces due to recorded torsion can be determined
at each instant of time by static analysis of the building subjected to floor inertia torques
Lojiiy(t) at all floors (j = 1,2,..., N), where Iy, is the moment of inertia of the jth
floor mass about the vertical axis through O, the center of mass (CM) of the floor, and
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Figure 13.4.3  Accelerograph channels in First Federal Savings building.
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Figure 13.4.4 Motions recorded at First Federal Savings building during the Upland earthquake of
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Figure 13.4.6 Rotational acceleration of basement multiplied by /2. [From De la Llera and Chopra
(1994).] a2 :
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lizg is the torsional acceleration of the jth floor diaphragm. By using these inertia forces
as equivalent static forces, we have included the damping forces and this 1s a source of
approximation (see the last paragraph of Section 1.8.2). The results of these static analyses

for the shear force in the same column are also presented in Fig. 13.4.7.

Y This figure show that the peak force due to rotational basement motion is about 45%
of the peak force due to the actual torsional motion of the building. The remaining 55% of
the force arises, in part, because this building is not perfectly symmetric due to several fac-
tors, the most obvious of them being the stairwell system shown in Fig. 13.4.2, and because
the basement, which is under one-half of the floor plan, is not symmetrically located.

ﬁfec)‘;[]sional motion of buildings with nominally symmetric plan, such as the building of
Fig. 13.4.1, is usually called accidental torsion. Such motion contributes a small fraction
of the total earthquake forces in the structure. For the building and earthquake considered,
accidental torsion contributed about 4% of the total force (results not presented here), but
Jarger contributions have been identified in the earthquake reéspomseof other buildings.
The structural response associat ith accidental torsion is not amenable to calculation in
structural design for two reasonm ) the rotational base motion is not defined, and (2) it 1s
not practical to identify and analyze the effe‘\ct_of each source of asymmetry in a building
with nominally Symmetric plan. Therefore, building codes include a simple design provi-
sion to account for accidental torsion in symmetric and unsymmetric buildings; in the latter
case it is considered in addition to torsion arising from plan asymmetry (Section 13.3). Re-

search has demonstrated deficiencies in this code provision.
el 2

13.5 RESPONSE ANALYSIS FOR MULTIPLE SUPPORT EXCITATION

In tbis section the' modal analysis procedure of Section 13.1 is extended to MDF systems
excited by prescpbed motions iiy (1) at the various supports (I = 1,2, ..., Ng) of the
structure. In Section 9.7 the governing equations were shown to be the same as Eq. (13.1. 1),
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amplitudes of motion expected during the earthquake should be included in the structural
idealization; and their stiffness properties should be determined using realistic assump-
tions. Similarly, as discussed in Chapter 11, selection of damping values for analysis of a
structure should be based on available data from 1ec01ded earthquake responses of similar

structures. mt.lﬂ‘ﬂﬁ‘) §$ﬂ’ .’
»
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The response history analysis (RHA) procedure presented in Part A provides structural t‘
response r(t) as a function of time, but structiiral désigniis'usually based:onthe peak values
of forces-and deformations over the duration of the earthquake- induced: lesponse.ﬂan the £ 3]

hquakes, which w g be determined directly up for the ground motion ‘o .
7. These results without ca Lo sis? _F_wF systems the answer to this 24 g

u
he-answer is-a Qualified yell The iax. 7o

question is yes (Chapter 6). However, foriMDE Sysiemis|
peak response of MDF systems can be calculated from the response spectrum, but the result » of_
is not exact—in the sense that it is not 1dent1cal to the RHA result; the estimate obtained Cor e &~
> s accurate enough for structural désign a tions, however. In Part B we present such
¢o response spectrum analysis (RSA) procedures for structures excited by a single component
of ground motion; thus simultaneous action of the other two components is excluded and
W > multiple support excitation is not considered. However, these more general cases have been
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Dny ﬁ'}w% recalling that the peak’ value’of A, () is available from the pseudo-
ce eralion s as its ordinate A( T“ S" ), denoted as A, for brev1ty Therefore,

"
2 A o = i, e=fram PAD (13.7.1)
Kl“he algebraic sign of r,, is the same a at of r* because A, is positive by definition.

Although it has an algebraic sign, r,,! will be u:ferred to as the peak modal response
because it corresponds to the peak value of A, (). This algebraic Sign must be retained
because it can be important, as will be seen in Section 13.7.2. All response quantities r, ()
associated with a particular mode, say the nth mode, reach their peak values at the same

ural periods and /&8
ility of this ide-
se structural and

tThis notation r,y, shouldot be confused with the use of a subscript o in Chapter 6to denpte the maximum
structure at the

(over time) of the absolute value of the response quantity, which is positive by definition.
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time instant a3 A (1) fe'lches 1ts peak (see Figs. 13.2.6 to 13.2.8, 13.2.10, 13.2.11, and

E13. 8a=d). s
@/ Aﬁ’
13.7.2 Modal Combination Rules € %53 e
How do we combine the peak modal responses r,, (7 = 1,2, ..., N) to determine 1l
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shezu it the top story of a five-story frame are presented. The individual modal Tesponses

L, in comblmng the- peak modal responses

od prov1des air upperboui

¥ Mswﬂl

o SZII‘"OI (.kk‘ﬂu/” ‘70(4|/1tl>
n=1 _/

TJO
rule is NOLPOPE rr m@ﬁmﬁ @I@&n

[

/b

The peak reSpcmse n each mode is sqmm‘ed, the squm ed modal peaks are summe

hmltanns of»th SRSS-1

RSO R

& el C

- A ‘gm:r W‘ "
ble to a wider class of structures as 1t ovelcomes
ing to the CQC rule,

CRdoms 0ot (N N yﬂ
Fo 22

lile. Acc

|

A/\/J)?\’"’ r’c'l/]/ — Z Z PinTioTno

i=1 n=1

ettt st d

Sec.

betwe

to she
of Eq
inclu
Cross
for th
Thus
e
paren

formm
are ic
the ¢
for h
(198:

and }
cient:

This
frequ




IS Chap. 13 Sec. 13.7 Peak Response from Earthquake Resporise Spectrum 557

), 13.2.11, a between 0 and 1 and pin = 1fori =n. Thus Eq. (13.7.4) can be rewritten as

N (2
Fo = (Z no T Z Z pm’wrno> (13.7.5)

n=l1 i=l n= (/Qa;\"'[r\/\
Vi T~ =2 (voss CRY”
/,'&,Wé% ot &1 W

y determine th
le to determig~
2 () attain th

to show that the first summation on the right side is identical to the SRSS combination ghile
of Eq. (13.7.3); each term in this summation is obviously positive The double summgfion
includes all the cross (i # n) terms; each of these teuns HETBE positive or negativies A
~cross term is negative when the modal static responses r{* and St assume opposite signs—
for the alcreblfuc Slgll of 7 "o is the same as that of rSt because A,l is positive by definition.

; B . {HECQC] riil:c__‘ inay:belarger-orsmallertharithe esti-
ngal A t can be shown that the double symmation inside the ‘
ion is availabl parentheses of Eq (13 7.4y is always positive.] ' ‘ 2'11; or% |
aks oceur at fh A Starting in the late 1960s and continuing through the 1970s and early 1980s, several
1e peak valué ‘  formulations for the peak response to earthquake excitation were published. Some of these
' are identical or similar to Eq (13 J7.4) but differ in the mathematical expressions g1ven f01
' the correlation coefficiett. EAnclude to; one due toBEROsERblUSthAGd LS
becaxuse it was apparentlx. thes éarlles‘t;(1969) result; and ,a second

1) due to A. DggKigienligirbecause it i iow 1de1§§T§.Ea —EEep GEE !
The 1971 textbook Fi zm(lamentals of Ea; thquake Engineering by N. M. Newmark

and E. Rosenblueth gives the Rosenblueth-Elotduy equations for the correlation coeffi-

clent: ’

in = 13.7.6
| 8 11+6m o (13.7.6)
e LAY 9
F’Eﬁ V 1 — i — oyl gn , \2
F% €in = ; . +§ - =t - (13.7.7)
re sumimed; ” i 2%n .
nse. As wil and g-is:the duration of the sttong-phase of-the eaythyuaky excitation. Eqmﬁtm@m (13.7.6)

and (13.7.7) show that Pin = Pui; 0 < pin < 1;and p;, = L fori = n or for two modes
with equal frequencies and equal damping ratios. It is instructive to specialize Eq. (13.7.6)
for systems with the same damping ratio in all modes subjected to earthquake excitation)

with duration g long enough to replace Eq. (13.7.7b) by ¢, = ¢,. We substitute's; = ¢, = ¢
’ in Eq. (13.7. 7a) 1nt10duce Bin = wi/w,, and insert Eq. (13.7.7a) in Eq. (13 7.6) to obtairt

{ (14 Bin)?
;Blll)’) + 4; ﬂlll

\ation is applc
SS rule. A

8'\/ é-i é-n (,Bin é‘i + é‘n)/s?n/z
(l - ,B,,l)7 + 4;: guﬂux(l + /3“1) + 4(;; + é'n),Bm

This equation also implies that p;, = pui, Pz = 1 for i = n or for two modes with equal
frequencies and equal damping ratios. For equal modal damping & = ¢, = ¢ this equation
P e e S g S A

(13.7.9)

Pin =

«© peak respo
modes; pjn VaLLE:

(Megn ¢xhent yalar ) RepP h Exbreme
p-gobe % pecks
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simplifies to

= S B (1371
"= B+ 4B (L Bin)?
{Fignees13. 7.1 'shows qu?f_(li%..?:{%)_‘ and (13.7.10) for the correlation coefficient i, plotte

TS a function of fj, = w;/w, for four damping values: ¢ = 0.02, 0.05, 0.10, and 0.20
Observe that the two expressions give essentiall identica L0

neighborhood of Bin = 1, where p;, is the most signjlaa,pt_

This figure also provides an.un

that t¥EORIERIRRIINIShES;

Ay

In other words, it 1§ 0nly.in:a Darrow, tange of Bin. 7

ther;apart.,This is pspeciallyithecase:atsmalldampi

values; @nd this range depends on damping. For example, i
i ¥ 1488 For structures with well-separated n
frequencies the coefficients . vanish;-as a result all cross (i 7 n) terms in the cQC
Eq. (13.7.5), can be neglected and it reduces to the SRSS rule, Eq. (13.7.3).\It

_5_% damping over the frequency Tatio
this range is reduced to 1g/4:18;%

Correlation coefficient py,

————— Eq. (13.7.8)
Eq. (13.7.10) 1

0.02 =

= .

&4 05 06 07 08 09

t l.' Y - |
1 1Ay { 2
T9YP.

P,

Frequency ratio Py, = ©;/ @, g

v .
%7 o Figure 13.7.1 Variation of correlation coefficient p;, with modal frequency ratio, Bin =
w;/wy, as given by two different equations for four damping values; abcissa scale is loga-
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,_..

ell-separated natural frequencies: of those,
: modes ,that_gqpfrlbute*mgmﬁcantl L07HTE response S
(13.7.10 i = The SRSS and CQC rules for combination of peak modal responses have been

M“ presented withoGt: the underlying-derivations based-On?ﬁudcm,avibrahm_theory, a sub-

that the SRSS.rule. applies to* structures with

et

#d ject beyond the scope of this Dook. It is important, howevet, to recognize {HEEpli-
» ¢oat1onsvfofv¢the“assumpt‘Lons“behm‘d"'the“’de"v;txons These assumptions indicate that the
Y modal combination rules would be most accurate for earthquake excitations that contain
ea’w1de ‘band-of frequencies-gith-long-phases vt BtOHE shakitly, which are several times
) loncrel than the fundamental periods of the structures, which are Aot 60 lightly damped
ad &, move fa 2% | (L, > 0.005).Qh pacticular, these modal combination rules will become less accurate for
' short-duration Rupulsive ground motions and are not recommendsd f@i‘MS
that contatit maty cycles of essentially harmonic excitation. T

- r Considertig that the SRSS an C modal combina®on riles are based on randuﬁhm)
damping is 2% vibration theory, FESHOUL gted-agithe T e off gmak%lu@s{gfréﬁpgn‘“@fgo 4T %
° At X ensamblw@ffé*tflfq"ﬁ‘ik@"é‘it@i‘tﬁﬁ'o‘ ‘hus the modal combination rules are intended for

the CQC rull .
).iIt is now clear

TR Rrsea A1

use When the excitation is characterized by a smooth response ign) spectrum, based
7.8)
7.10)

sient oy plotte“
0.10, and 0.2

m’L
’i’iz.g

-on the response spectra for many earthquake é‘<c1t1t1ons' The smooth spectrum may be
" the mean or median of the individual response spectra Or it may be a more conservative
x%aespecnum such as the mean-plus-one-standard-deviation spectrum (Section 6:9). The CQC
d) or SRSS modal combination rule (as appropriate depending on the closeness of natural
frequencies) when used in conjunction with, say, the mean spectrum provides an estimate
of the peak response that is reasonably close to the mean of the peak values of response
to individual excitations. The error in the estimate of the peak may be on either side,
conservative or umconsesvative, and is usually no more_than several percent f01 typical
- structires and sartheualess; see examples later.

It has been fownd that Bq. (13.7.3) or (13.7.4) also approximates the peak response to
a single ground motion characterized by a jagged response spectrum. The errors are larger, )
however, in this case: perhaps im the range of 10 to 30%, depending on the fundamental
period of the structue; see examples later.

N

120

13.7.3 Interpretation of Re‘sponise Spectrum Analysis

p The response spectrum analysis (RSA) described in the pre¢eding section is a procedure
[ for dynamic analysis of a structure subjected to earthquake excitation, but it reduces to a se-
ries of static analyses. For each mode considered\'static analysis of the structure subjected
to forces s, provides the modal static response r;', which is multiplied by the spectral
ordinate A, to obtain the peak modal response r,, [Eq. (13.7.1)]. Thus the RSA proce-
\ dure-avsids the dynamic analysis of SDF systems necessary for response history analysis
(Fig. 13.1.1). Howeve Aisstill-a-dymamic analys’is*greeedureﬂ becme i’L' uSes the
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13.8 MULTISTORY BUILDINGS WITH SYMMETRIC PLAN

13.8.1 Respon ‘Speg¢ ‘tﬁIm‘Ahailysrs‘ Procedure
5‘ was ¢

statlc ani
multistory buildings with their plans having two axes of symmetry subjected to hori
ground motion along one of these axes. The peak value! of the nth-mode contributiol
to aresponse quantity is given by Eq. (13.7.1). The modal static response r, s calcu
by static analysis of the building subjected to lateral forces s, of Eq. (13.2. 4) Equat1
f01 seve1a1 1esponse qmntltles are aV'ul'tble in Tab]e 13.2.1. Substltutm0 these fo

wl Iﬁn ¢jnDu ' I“n (¢jn - ¢j—l n)Dn V ]
@ e @ v

T, and dampmcy ratio {,,, = A,,/co
Equations (13.8.1) for the peak modal 1eSponses are equwalent to static analysis
_the building subjected to the e ;

%/, In this section the respornise spectrurm analysis procedure of Section 13.7 is specializ

regpofse: g e -
@ K‘ﬁ%ﬁ»% ) ?I= SnA fjn = 11-n777~j¢jnAn - %
‘ where f, is the vector of forces fj,, at the various floor levels, j =1, 2,
s, is defined by Eq. (13.2 4). The force vector f, is the peak value

Floor ‘ » ‘ fM'BM@\ =

N -
J .ﬁn : =" Ujp
(SRS & ca
5 .
1 -
Figure 13.8.1 Peak values of Jateral i
. displacements and equivalent static Ja{er/28
7707077, forces associated with the nth mode.

tFrom now on, the subscript o is dropped from r, for brevity [i.'é.,-l_' will denote the peak value of 7:(1;
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replacing A, (¢) in Eq. (13.2.7) by the spectral ordinate A,. Because only one static anal-
ysis is required for each mode, it is more direct to do so for the forces £, instead of s, and \
then multiplying the latter results by A,. In contrast,.the use of the modal static response \
r5t was emphasized in response history analysis because it highlighted the fact that the
.. static analysis for forces s, was needed only once even though the response was computed
. at many time instants.
Thus the peak value r, of the nth-mode contribution to a response quantity r is de-
termined by static analysis of the building due to lateral forces £,; the direction of forces
fin is controlled by the algebraic sign of ¢;,. Hence these forces for the fundamental
- mode will act in the same direction (Fig. 13.8.1), but for the second and higher modes they
ing moment i/ : will change direction as one moves up the building. Observe-that-thissstridysisTys
i ESLOLY .—(I*B*Srla)zprowdes dhe | o
e peak vz of the total iesponse is estimated using the C
modal c@mbtmt‘m@m LLﬂes @‘f Eq (13.7. 3) or (13.7.4 4), s 2 '"Lpp‘ropuate including all modes
that contribute significantly to the response. o e

e

; specialized |
ed to horizonts
yntribution 7, |
rtis calcul
2. Equation

_ @mm.u\g_ry The procedure to compute the peak response of an N-story building
with p‘hﬁ symmetric about two orthogonal axes to ear thquake ground motion along an axis
~ of symmetry, characterized by a response spectrum or design spectrum, is summarized in

itatic analysis
step-by-step form:

nth-mode p

, 1. Daﬁneathe-strucmLal;pf@perflés
(133 s : a. Determine the mass matrix cm-and lateral stiffness matrixtk (Section 9.4).
b. Estimate the modal damping ratios &y (Chapter 11).

'_; 2. Determine the natural frequencies iy (natural periods 7, = 2mw/w,) and natmal
modessgit of vibration (Chapter 10)

3. Covgpugetiterpeak response in the nth mode by the following steps to be repeated for

all modes, n = 1, 2,...,N:

a. Corresponding to—natural period T, and damping ratio {,, 3% By-and-4;5 the
deformation and pseudo-acceleration, fromrther, hqdugzlggggysgonsevs.‘gggg;umpr
theydesignspectoum.

b. Compute the ﬂm‘ﬁdm lacementsand story ‘drrfits flom Eq. \(13 8.1a).

c. Compurestisteyuigalent-static-latepal-forses-fy froth Eq. (13.8.2).

d. Compute the story forces—shear and oveLturmncr moment——and element
forces—bending moments and shears—y yStaticrans ,_, SOITE .;“S."‘f)
jested: FtorlateralfOrCEys), - .

Betermireanes \gate'forthe*peak“vajm’r‘ gf-any-response-quantity=by-combining
th&peak..modah,value ,.aoemdmgmto-the—-SRSS*rﬁle e "Eq. (13.7.3), if the natural

N (Fig. 13.8
(t), obtained

flequenmes are Wwell S'ep’l‘f’ftea TI““CQC rule Eq (13.7.4), should be used if the
natural frequencies are closely spacéd.

llues of lateral ]
ralent static later:
1e nth mode.

eec 0 0E LD Tor only these modes G the modal combmmns of
Eqs (13.7.3) and (13.7.4) truncatedaccordingly.

eak value of r (tj

How many modegy +°, éaml,‘me ?
I3 9"% Effective Modal maae ruwle

R — e S M-‘ ”r‘ LM
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CSan Gale 3.2, P SU8
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Example 13.11
The peak response of the two-story frame of Example 13.4, shown in Fig. E13.11a, to gt
motior characterized by the design : 0. 0.
celeration is to be determined. This reinforced-concrete frame has the following prope
E =3 x 10° ksi, ] = 1000 in%, & = 10 ft, L = 20 ft. Determine the lateral displaceme
the frame and bending moments at both ends of each beam and column.

an

is g
y— AN A{> 12
‘ET LV EI - 2 ’ the
0 EI —|EI 0, Ya
= U3 Uy
. & N O l,> u ? EI
= Ve P 4
Wl 2B - |2EI
- L=20 w
) | (b) »
179 kip-ft
. = 1
—~ ;) \§
317 kip-ft X
& ot / ' B
) 425 Kip-ft —Q L 37axip s R ) th
\389 kip-ft -\ 57 kipft” /
N\ ( ( .
N 72 T 77 St
968 kip-ft : 412 kip-ft gi
) la
@ . ©
Figure E13.11
- M ? ﬁ \ gm i _ Solution Steps 1 and 2 of the summary have already been implemented and the resultsiaiy
2] :

available in Examples 10.5 and 13.4. Substituting for E, I, and h in Eq. (b) of Exampls it

> é‘-’w VM gives wp and Ty, = 27/ ey
taen, @ =4.023  w;=10.71rad/sec
T, =1.562 T, = 0.5868 sec

Step 3a: Conespondiné to these periods, the spectral ordinates are D1 = 13.72'11
Dy =4.578 in. . ) ——
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L. Detetrine the floot displacements. §
Step 3b: Using Eq. (13.8.1a) with numetical values for T'y and ¢jy from Example 13.4
and D,, from step 3(a) gives the peak displacements due to the two modes: '

TR e LS _[m} B [0.387[ _{ ’7252!}
Am =M. U=y, v1_1'365 | }13.72_ 18.73 in.

( fu) _ —1.292 [ 215 .
w={1 = 0365 7| }4.578_—{_1.672}111.

3.11a, to groun
seak ground a
wing propertie
lisplacements’

Step 4: Using the SRSS rule for modal combination, estimates for the peak values of
the floor displacements are . ' '

g =2 +/(7.252) + (2.159)2 = 7.566 in.

_ \/
1y =~ /(18.73)2 + (—1.672) = 18.8L in.

2. Determine the element forces. Instead of implementing steps 3c and 3d as described
in the summary, here we illustrate the computation of element forces from the floor displace-
ments and joint rotations. The elements and nodes are numbered as shown in Fig. E13.L1b.
First mode. Toint rotations are obtained from Eq. (d) of Example.9.9 with u; replaced

by u;:
u3 —0.4426 —0.2459 —6.514
CJua | _ 1| 04426 02459 )\ [ 72527 —6.514 | _ 152
U0t = o T 20| 09836 —0.7869 1[-18.73 ]‘ —6.340 | © :
g ) 1 0.9836 —0.7869 | | 6340 = o=

From u; and ug; all element fofces-can bé calculated: For example, the bending moment at’
the Tefit end of the first floor beam (Fig. E13.11c) is

- 4EI 2EI . . 6EI 6EI

' . ,'B?" A’[a = Tea + TG[, + tha - —L—z'ub
Substituting E = 3 x 10% ksi, [ = 2000 in*, L =240 in,, 60 = us, O = 4y g = Up =0
gives M, = —9770 kip-in. = —814 kip-ft. Bending moments in all elements can be calcu-

lated similarly. The results are summarized in Table E13.11 and in Fig. E13.1 1d.

’

TABLE E13.11 PEAK BENDING MOMENTS
(KIP-FT)

Element Node Model Mode?2 SRSS

Beam 1 3 —814 — 57 816
4 —314 - 57 816
Beam 2 5 ¢ —396 179 435
6 - —396 179 435 -
Column 3 3 425 374 566 0 T -
1 968 412 1052
Column 5 5 396  —179 435
3 389 —-317 . 502
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Second mode. Toint rotations ugy are obtained from Eq. (d) of Example 9.9
replaced by uz. Computations for the element forces parallel those showr for the fi st
but using uy and ugg, leading to the results in Table E13.11 and in Fig. E13.11e.

Step 4: The peak value of each element force is estimated by combining its pea
yalues by the SRSS rule. The results are shown in Table E13.11 | Note that the algebraic §isn$
of the bending moments are lost in the total values; therefore, it is not meaningful to draw:ihs
bending moment diagram and the total moments do not satisfy equilibrium at joints. E

13:8:2 Example: FiverStory Shear Frame

/\Ij In this section the RSA procedure is implemented for the five-story shear frame

F°“ ab) P 12.8.1. The complete history of this structure’s res onse to the El Centro ground Mot
' _ was determined in Section 13,2.6. We now estimate its peak response directly f;

Q ( ‘ response spectrum for this excitation (i.e., without computing its response history) 2§
Presented in Sections 12.8,and 13.2.¢ were the mass and stiffness matrices”

L .' s . — b

_ natura] vibration periods and modes of this stry chure.. From these data, the modal pr

M, and L were computed (Table 13.2.2). The damping ratios are estimated as &,

Response s rdin
ground motiof 10F 370 ¢ ] values of D, and A, noted in Fig. 13.8. .

v - sponding to the natural periods Iy. These are the precise values for the spectral ordin
the peak values of Dy (z) and A, (r) i Fig. 13.2.6, thus eliminating any errors in f&4
spectral ordinates. Such errors are inherent in practical implementation of the R, ]})j

cedure with a jagged response spectrum, but are eliminated if a smooth design speECTUITS

such as Fig. 6.9.5, is used. e e

Peak modal respopses. The floor diSplacements aré determined

- Eq. (13.8.1a) using known values of ¢ (Section 12.8), of Lf; (Table 13.2.2) and
(because M, = 1), and of D, (Fig. 13.8.2). For example, the floor displaceme: (
the first mode are computed as follows: -

—— U354 TUTen
ofpm™ . 061 | - |3.677
T.12 w = Iy, Dy = 1.067 ] 0.895 F 5378 = { 5139 pin. >
R 1078 | 6.188 oV
A_is"n’-ﬁ'."ﬂd.‘“\f- 1173) 16731

02“ ;\z' These displacements are shown in Fig. 13.8.3a. The equivalent static Torces £
- mode are computed from Eq. (13.8.2) using known valués of Ty, @y mj =m =1 X7

'7\ and A, (Fig. 13.8.2). For example, the forces‘associated with the first mode are cot ,-;_-Lw

as follows:
mid1 0.334 4.899
mapa 100 0.641 9.401
f r ‘& ;=T 4 mags ¢ Ay =1.067— { 0.895  0.1375g = 13.141 ¢ kips
W M Y Am m4a1 & 11.078 , 15.817

—~f— (!/7 msdsi : 1.173 ’ 17.211

equiva

~and hi

forces
]
static

ble 13
base o
These
been e
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Figare 13.8.2 Earthquake responsé spectrum with natural vibration periods T;, of example structure
shown together with spectral values D, and A,.

F]

These forces are also shown in Fig. 13.8.3a. Alternatively, £, can be comp(itéd by multi-
plying known values of s, (Fig. 13.2.4) by A, (Fig. 13.8.2). Repeating-these computations
for modes 11 = 2, 3, 4, and 5 leads to the remiaining results of Fig. 13.8.3. Observe that'the
equivalent static forces for the first mode all act in the same direction, but for the second
and higher modes they change direction as one moves up the building; the-direction of
forces is controlled by the algebraic sign of @, (Fig. 12.8.2).

For each mode the peak value of any story force or element force is computed by
static analysis of the structure subjected to the equivalent static lateral forces f,. Ta-
ble 13.8.1 summarizes these peak values for the base shear V}, top-story shear Vs, and
base overturning moment M. The earlier data for roof displacement us are also included.
These peak modal values are exact because the errors in reading spectral ordinates had
been eliminated in this example. T his is apparent by comparing the data in Table 13.8.1
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(a) Mode 1 ? ~ (B)Mode 2t  (¢fModed " Table 13
£, (kips) uy (in.) £, (kips) us (in.) f3 (kips) “""ug (in.)
17.211 - 6.731 20.382 0.936 12.923 = 0.239
15.817 6.186 6313 0.290 9.245:\ 0.171
13.141 5.139 12.114 0.556 15.554 0.287
As expe
9.401 3.671 22.179 1.018 4.818 \ 0.089
4.899 1.916 16.934 0.777 16.925 0.31.3 .M.'
‘ _ -combini
a a . a a . a 4 Eqs- (13
GVM = 60.469 klpS \4———;ng = 24533}0]}3 UVM =9 Tt
My, = 2549.4 kip-t My =35433kipft My = 90.402 ki
(@Mode 41 (e)Mode 51
£y Gapsy © wa(n) £s (kips)—>+-—=="us (in.) .
4,,9511,—» ( 0.055 1141, 0.010 Substitn
0 06 rpe— R 0101 3.0614 0.026
2580 0,029 4,008 1 0.034 As expe
o R o . 7132781
6.920 =l=——xi' 0:077 3.684 = 0.032 T
8.330 _Nooss 5.188——$0.019
. , . 1
A TR eis s R YT
. My, =20986kipft . . Mz = 3718 Rip-ft Substit
_ Vi
Figure13.8.3 Peak values of displacements and equivalent Static tateral forees due tothe five maturAN Observ
vibration modes. » _ ) T
" and the peak modal values from response history analysis in Figs. 13.2.7 and 13
e sets of data agree except possibly for their algebraic signs because the peak val
and A, are positive by definition. - . ' ,
Alternatively, Eq: (13.7.1) could have ‘been used for computing the peak Ne.edec
response. For example,. the modal static responses Vi, and Mp, are availab] ratios /
. s ‘Tepeate

(9.2t (54

44

TABLE 1‘3.8.1 . PEAK MODAL RESPONSES

W Vs My us
Mode (kips)  (kips) kip-ft) (in.)
T2 s@a8d( 17211 25494 6.731

eF e teg) 2 24533 20382 35433 ~0.936
3 9867 12923 90402 0239

4

5

2.943 —4.951 —20.986 —0.055
0.595 1.141 3718 0.010

N
LT
e

-
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Table 13.2.3 and A, from Fig. 13.8.2. For example, the first-mode calculations are

e3
uz (in.) . . .
0.239 Vp1 = V5[ A = [4.398(100/2)]0.1375g = 60.469 kips
0.171 My = M} A = [(15.45)(100/g)12]0.1375g = 2549.4 kip-ft
0.287 As expected, these are the same as the data in Table 13.8.1.
0.089
-Modal éofmbination4=The peak value r of the total response r (£) is estimated by
0.313 combmmv the peak modal responses according to the ABSSUM, SRSS, and CQC rules of
Egs. (13.7.2) to (13.7.4). Their use is illustrated for one response quantity, the base shear. '
~ Vi3 =9.867 ki The ABSSUM rule of Eq. (13.7.2) is specialized for the base shear:
=90.402 kip-
-V < ZlVbn N (13.8.3)
—‘ n=1 !
Substituting for the known values of Vj, from Table 13.8.1 gives 0 Co¥Se tive

Vi < 60.469 +24.533 +9.867 +2.943 +0.595 or V, <.98:407kips &

.As expected, the ABSSUM estimate of 98 407 kips is much larger than the exact value of
73.278 kips (Fig. 13.2.7).
The SRSS rufe of Eq. (13.7. 3) is specialized for the base shear:

12 :
(Z V,,,L) : : : (13.8.4)
ll.-— . . - .
, Substituting for the known values of V, from Table 13.8.1 gives

Vi 2= +/(60.469)% + (24.533)2 + (9.867)2 + (2.943) + (0.595)2 — 66,066 kips  ~—= 'V“

the five natirraf’ Observe that the contributions of modes higher than the second are small.

1 The BQE fule of Eq. (13.7.4) is specialized for the base shear:
¢ 1/2 .
and 13.2 8 = i i pill Vbi Vbn - (1385)
» peak valu i=1 n=1 ’ -

5. Needed in this equation are the correlation coefficients p;,,, which depend on the frequency
v ratios By, = w;/w,, computed from the known natural frequencies (Section 13.2. 6) and

i repeated in Table 13.8.2 for convenience. _ ,
_— . ‘g M -
TABLE 13.8.2 NATURALFREQUENCY RATIOS{8), -
NASBAUSONA ih bt

Mode,i n=1 n=2 n=3 n=4 n=5]| w; (rad/sec)

ﬁ\ 0343 0217 0.169 0.148 3.1416

2919 ) 1.000 0.634 0.494 0.433 9.1703
4.602 | 1.576 1.000 0.778 0.683 14.4561
5
6

911 ) 2.025 1.285 1.000 0.877 18.5708
742/ 2310 1.465 1.141  1.000 21.1810

0N LW~

WAl Seq ayted
(Zkrgcas )
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TABLE 13.8.3 CORRELATION COEFFICIENTS pin

Earthquake Analysis of Linear Systems

Cha ec. 13.8

l Mode,i n=1 n=2 n=3 n=4 n=5
( dry@@,@k o 1 1.000 RQO7 0.003 0.002  0.001
C : _ 2 007~ 1-000—6:044 0018 0.012
W@% 3 ( 0003 0044 “1.000:0136 0062
4\ 0002 0018 0136 A0 - 0365
5 0001 0012 0062 0.363% 1.000,
—

TABLE 13.8.4 - INDIVIDUAL TERMS IN CQGC RULE:

BASE SHEAR Vjp

Mode,i n=1 n=2 n=3 n=4 n=35
1 3656476 10172 1615 0306 0.049
2 10172 601.844 10.687 1284 0.178
‘3 '1.615  10.687 97.354 3.943 0365
4 0.306 1284 3943 8.658 0.639
5 0.049 0.178 0365 0.639 0354

T, (8

= 66-%
0.05 and presemied .’ able 13.3.3. Observe that th
(i # n) are small because the narral freg i
separated. .

The 25 terms m the double summe

= Vo CIRSS) =0h .0

25 terms and taking the square root gives Vi

putational details for estimating

RHA values; this is not a general

with the response quantity. It is about 15%

For each f;, value in Table 13.8.2, pin is determined from Eq. (13.7.10)
UERTIes of the five-story shear frame ar

. nation of Eg. (13.8.5),computed using
values of py, (Table 13.8.3) and Vi, (Table 13.8.1), are given in Table 13.8.4. Addif)
~ 6.507 kips. It is clear that only thezs
terms are significant and the cross-terms (i # n) ar¢"small becavse the cross-correilLg
coefficients are small, ijemqth&fggymhm”mmﬁgﬁ&fmmm ;
qgmmrsghcst:efl?«wthrismitac;in’g_the.;cO;mﬁgt;@ﬁmafJi@?fgatz@- ‘

—3 Comparison of RSA and RHA results. The RSA estimates of peak
obtained from the ABSSUM, SRSS, and CQC rules are summarized in Table 1
gether with the RHA results from Figs. 13.2.7 to 13.2.8. In the preceding sectiof
the peak base shear by RSA were presented;-Sil
sesults for Vs, My, and us were obtained. These data permit several observation
ABSSUM rule can be excessively conservative and should therefore not be used
the SRSS and CQC rules give essentially the same estimates of peak response be
cross-correlation coefficients are small for this structure with well-separated na
quencies. Third, the peak responses estimated by SRSS or CQC rules are smalle
trend, however, and larger values can also be
when using a jagged response spectrum for a single excitation. Fourth, the error

(or CQC) estimates of peak response, expressed as a percentage of the RHA‘vavhwlg i

for the top-story shear Vs, 10% for theg
shear Vj, and less than 1% for the base overturning moment M, and top-floor displ

~
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i

TABLE 13.8.5 RSA AND RHA VALUES OF
PEAK RESPONSE

Vi Vs My, is
(kips)  (kips)  (kip-ft)  (in.)
ABSSUM  98.407 56.608 30188 7.971

Q@MW'@ SRSS'"v“‘"66‘066 < 30:074" _25756 26:800

DAY 25727 261934
7 25932 6847 g—-xh@;?."up

us. The error is largest for Vs because the responses due to the higher modes are most
significant (compared to othet response quan mtities considered) relative to the first mode
(Table 13.8.1). Similarly, the erFor i§ salilest for My because the higher-mode responses
are a very small fraction of the first-mode rESPORsE (Table 13.8.1).

Now consider a typical application of the RSA procedure in which the peak response
is estimated for excitations chamcterized by 4 smooth design spectrum, say the mean or
median spectrum derived from fmdividwal spectra for many ground motions (Section 6.9).
The ecror int this RSA estimate relative to tite mean of the exact peak values (from response
history analyses of the stracrure) for individwal excitations will be generally much smaller
than the errors noted above for 4 strgle excmtion—pmha_p_sw_sgleral percent.

FRET-

7.10) for ¢ :

N ## Obgerve that the peak value r of each response quantity was de-
termiined by a‘:@mbmmg the peak valués r, of the modal contributions to the same response
3 SR quantLty Thms is the r‘:@nect me of esmmmcmg the peak value of a response quantity.
sing the knog AT g 10 €O combined ak value of one response
> ‘ For example, it is de-
e oft @E)TTrI mg jUSt analyzed It is incorregt
: determm@. fis ‘p@f\k quue from AJ = g5 = iy, Where s and uy have been determined by
combiming their modal peaks us, and t4p; 1 Spé:*t:fV“ ely. The correct procedure to determine
As s by combiming the peak modal values, Asy = sy = u4,l ok,

f Similagly, it is erroneous to comiptite g & peak value of an internal force
from the combined peak values of other f@wesﬁ&n pmrtztcular, it is incorrect to determine the
~ story shears of story overturning momeants from the combinedpeak values of the _qqulent
static fi FHE S Combination of the peak values of the equivalent static forces fj;
for each mocde oﬁ the ﬁve—s:pxy shear building (Fig. 13.8.3) is shown in Fig. 13.8.4. Static

=
o)
3
<]
=
o
2
—

nted; s1mLI'L,L¢
itions. First ,{h

30.074 kips
o161
24.168
25787
25911

b d . B Figure 13.8.4 Wrong procedure for
~—— Vp=127.55Kips  computing internal forces.
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570 Earthquake Analysis of Linear Systems Chap;
analysis of the structure with these external forces gives the base shear V), = 127.55 ki
which is almost twice the correct SRSS value presented in Table 13.8.5. This errons
value is much larger because the algebraic §igns of f;, (Fig. 13.8.3) are lost in the
combination and the forces shown inFig. 13.8.4 are all i tlie same direction. -

e (o), 13 %)

=

13.8.3 Example: Four-Story Frame withy an Appenda ’g“e‘zﬂ%ﬁg
" RSNy

0 . . ; P -
j/ This section is concerned with the four=stary framme With alightappendage
where its response history due to Bl Centro ground FIOHON Was presented- In this s

ww the peak responses of the same STBCHTE are stasd By tie ROA procedure directly

N ro aro SR by T6 RS proceae ¢
- the response spectrum for the grownd FMOHH. e aAlyss Procedure and e defd
- its implementation are identical to those deseried il SEEHOR 13.8:2. Tiierefore;

sumymary of the results is presented.
Table 13.8.6 shows the natural periods T, and fiie aEoBIRed-SpeeHal 6TdiT
5% damping together with the, pepk modal FESPORSES for BWo FESponse uantity

TABLE 13.8.6 SPECTRAL VALUES AND PEAK
MODAL RESPONSES

Tn Dy 7] Vs
Mode (sec) (n) An/g (kips)  (kips)

2.000 5.378 0.1375 26.805 1.367
1.873 5.335 0.1556 25.429- —1.397
0.672 2.631 0.5950 19.816  0.027
0.439 1545 08176 6.414 —0.005
0358 0.928 0.7407 1.090  0:001

bW

shear V, and appendage shear Vs. The ratios By of natural frequencies are giv‘%i D]
Table 13.8.7. The correlation coefficients computed by Eqg. (13.7.10) for each B
ave listed in Table 13.8.8. ’ _

TABLE 13.8.7 NATURAL FREQUENCY RATIOS Bin

~ Mode, i n=1 n=2 n=3 n=4 n=>5 o (rad/sec)

1.000 0936 0336 0219 0.179 3.142
1.068 1.000 0359 0.234 0.191 3.355
2974 27785 1.000 0.653 0.532 9.344
4556 4266 1532 1.000 0.815 14.314
5589 5233 1.879 1227 1.000 17.558
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