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13.1 Boltzmann Statistics

* Distinguishability : Classical Statistics
In classical mechanics, trajectories can be built up from

the information of states of particles.

The trajectories allow us to distinguish particle whether

they are identical or not.
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13.1 Boltzmann Statistics

* Distinguishability : Quantum Statistics
In quantum mechanics, Our knowledge of states is imperfect
because the states are hobbled according to Heisenberg’s
uncertainty principle. It means that it is impossible to distinguish

identical particles.
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13.1 Boltzmann Statistics

° Boltzmann statistics
Boltzmann statistics is for distinguishable particles.
Therefore Boltzmann statistics is applied to particles of classical gas

or on there positions in solid lattice.

Consider N molecules with internal energy E in cubic volume V

Each energy level, €; has N; molecules with g; degeneracies.

ZN{ =N

two constraints of the system
’ X Nig; = E} Y
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13.1 Boltzmann Statistics

* Number of rearrangement
First, select N; distinguishable particles from a total of N to be placed

in the first energy level with arrangement among g, choices.
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13.1 Boltzmann Statistics

Next step is to do same work for 2" energy level among (N — N, ) particles
These works are done in sequence until last N,, particles are distributed.

Thus, the number of rearrangement becomes

Wp = 1_[Wi = ( nCn, - g1 x (n-n,Cn, - g2N2) X - (yC Ny, - o)

_ N! o) x (N = Np)! o) x o x N,,! ot
(N = NDINj1 91 (N = N, — N,)! N,! 72 0IN,! 7"

—)
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13.3 Boltzmann Distributions

* Boltzmann distributions

From Stirling’s approximation, In(N!) = NIn(N) — N

In(ws) = ) [In(N) + Ny In(go) — In(N))

= Z[ln(N!) + N; In(g;) — N; In(N;) + N{]

N; for jt* energy level is undetermined yet

— Method of Lagrange multiplier is used to obtain most probable
macro state under two constraints, > N; = N, ), N;e; = E

d(In(wg)) ~ O0(XN;—N) 0N —E)
o, t¢ T an. PPy =0
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13.3 Boltzmann Distributions

Applying method of Lagrange multipliers to Boltzmann distributions,

d(In(X[In(N!) + N;In(gy) — NyIn(N) + N;])) ~ 0(XNy) | O(XNiep) 0
aNi ta aNl aNl B

—)

Then, number distribution becomes Boltzmann distribution

function
n(5)=as
nl—|=«a €;
i l

N;i/g; = edthei = fi(&)

— # of particles per each quantum state for
the equilibrium configuration
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13.3 Boltzmann Distributions

« Physical relation of constant
In(wg) = In(N!) + Z[Ni In(g;) — N; In(N;) + N;]
= In(N!) + Z[Nl- In(N;e~®P€) — N; In(N;) + N{]
= ln(N') + Z[Nl ln(Nl) - C(Ni — ﬁNiEi - Ni ln(Nl) + Nl]

=In(N!')+ N —aN — U
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13.3 Boltzmann Distributions

In classical thermodynamics,

1 P as as as
dS(U,V)=;dU+—dV= — ) AU+ (=] aV - [—] =
|74 U

1
T U v U V‘?

From the previous result, S = kIn(N!) + k(1 — @)N — kSU = S, — kU

(5), -
au .

Comparing these two results, the constant f becomes

1

P =TT
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N, = giea+ﬂej — gie“e_gi/kT

For the value of e%,

N = ZNi = e“Zgje‘gi/kT
i i

N
a —
€ = Y g,e~&/kT
And hence,
N, _ Ne &/KT
fi — g, - Zgie—ei/kT

|—> Partition function Z

13.3 Boltzmann Distributions
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13.3 Boltzmann Distributions

Partition function

Partition function is defined to

Z = z g;ePe
i=1

Partition function has information of degeneracy and energy

level. There are two consequences of partition function.

1)N=2Ni=zgiea+ﬁe=eaz e =
i=1 i=1
0Z N (0Z
2 Z z a+fe _ i
)E= ) Ni; = ) g€e =e <6,B) <6,B)

6ln(Z)>
=N
v < I )y
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13.3 Boltzmann Distributions

» Distribution function

From previous results, the number distributions N;

N _¢&i
N; = g;e%ePéi = ie_ﬁ

Then, the Boltzmann distribution function is defined as below.

€i
_Ni Ne kT
f(€:) =E— 7
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13.4 Fermi-Dirac Distribution

* Fermion
1) Fermion is indistinguishable particle which obeys Pauli’'s exclusion principle.
2) Pauli’s exclusion principle means that no quantum state can accept more
than one particle.

3) Examples of fermions are electrons, positrons, protons, and neutrons.

1 000

® 00000000000

- 000
.| @ ..... At most two electrons(with different spins)
A can share same orbitals
: 0 OCC 0000
IR OO)
= 9 3p
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Electron configurations (http://en.wikibooks.org)
©®
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13.4 Fermi-Dirac Distribution

« Number of rearrangement

Distribution of n; particles among g; state boxes.

Ex) three particles for j* energy level of g; = 6
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13.4 Fermi-Dirac Distribution

* Fermi-Dirac distributions
From Stirling’s approximation, In(N!) = NIn(N) — N
Inwpp) = ) [In(g;) = In(N) = In((g =N

= > [g:In(g) = N In(N) — (gi=Ny) In(g; — Np)]

N; for j** energy level is undetermined yet.

_, Method of Lagrange multiplier IS used to obtain most probable
macro state under two constraints, ) N; = N, ), N;je; = E

d(In(wgp)) d(XN; —N) d(XNig; — E) _
oN. "9 an, TP an 70
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13.4 Fermi-Dirac Distribution

Applying method of Lagrange multipliers to Fermi-Dirac distributions,

d(2Lg:In(g;) — N; In(NV;) — (g;—N;) In(g; — N)]) N a2 Ny) ny I N€) 0
aNi “ aNl aIVl B

Jdi

N:
m— —In(N;) - ﬁl +1In(g; — N;) —

_N"( D+a+fe =0
— a € =
i gl_Ni l

Then, number distribution becomes

n Ni = —a ,Bel- [ gle_a_ﬁei_l_l
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13.4 Fermi-Dirac Distribution

 Distribution function
Provisionally, we associated a with the chemical potential u divided
by kT, and reserve for later the physical interpretation of this

connection. U
a=-—
kT

Then, the Fermi-Dirac distribution function is defined as below.
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13.5 Bose-Einstein Distribution

* Boson
1) Boson is indistinguishable particle not obeying Pauli’s exclusion principle.
2) Thus, one micro-state can be occupied by several Bosons.

3) Photon is the most notable example of Boson.

\

\

Bose—Einstein
Condenstate

' Cold bosons

Difference between fermions and bosons
(http://quantum-bits.org/)
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13.5 Bose-Einstein Distribution

* Number of rearrangement
Rearrangement of N; + g; — 1 symbols into g; — 1

partitions(degeneracy) and N; particles.
eo| | |e0o |0 |0

Ex) seven particles for jt* energy level of g; = 6
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13.5 Bose-Einstein Distribution

« Bose-Einstein distributions
From Stirling’s approximation, In(N!) = NIn(N) — N
In(wpg) = ) [IN((Ni+g; = DY = In(N) ~ In((g; — DY)
_ Z (Ni+g; — D) In(N; + g; — 1)
—N;In(N;) — (g; — DIn(g; — 1)

N; for jt* energy level is undetermined yet

— Method of Lagrange multiplier is used to obtain the most
probable macro state under two constraints,
ZN,: = N, ZNiEi =F

d(In(wgg))  O(EN;—N) O N —E)
oN, T4 N TPy 0

21/33



13.5 Bose-Einstein Distribution

Applying method of Lagrange multipliers to Bose-Einstein distributions,

IXI(N;+g; — DIn(N;+g; — 1) — X N; In(N)]) ta d(X N;) ny d(X Ni€;) —0

aNL 6Nl aNl
gi+N;—1 N;
memm) |In(N;+g; — 1)+g; +NZ — — In(N;) —ﬁ;+a+ﬁei =0

Then, number distribution becomes

Ni+g;—1
ln( l Nl-l >=—a—,86i—>
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13.5 Bose-Einstein Distribution

» Distribution function

N = 1 U _ 1
(=9 mape 1 \*T kP T Tkt

Then, the Bose-Einstein distribution function is defined as below.

O 1
f(e) = E  e—a—Be _ 1  ele—w)/kT _ 1
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13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

« Maxwell-Boltzmann Statistics

For dilute system, N; < g; for all j, which is called dilute gas.

e = (g; +N; —1)! _ 1_[ (gi +N; —1) - (g; +N; =2) - (g; + 1) - (g1) o gi"i
BE N;! (g; — 1)! N;! N;!

_ (go)! _ (9) (gi—1)(gi—Ni+2)-(gi—Ni+1) 179"
" 1_[1\’1'! (gi—NJ' 1_[ N;! “1Iw

Therefore, both Fermion and Boson follow Maxwell-Boltzmann

statistics at dilute gas.
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13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

« Maxwell-Boltzmann distributions

From Stirling’s approximation, In(N!) = NIn(N) — N

In(wyp) = Z[Ni In(g;) —In(N;D)] = Z[Ni In(g;) — N; In(N;) + N;]

N; for jt* energy level is undetermined yet.

— Method of Lagrange multiplier is used to obtain the most
probable macro state under two constraints,
ZN,: = N, ZNiEi =F

d(In(wyp)) QN —N) I Nie—E)
oN,  T% an, TP oy TV
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13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

Applying method of Lagrange multipliers to Maxwell-Boltzmann

distributions,

O(In(X[N;In(gy) — NyIn(N)) + N;])) 90X N) | 0L Nigy)
aN; ta—oN, PN, 70

N
) ln(gi)—ln(Ni)—ﬁl_+ l1+a+ e =0
l

Then, number distribution becomes

g.
In (ﬁll) =—a—Pfg —
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13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

* Distribution function

J7i 1
— .p—A—PE€ - [ =_—_—
gi€ (“ P T T )

Then, the Bose-Einstein distribution function is defined as below.

Ni _ jarpe; = g—(eimmy/kr

fle) =

[
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13.7 The Connection of Classical and Statistical Thermodynamics

* Energy transition

dU=ZNidei+ZeidNi ZN- l()dV+ZeldN

This statistical expression can be matched with classical expression.
dU = 6Q — 6W =TdS — PdV

zN &V )dv+zeidNi=TdS—PdV

z NidEi = —PdV Z EidNi =TdS
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13.7 The Connection of Classical and Statistical Thermodynamics

Heat transfer to the system : particles are re-distributed so that

particles are shifted from lower to higher energy level.

Isentropic process with work done : the energy levels are shifted to

higher values with no re-distribution.
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13.7 The Connection of Classical and Statistical Thermodynamics

» Physical relations of constant «

For a dilute gas,
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13.7 The Connection of Classical and Statistical Thermodynamics

In classical thermodynamics,

=u

OF
dF(U,V,N) = —SdT — PdV + udN - <_> =
V., T

dN

From the previous result, s = Nk (In (%) + 1) + 2

7
F=U—TS=—NkT<ln<N>+1)
N r(m(Z) 41+ M7
oN) = "N N

)
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13.7 The Connection of Classical and Statistical Thermodynamics

Recalling thatg = e%, constant « is associated with chemical

potential and temperature as it is previously introduced.

AN
C=M\7) T kT
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13.8 Comparison of the Distributions

* Number distributions for identical indistinguishable particles

N, 1 +1 for FD statistics
L a=4—1 for BE statistics
0 for MB statistics

g,  e@ W/ 1 g

T T T
Bose-Einstein

Maxwell-Boltzmann
Fermi-Dirac ———

in}
=

4 3 2 1 0 1 2 3 . http://pl.wikipedia.org/

(e-p)kT
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