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• Distinguishability : Classical Statistics

In classical mechanics, trajectories can be built up from 

the information of states of particles.

The trajectories allow us to distinguish particle whether 

they are identical or not.

State at t = 0 State at t > 0

1
2

3

3

1

2

13.1 Boltzmann Statistics
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• Distinguishability : Quantum Statistics

In quantum mechanics, Our knowledge of states is imperfect 

because the states are hobbled according to Heisenberg’s 

uncertainty principle. It means that it is impossible to distinguish 

identical particles.

State at t = 0 State at t > 0

?

13.1 Boltzmann Statistics
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• Boltzmann statistics

Boltzmann statistics is for distinguishable particles.

Therefore Boltzmann statistics is applied to particles of classical gas

or on there positions in solid lattice.

Consider N molecules with internal energy E in cubic volume V

Each energy level, 𝜖𝑖 has 𝑁𝑖 molecules with 𝑔𝑖 degeneracies. 

13.1 Boltzmann Statistics
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• Number of rearrangement

First, select 𝑁1 distinguishable particles from a total of N to be placed 

in the first energy level with arrangement among 𝑔1 choices.

2 7 53 6 1

Ex) seven particles for 1st energy level of 

𝑔𝑖 = 6

13.1 Boltzmann Statistics

4
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Next step is to do same work for 2nd energy level among (𝑁 − 𝑁1) particles  

These works are done in sequence until last 𝑁𝑛 particles are distributed.

Thus, the number of rearrangement becomes 

=
𝑁!

𝑁 − 𝑁1 ! 𝑁1!
𝑔1

𝑁1 ×
(𝑁 − 𝑁1)!

𝑁 − 𝑁1 −𝑁2 ! 𝑁2!
𝑔2

𝑁2 ×⋯×
𝑁𝑛!

0!𝑁𝑛!
𝑔𝑛

𝑁𝑛

𝑤𝐵 =ෑ𝑤𝑖 = ( 𝑁𝐶𝑁1 ∙ 𝑔1
𝑁1) × (𝑁−𝑁1𝐶𝑁2 ∙ 𝑔2

𝑁2) × ⋯ (𝑁𝐶 𝑁𝑛 ∙ 𝑔𝑛
𝑁𝑛)

13.1 Boltzmann Statistics
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• Boltzmann distributions

From Stirling’s approximation,  ln 𝑁! = 𝑁𝑙𝑛 𝑁 − 𝑁

𝑁𝑖 for 𝑗𝑡ℎ energy level is undetermined yet

ln 𝑤𝐵 =෍ ln 𝑁! + 𝑁𝑖 ln 𝑔𝑖 − ln(𝑁𝑖!)

ln 𝑤𝐵 =෍ ln 𝑁! + 𝑁𝑖 ln 𝑔𝑖 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖

Method of Lagrange multiplier is used to obtain most probable

macro state under two constraints, σ𝑁𝑖 = 𝑁, σ𝑁𝑖𝜖𝑖 = 𝐸

→

13.3 Boltzmann Distributions

𝜕(ln 𝑤𝐵 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖 − 𝑁)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖 − 𝐸)

𝜕𝑁𝑖
= 0
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Applying method of Lagrange multipliers to Boltzmann distributions,

𝜕(ln σ ln 𝑁! + 𝑁𝑖 ln 𝑔𝑖 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖)

𝜕𝑁𝑖
= 0

13.3 Boltzmann Distributions

Then, number distribution becomes

ln
𝑁𝑖
𝑔𝑖

= 𝛼 + 𝛽𝜖𝑖 𝑁𝑖/𝑔𝑖 = 𝑒𝛼+𝛽𝜀𝑖 = 𝑓𝑖(𝜀𝑖)

# of particles per each quantum state for 

the equilibrium configuration

Boltzmann distribution 

function
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13.3 Boltzmann Distributions

• Physical relation of constant 𝛽

ln 𝑤𝐵 = ln 𝑁! +෍ 𝑁𝑖 ln 𝑔𝑖 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖

= ln 𝑁! +෍ 𝑁𝑖 ln 𝑁𝑖𝑒
−𝛼−𝛽𝜖𝑖 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖

= ln 𝑁! +෍ 𝑁𝑖 ln 𝑁𝑖 − 𝛼𝑁𝑖 − 𝛽𝑁𝑖𝜖𝑖 −𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖

= ln 𝑁! + 𝑁 − 𝛼N − 𝛽U
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In classical thermodynamics, 

From the previous result, 𝑆 = 𝑘 ln 𝑁! + 𝑘 1 − 𝛼 N − 𝑘𝛽U = 𝑆0 − 𝑘𝛽U

𝑑𝑆 𝑈, 𝑉 =
1

𝑇
𝑑𝑈 +

𝑃

𝑇
𝑑𝑉 =

𝜕𝑆

𝜕𝑈
𝑉

𝑑𝑈 +
𝜕𝑆

𝜕𝑉
𝑈

𝑑𝑉 →
𝜕𝑆

𝜕𝑈
𝑉

=
1

𝑇

𝜕𝑆

𝜕𝑈
𝑉

= −𝑘𝛽

13.3 Boltzmann Distributions

Comparing these two results, the constant 𝛽 becomes

𝛽 = −
1

𝑘𝑇
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13.3 Boltzmann Distributions

𝑁𝑖 = 𝑔𝑖𝑒
𝛼+𝛽𝜀

𝑗 = 𝑔𝑖𝑒
𝛼𝑒−𝜀𝑖/𝑘𝑇

For the value of 𝑒𝛼 ,

𝑁 =෍

𝑖

𝑁𝑖 = 𝑒𝛼෍

𝑖

𝑔𝑗𝑒
Τ−𝜀
𝑖
𝑘𝑇

𝑒𝛼 = 
𝑁

σ 𝑔
𝑖
𝑒−𝜀𝑖/𝑘𝑇

And hence,

𝑓𝑖 =
𝑁𝑖

𝑔𝑖
= 

𝑁𝑒−𝜀𝑖/𝑘𝑇

σ 𝑔𝑖𝑒
−𝜀

𝑖
/𝑘𝑇

Partition function Z
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• Partition function

Partition function is defined to

Partition function has information of degeneracy and energy 

level. There are two consequences of partition function.

1)

2)

𝑍 ≡෍

𝑖=1

∞

𝑔𝑖𝑒
𝛽𝜖

𝑁 =෍

𝑖=1

∞

𝑁𝑖 =෍

𝑖=1

∞

𝑔𝑖𝑒
𝛼+𝛽𝜖 = 𝑒𝛼𝑍 𝑒𝛼 =

𝑁

𝑍

𝐸 =෍

𝑖=1

∞

𝑁𝑖𝜖𝑖 =෍

𝑖=1

∞

𝑔𝑖𝜖𝑖𝑒
𝛼+𝛽𝜖 = 𝑒𝛼

𝜕𝑍

𝜕𝛽
𝑉

=
𝑁

𝑍

𝜕𝑍

𝜕𝛽
𝑉

= 𝑁
𝜕𝑙𝑛(𝑍)

𝜕𝛽
𝑉

13.3 Boltzmann Distributions
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• Distribution function

From previous results, the number distributions 𝑁𝑖

Then, the Boltzmann distribution function is defined as below.

𝑁𝑖 = 𝑔𝑖𝑒
𝛼𝑒𝛽𝜖𝑖 =

𝑁

𝑍
𝑒−

𝜖𝑖
𝑘𝑇

𝑓 𝜖𝑖 ≡
𝑁𝑖
𝑔𝑖
=
𝑁𝑒−

𝜖𝑖
𝑘𝑇

𝑍

13.3 Boltzmann Distributions
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• Fermion

1) Fermion is indistinguishable particle which obeys Pauli’s exclusion principle.

2) Pauli’s exclusion principle means that no quantum state can accept more 

than one particle.

3) Examples of fermions are electrons, positrons, protons, and neutrons.

At most two electrons(with different spins)

can share same orbitals 

Electron configurations (http://en.wikibooks.org)

13.4 Fermi-Dirac Distribution
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• Number of rearrangement

Distribution of 𝑛𝑖 particles among 𝑔𝑖 state boxes. 

Ex) three particles for 𝑗𝑡ℎ energy level of 𝑔𝑖 = 6

13.4 Fermi-Dirac Distribution
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• Fermi-Dirac distributions

From Stirling’s approximation,  ln 𝑁! = 𝑁𝑙𝑛 𝑁 − 𝑁

𝑁𝑖 for 𝑗𝑡ℎ energy level is undetermined yet.

Method of Lagrange multiplier is used to obtain most probable

macro state under two constraints, σ𝑁𝑖 = 𝑁, σ𝑁𝑖𝜖𝑖 = 𝐸
→

𝜕(ln 𝑤𝐹𝐷 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖 −𝑁)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖 − 𝐸)

𝜕𝑁𝑖
= 0

ln 𝑤𝐹𝐷 =෍ ln 𝑔𝑖! − ln 𝑁𝑖! − ln((𝑔𝑖−𝑁𝑖)!)

ln 𝑤𝐵 =෍ 𝑔𝑖 ln 𝑔𝑖 −𝑁𝑖 ln 𝑁𝑖 − (𝑔𝑖−𝑁𝑖) ln 𝑔𝑖 − 𝑁𝑖

13.4 Fermi-Dirac Distribution
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Applying method of Lagrange multipliers to Fermi-Dirac distributions,

Then, number distribution becomes

𝜕(σ 𝑔𝑖 ln 𝑔𝑖 − 𝑁𝑖 ln 𝑁𝑖 − (𝑔𝑖−𝑁𝑖) ln 𝑔𝑖 − 𝑁𝑖 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖)

𝜕𝑁𝑖
= 0

−ln(𝑁𝑖)−
𝑁𝑖
𝑁𝑖
+ ln 𝑔𝑖 − 𝑁𝑖 −

𝑔𝑖 − 𝑁𝑖
𝑔𝑖 − 𝑁𝑖

(−1) + 𝛼 + 𝛽𝜖𝑖 = 0

ln
𝑔𝑖
𝑁𝑖
− 1 = −𝛼 − 𝛽𝜖𝑖 𝑁𝑖 = 𝑔𝑖

1

𝑒−𝛼−𝛽𝜖𝑖 + 1

13.4 Fermi-Dirac Distribution
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• Distribution function

Provisionally, we associated 𝛼 with the chemical potential 𝜇 divided 

by 𝑘𝑇, and reserve for later the physical interpretation of this 

connection.

Then, the Fermi-Dirac distribution function is defined as below.

𝛼 =
𝜇

𝑘𝑇

13.4 Fermi-Dirac Distribution
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• Boson

1) Boson is indistinguishable particle not obeying Pauli’s exclusion principle.

2) Thus, one micro-state can be occupied by several Bosons.

3) Photon is the most notable example of Boson.

Difference between fermions and bosons

(http://quantum-bits.org/)

13.5 Bose-Einstein Distribution
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• Number of rearrangement

Rearrangement of 𝑁𝑖 + 𝑔𝑖 − 1 symbols into 𝑔𝑖 − 1

partitions(degeneracy) and 𝑁𝑖 particles. 

Ex) seven particles for 𝑗𝑡ℎ energy level of 𝑔𝑖 = 6

13.5 Bose-Einstein Distribution
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• Bose-Einstein distributions

From Stirling’s approximation,  ln 𝑁! = 𝑁𝑙𝑛 𝑁 − 𝑁

𝑁𝑖 for 𝑗𝑡ℎ energy level is undetermined yet

Method of Lagrange multiplier is used to obtain the most 

probable macro state under two constraints, 
σ𝑁𝑖 = 𝑁, σ𝑁𝑖𝜖𝑖 = 𝐸

→

𝜕(ln 𝑤𝐵𝐸 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖 − 𝑁)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖 − 𝐸)

𝜕𝑁𝑖
= 0

ln 𝑤𝐵𝐸 =෍ ln (𝑁𝑖+𝑔𝑖 − 1)! − ln 𝑁𝑖! − ln((𝑔𝑖 − 1)!)

ln 𝑤𝐵 =෍
(𝑁𝑖+𝑔𝑖 − 1) ln 𝑁𝑖 + 𝑔𝑖 − 1

−𝑁𝑖 ln 𝑁𝑖 − (𝑔𝑖 − 1) ln(𝑔𝑖 − 1)

13.5 Bose-Einstein Distribution
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Applying method of Lagrange multipliers to Bose-Einstein distributions,

Then, number distribution becomes

ln(𝑁𝑖+𝑔𝑖 − 1) +
𝑔𝑖 + 𝑁𝑖 − 1

𝑔𝑖 + 𝑁𝑖 − 1
− ln 𝑁𝑖 −

𝑁𝑖
𝑁𝑖
+ 𝛼 + 𝛽𝜖𝑖 = 0

ln
𝑁𝑖 + 𝑔𝑖 − 1

𝑁𝑖
= −𝛼 − 𝛽𝜖𝑖

13.5 Bose-Einstein Distribution

𝜕(σ (𝑁𝑖+𝑔𝑖 − 1) ln(𝑁𝑖+𝑔𝑖 − 1) − σ𝑁𝑖 ln 𝑁𝑖 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖)

𝜕𝑁𝑖
= 0
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• Distribution function

Then, the Bose-Einstein distribution function is defined as below.

𝑓 𝜖𝑖 ≡
𝑁𝑖
𝑔𝑖
=

1

𝑒−𝛼−𝛽𝜖𝑖 − 1
=

1

𝑒(𝜖𝑖−𝜇)/𝑘𝑇 − 1

𝑁𝑖 = 𝑔𝑖
1

𝑒−𝛼−𝛽𝜖 − 1
𝛼 =

𝜇

𝑘𝑇
, 𝛽 = −

1

𝑘𝑇

13.5 Bose-Einstein Distribution
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• Maxwell-Boltzmann Statistics

For dilute system, 𝑁𝑖 ≪ 𝑔𝑖 for all j, which is called dilute gas.

Therefore, both Fermion and Boson follow Maxwell-Boltzmann 

statistics at dilute gas.

𝑤𝐵𝐸 =ෑ
𝑔𝑖 +𝑁𝑖 −1 !

𝑁𝑖! 𝑔𝑖 − 1 !
=ෑ

𝑔𝑖 +𝑁𝑖 −1 ∙ 𝑔𝑖 +𝑁𝑖 −2 ⋯(𝑔𝑖 + 1) ∙ (𝑔𝑖)

𝑁𝑖!
≈ෑ

𝑔𝑖
𝑁𝑖

𝑁𝑖!

𝑤𝐹𝐷 =ෑ
𝑔𝑖 !

𝑁𝑖! 𝑔𝑖 −𝑁𝑖 !
=ෑ

𝑔𝑖 ∙ 𝑔𝑖 − 1 ⋯(𝑔𝑖 − 𝑁𝑖 + 2) ∙ (𝑔𝑖 −𝑁𝑖 + 1)

𝑁𝑖!
≈ෑ

𝑔𝑖
𝑁𝑖

𝑁𝑖!

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution
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• Maxwell-Boltzmann distributions

From Stirling’s approximation,  ln 𝑁! = 𝑁ln 𝑁 − 𝑁

𝑁𝑖 for 𝑗𝑡ℎ energy level is undetermined yet.

Method of Lagrange multiplier is used to obtain the most 

probable macro state under two constraints, 
σ𝑁𝑖 = 𝑁, σ𝑁𝑖𝜖𝑖 = 𝐸

→

𝜕(ln 𝑤𝑀𝐵 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖 − 𝑁)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖 − 𝐸)

𝜕𝑁𝑖
= 0

ln 𝑤𝑀𝐵 =෍ 𝑁𝑖 ln 𝑔𝑖 − ln(𝑁𝑖!) =෍ 𝑁𝑖 ln 𝑔𝑖 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution
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Applying method of Lagrange multipliers to Maxwell-Boltzmann 

distributions,

Then, number distribution becomes

ln
𝑔𝑖
𝑁𝑖

= −𝛼 − 𝛽𝜖𝑖

ln(𝑔𝑖)− ln 𝑁𝑖 −
𝑁𝑖
𝑁𝑖
+ 1 + 𝛼 + 𝛽𝜖𝑖 = 0

𝜕(ln σ 𝑁𝑖 ln 𝑔𝑖 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖 )

𝜕𝑁𝑖
+ 𝛼

𝜕(σ𝑁𝑖)

𝜕𝑁𝑖
+ 𝛽

𝜕(σ𝑁𝑖𝜖𝑖)

𝜕𝑁𝑖
= 0

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution
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• Distribution function

Then, the Bose-Einstein distribution function is defined as below.

𝑁𝑖 = 𝑔𝑖𝑒
−𝛼−𝛽𝜖 𝛼 =

𝜇

𝑘𝑇
, 𝛽 = −

1

𝑘𝑇

𝑓 𝜖𝑖 ≡
𝑁𝑖
𝑔𝑖
= 𝑒𝛼+𝛽𝜖𝑖 = 𝑒−(𝜖𝑖−𝜇)/𝑘𝑇

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution
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• Energy transition

This statistical expression can be matched with classical expression.

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉

𝑈 =෍𝑁𝑖𝜖𝑖

𝑑𝑈 =෍𝑁𝑖𝑑𝜖𝑖 +෍𝜖𝑖𝑑𝑁𝑖 =෍𝑁𝑖
𝑑𝜖𝑖(𝑉)

𝑑𝑉
𝑑𝑉 +෍𝜖𝑖𝑑𝑁𝑖

෍𝑁𝑖
𝑑𝜖𝑖(𝑉)

𝑑𝑉
𝑑𝑉 +෍𝜖𝑖𝑑𝑁𝑖 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉

෍𝑁𝑖𝑑𝜖𝑖 = −𝑃𝑑𝑉 ෍𝜖𝑖𝑑𝑁𝑖 = 𝑇𝑑𝑆

13.7 The Connection of Classical and Statistical Thermodynamics
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Heat transfer to the system : particles are re-distributed so that 

particles are shifted from lower to higher energy level. 

Isentropic process with work done : the energy levels are shifted to 

higher values with no re-distribution.

𝑁 𝑁

𝜖 𝜖

Heat transfer Work done

13.7 The Connection of Classical and Statistical Thermodynamics
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• Physical relations of constant 𝛼

For a dilute gas, 

𝑆 = 𝑘ln 𝑤𝑀𝐵 = 𝑘෍ 𝑁𝑖 ln
𝑔𝑖
𝑁𝑖

+ 𝑁𝑖 = 𝑘෍ 𝑁𝑖 ln 𝑒−𝛼−𝛽𝜖𝑖 + 𝑁𝑖

𝑆 = 𝑘ln 𝑤𝑀𝐵 = 𝑘෍ 𝑁𝑖 ln
𝑍

𝑁
+ 1 −

1

𝑘𝑇
𝑁𝑖𝜖𝑖

( ∵ 𝑒𝛼 =
𝑁

𝑍
, 𝛽 = −

1

𝑘𝑇
)

13.7 The Connection of Classical and Statistical Thermodynamics
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In classical thermodynamics, 

From the previous result, 𝑆 = 𝑁𝑘 ln
𝑍

𝑁
+ 1 +

𝑈

𝑇

𝐹 = 𝑈 − 𝑇𝑆 = −𝑁𝑘𝑇 ln
𝑍

𝑁
+ 1

𝑑𝐹 𝑈, 𝑉, 𝑁 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 →
𝜕𝐹

𝜕𝑁
𝑉,𝑇

= 𝜇

𝜕𝐹

𝜕𝑁
𝑉,𝑇

= −𝑘𝑇 ln
𝑍

𝑁
+ 1 +

𝑁𝑘𝑇

𝑁
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Recalling that 
𝑁

𝑍
= 𝑒𝛼, constant 𝛼 is associated with chemical 

potential and temperature as it is previously introduced.

𝛼 = ln
𝑁

𝑍
=

𝜇

𝑘𝑇

13.7 The Connection of Classical and Statistical Thermodynamics



33/33  

• Number distributions for identical indistinguishable particles

𝑁𝑖
𝑔𝑖
=

1

𝑒(𝜖𝑖−𝜇)/𝑘𝑇 + 𝑎
𝑎 = ቐ

+1
−1
0

for FD statistics

for BE statistics

for MB statistics

http://pl.wikipedia.org/

13.8 Comparison of the Distributions


