
Ch.15 Kinematics of Rigid Bodies 

 

Translation  

Rotation About a Fixed Axis  

-Rotation About a Representative Slab  

 

Equations Defining the Rotation of a Rigid Body About a Fixed Axis  

 

General Plane Motion  

Absolute and Relative Velocity in Plane Motion  

Instantaneous Center of Rotation in Plane Motion 

Absolute and Relative Acceleration in Plane Motion  



Analysis of Plane Motion in Terms of a Parameter  

 

Rate of Change With Respect to a Rotating Frame  

Coriolis Acceleration  

 

Motion About a Fixed Point  

 

 

 

 

 

 

 



Applications 

The linkage between train wheels is an example of curvilinear translation – the 

link stays horizontal as it swings through its motion.   

 
 



How can we determine the velocity of the tip of a turbine blade? 

 
 

 

 



Introduction 
*Kinematics of rigid bodies:  relations between time and   

the positions, velocities, and accelerations of the 

particles forming a rigid body. 

*Classification of rigid body motions: 

                        Translation: 

                              rectilinear translation 

curvilinear translation 

 

       Rotation about a fixed axis 

-        General plane motion 

-        Motion about a fixed point   

-         

-        General motion 

 



15.1 Translation and Fixed Axis Rotation 

  15.1A Translation 

• Consider rigid body in translation: 

- direction of any straight line inside the body is constant, 

- all particles forming the body move in parallel lines. 

• For any two particles in the body, 

 
• Differentiating with respect to time, 

 
 All particles have the same velocity. 

• Differentiating with respect to time again, 

 
 All particles have the same acceleration. 

 

ABAB rrr  +=

AB

AABAB

vv

rrrr


















=

=+=

AB

AABAB

aa

rrrr


















=

=+=



15.1B Rotation About a Fixed Axis.  
• Consider rotation of rigid body about a fixed axis AA’ 

 

• Velocity vector  of the particle P is tangent to  

 

the path with magnitude   

 

 

 (15.4) 
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• The same result is obtained from(15.5,15.6) 

 
 

 

Concept Quiz 

What is the direction of the velocity of point A on the turbine blade? 
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answer ; d) 

--------------------------------------------------------------- 

 Acceleration 
 

• Differentiating to determine the acceleration, 

 and  

 
Fig.15.9 
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• Acceleration of P is combination of two vectors, 

 

 
 

Representative Slab 

 

• Consider the motion of a representative slab in a plane   

perpendicular to the axis of rotation. 

• Velocity of any point P of the slab, 
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• Acceleration of any point P of the slab, 

  

Resolving the acceleration into tangential and normal 

components, 
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Concept Quiz 

What is the direction of the normal acceleration of point A on the turbine blade? 
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15.1C Equations Defining the Rotation of a Rigid Body About a Fixed Axis 

 

• Motion of a rigid body rotating around a fixed axis is often specified by the type of 

angular acceleration. 

• Recall  

 

 

 

 

• Uniform Rotation (angular acceleration=0 ) 

     
• Uniformly Accelerated Rotation( angular acceleration = constant):  
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Sample Problem 15.3 

 

Cable C has a constant acceleration of 225 mm/s2 and an 

initial velocity of  

300 mm/s, both directed to the right. 

Determine (a) the number of revolutions of the pulley in 2 

s,  (b) the velocity and change in position of the load B 

after 2 s, and (c) the acceleration of the point D on the rim 

of the inner pulley at t = 0. 

 

STRATEGY:  

• Due to the action of the cable, the tangential velocity and acceleration of D are equal 

to the velocity and acceleration of C.  Calculate the initial angular velocity and 

acceleration.  

• Apply the relations for uniformly accelerated rotation to determine the velocity and 

angular position of the pulley after 2 s. 



• Evaluate the initial tangential and normal acceleration components of D. 

• MODELING and ANALYSIS:  

The tangential velocity and acceleration of D are equal to the 

velocity and acceleration of C.   

  
• Apply the relations for uniformly accelerated rotation to determine velocity and 

angular position of pulley after 2 s. 
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• Evaluate the initial tangential and normal acceleration 

components of D.  

 

 

 
 

 Magnitude and direction of the total acceleration, 
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REFLECT and THINK:  

• A double pulley acts similarly to a system of gears; for every 75 mm that point C 

moves to the right, point B moves 125 mm upward. This is also similar to the rear 

tire of your bicycle. As you apply tension to the chain, the rear sprocket rotates a 

small amount, causing the rear wheel to rotate through a much larger angle. 

79.4φ = °



15.2 General Plane Motion : Velocity 

As the man approaches to release the bowling ball, his arm has linear velocity and 

acceleration from both translation (the man moving forward) as well as rotation (the arm 

rotating about the shoulder).  

 
 

 



15.2A Analyzing General Plane Motion 

 
• General plane motion is neither a translation nor 

a rotation. 

• General plane motion can be considered as the 

sum of a translation and rotation. 

• Displacement of particles A and B to A2 and B2 

can be divided into two parts:   

• translation to A2 and  

• rotation of   about A2 to B2  
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15.2B Absolute and Relative Velocity in Plane Motion 

 
• Any plane motion can be replaced by a translation of an arbitrary 

reference point A and a simultaneous rotation about A. 

  

  

  
 

 

ABAB vvv  +=

ωω rvrkv ABABAB =×= 





ABAB rkvv 



 ×+= ω



 
 

• Assuming that the velocity vA of end A is known, wish to determine the velocity vB 

of end B and the angular velocity w in terms of vA, l, and q. 

• The direction of vB and vB/A are known.  Complete the velocity diagram. 
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• Selecting point B as the reference point and solving for the velocity vA of end A and 

the angular velocity w leads to an equivalent velocity triangle. 

• vA/B has the same magnitude but opposite sense of vB/A.  The sense of the relative 

velocity is dependent on the choice of reference point. 

• Angular velocity w of the rod in its rotation about B is the same as its rotation about 

A.  Angular velocity is not dependent on the choice of reference point. 

 



Sample Problem 15.6 

 

The double gear rolls on the stationary lower 

rack:  the velocity of its center is 1.2 m/s. 

Determine (a) the angular velocity of the gear, 

and (b) the velocities of the upper rack R and 

point D of the gear. 

 

STRATEGY:  

• The displacement of the gear center in one revolution is equal to the outer 

circumference.  Relate the translational and angular displacements.  Differentiate to 

relate the translational and angular velocities. 

• The velocity for any point P on the gear may be written as 

 
Evaluate the velocities of points B and D.  
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MODELING and ANALYSIS  

• The displacement of the gear center in one 

revolution is equal to the outer circumference.   

 For xA > 0 (moves to right), w < 0 (rotates clockwise). 

    

  
 Differentiate to relate the translational and angular velocities.  
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• For any point P on the gear,   

  

 

 

 

 

Velocity of the upper rack is equal to velocity of point B: 

 
 

Velocity of the point D: 
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REFLECT and THINK:  

• Note that point A was free to translate, and Point C, since it is in contact with the 

fixed lower rack, has a velocity of zero. Every point along diameter CAB has a velocity 

vector directed to the right and the magnitude of the velocity increases linearly as 

the distance from point C increases. 

 

 

 

 



 Instantaneous Center of Rotation 
*Plane motion of all particles in a slab can always be replaced 

by the translation of an arbitrary point A and a rotation about 

A with an angular velocity that is independent of the choice of 

A.  

*The same translational and rotational velocities at A are 

obtained by allowing the slab to rotate with the same angular     

velocity about the point C on a perpendicular to the velocity at A.  

 

*The velocity of all other particles in the slab are the same as originally 

defined since the angular velocity and translational velocity at A are 

equivalent. 

 

*As far as the velocities are concerned, the slab seems to rotate about the 

instantaneous center of rotation C. 

 



 

*If the velocity at two points A and B are known, the 

instantaneous center of rotation lies at the intersection of the 

perpendiculars to the velocity vectors through A and B . 

 

*If the velocity vectors are parallel, the instantaneous center of 

rotation is at infinity and the angular velocity is zero. 

*If the velocity vectors at A and B are perpendicular to the line 

AB, the instantaneous center of rotation lies at the intersection 

of the line AB with the line joining the extremities of the velocity vectors at 

A and B. 

 

*If the velocity magnitudes are equal, the instantaneous center of rotation is 

at infinity and the angular velocity is zero. 

 

 



*The instantaneous center of rotation lies at the 

intersection of the perpendiculars to the velocity 

vectors through A and B .with 

 

 

 

Then, 

Fig. 15.20 

 

*The velocities of all particles on the rod are as if they were rotated 

about C.  

*The particle at the center of rotation has zero velocity. 

*The particle coinciding with the center of rotation changes with time 

and the acceleration of the particle at the instantaneous center of 
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rotation is not zero. 

• The acceleration of the particles in the slab cannot be determined 

as if the slab were simply rotating about C.  

 

• The trace of the locus of the center of rotation on the body is the 

body centrode and in space is the space centrode. 

 

*At the instant shown, what is the 

approximate direction of the velocity of point 

G, the center of bar AB? 



 

a)  
b)   
c)   
d)   

 

 

 

 

answer ; c) 
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Sample Problem 15.9 
The double gear rolls on the stationary lower rack:  

the velocity of its center is 1.2 m/s. 

Determine (a) the angular velocity of the gear, 

and (b) the velocities of the upper rack R and 

point D of the gear. 

 

STRATEGY:  

• The point C is in contact with the stationary lower rack and, instantaneously, has zero 

velocity.  It must be the location of the instantaneous center of rotation. 

• Determine the angular velocity about C based on the given velocity at A.  

• Evaluate the velocities at B and D based on their rotation about C. 

 

 

 

 



MODELING and ANALYSIS:  

• The point C is in contact with the stationary lower 

rack and, instantaneously, has zero velocity.  It must be 

the location of the instantaneous center of rotation. 

• Determine the angular velocity about C based on the 

given velocity at A.  

 
• Evaluate the velocities at B and D based on their rotation about 

C. 
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REFLECT and THINK:  

The results are the same as in Sample Prob. 15.6, as you would expect, but it took much 

less computation to get them. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sample Problem 15.10 
The crank AB has a constant clockwise angular 

velocity of 2000 rpm. 

For the crank position indicated, determine (a) 

the angular velocity of the connecting rod BD, 

and (b) the velocity of the piston P. 

Use method of instantaneous center of rotation  

STRATEGY:  

• Determine the velocity at B from the given crank rotation data. 

• The direction of the velocity vectors at B and D are known.  The instantaneous center 

of rotation is at the intersection of the perpendiculars to the velocities through B and 

D.  

• Determine the angular velocity about the center of rotation based on the velocity at 

B.  

• Calculate the velocity at D based on its rotation about the instantaneous center of 

rotation. 



MODELING and ANALYSIS:  

• From Sample Problem 15.3, 

 
• The instantaneous center of rotation is at the 

intersection of the perpendiculars to the velocities 

through B and D.  

•       Determine the angular velocity about the center of   

      rotation based on the velocity at B.  

 

 

 

•       Calculate the velocity at D based on its rotation about  

      the instantaneous center of rotation. 
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Instantaneous Center of Zero Velocity 

  
 

REFLECT and THINK:  

What happens to the location of the instantaneous center of velocity if the crankshaft 

angular velocity increases from 2000 rpm in the previous problem to 3000 rpm? 

What happens to the location of the instantaneous center of velocity if the angle b is 0? 

 

 



15.4 GENERAL PLANE MOTION : ACCELERATION 

15.4 A Absolute and Relative Acceleration in Plane Motion 
 

  
• Absolute acceleration of a particle of the slab, 

•  

                                        (15.21) 

 

• Relative acceleration  associated with rotation about A includes tangential and 
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normal components, 

 

                   (15.22) 

 

 

 

 

• Given  

determine  
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• Vector result depends on sense of   and the relative magnitudes 

of  

• Must also know angular velocity w. 
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• Write  in terms of the two component equations, 

 x components:  

y components:  

 

• Solve for aB and a. 

 

 

 

 

 

 

 

 

 

ABAB aaa  +=

+→ θαθω cossin0 2 llaA −+=

θαθω sincos2 llaB −−=−↑+



15.4B Analysis of Plane Motion in Terms of a Parameter 

 

• In some cases, it is advantageous to determine the absolute 

velocity and acceleration of a mechanism directly. 
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15.5 Analyzing Motion with Respect to a Rotating Frame 

Rotating coordinate systems are often used to analyze mechanisms (such as amusement 

park rides) as well as weather patterns. 

 



15.5A Rate of Change With Respect to a Rotating Frame 

• With respect to the rotating Oxyz frame, 

 
 

• With respect to the fixed OXYZ frame, 

 

*   

Rate of change with respect to rotating frame. 

• If  were fixed within Oxyz  then   is   

equivalent to velocity of a point in a rigid body attached  

to Oxyz and 

         
• With respect to the fixed OXYZ frame,    
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angular velocity  
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15.5B Plane Motion Relative to a Rotating Frame 

• Frame OXY is fixed and frame Oxy rotates with angular velocity 

 

• Position vector  for the particle P is the same in both frames   

but the rate of change depends on the choice of frame. 

• The absolute velocity of the particle P is 

 
 

• Imagine a rigid slab attached to the rotating frame Oxy or F for 

short.  Let P’ be a point on the slab which corresponds instantaneously 

to position of particle P.    

 velocity of P along its path on the slab 

 absolute velocity of point P’ on the slab 

• Absolute velocity for the particle P may be written as 
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• Absolute acceleration for the particle P is 

 

but,  

 

 

 

 

•     Utilizing the conceptual point P’ on the slab, 

       
• Absolute acceleration for the particle P becomes 

 Coriolis acceleration 
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• Consider a collar P which is made to slide at constant 

relative velocity u along rod OB.  The rod is rotating at a 

constant angular velocity w.  The point A on the rod 

corresponds to the instantaneous position of P. 

• Absolute acceleration of the collar is 

 
 where 

 
 

 

 

• The absolute acceleration consists of the radial and tangential vectors shown 
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• Change in velocity over dt  is represented by the sum of three 

vectors 

   

•  is due to change in direction of the velocity of point A on 

the rod, 

  

recall,   
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recall,  

 

 

Sample Problem 15.19 

 

Disk D of the Geneva mechanism rotates with constant 

counterclockwise angular velocity wD = 10 rad/s. 

At the instant when f = 150o, determine (a) the angular 

velocity of disk S, and (b) the velocity of pin P relative to 

disk S. 

 

STRATEGY:  
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• The absolute velocity of the point P may be written as  

• Magnitude and direction of velocity  of pin P are calculated from the radius and angular 

velocity of disk D.  

• Direction of velocity  of point P’ on S coinciding with P is perpendicular to radius OP.  

• Direction of velocity   of  P with respect to S is parallel to the slot. 

• Solve the vector triangle for the angular velocity  of S and relative velocity of P.  

 

 MODELING and ANALYSIS:  

• The absolute velocity of the point P may be written as 

  
• Magnitude and direction of absolute velocity of pin P are  

 calculated from radius and angular velocity of disk D.  
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• Direction of velocity of P with respect to S is parallel to slot. 

From the law of cosines, 

  
 From the law of cosines, 

 
     The interior angle of the vector triangle is 

      
 

• Direction of velocity of point P’ on S coinciding with P is   

perpendicular to radius OP.  From the velocity triangle, 
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REFLECT and THINK: 

The result of the Geneva mechanism is that disk S rotates ¼ turn each time pin P engages, 

then it remains motionless while pin P rotates around before entering the next slot. Disk 

D rotates  continuously, but disk S rotates intermittently.  An alternative approach to 

drawing the vector triangle is to use vector algebra.  
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Sample Problem 15.20 

In the Geneva mechanism, disk D rotates with a constant 

counter-clockwise angular velocity of  10 rad/s.  At the 

instant when j = 150o, determine angular acceleration of 

disk S. 

 

 

 

STRATEGY:  

• The absolute acceleration of the pin P may be expressed as  

• The instantaneous angular velocity of Disk S is determined as in Sample Problem 15.9. 

• The only unknown involved in the acceleration equation is the instantaneous angular acceleration 

of Disk S. 

• Resolve each acceleration term into the component parallel to the slot.  Solve for the angular 

acceleration of Disk S. 
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MODELING and ANALYSIS:  

• Absolute acceleration of the pin P may be expressed as  

  

• From Sample Problem 15.9. 

 
• Considering each term in the acceleration equation, 

  

  
       note: aS may be positive or negative 
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• The direction of the Coriolis acceleration is obtained by 

rotating the direction of the relative velocity 

by 90o in the sense of wS.  

 

•  The relative acceleration  must be parallel to 

the slot. 

• Equating components of the acceleration terms 

perpendicular to the slot, 

 

         
 

 

( )( )
( )( )( )
( )( )ji

ji

jiva sPSc









4.42cos4.42sinsmm3890

4.42cos4.42sinsmm477srad08.42

4.42cos4.42sin2

2 +°−=

+°−=

+°−= ω

sPa

srad233
07.17cos500038901.37

−=
=°−+

S

S
α

α

( )kS


 srad233−=α

P sv



 
REFLECT and THINK:  

• It seems reasonable that, since disk S starts and stops over the very short time 

intervals when pin P is engaged in the slots, the disk must have a very large angular 

acceleration. An alternative approach would have been to use the vector algebra 

approach. 

 

 



15.6 Motion of a Rigid Body in Space 

 

15.6A Motion About a Fixed Point 

• The most general displacement of a rigid body with a fixed point O is  

equivalent to a rotation of the body about an axis through O. 

• With the instantaneous axis of rotation and angular velocity the velocity  

of a particle P of the body is  

 

 and the acceleration of the particle P is 

 

• The angular acceleration   represents the velocity of the tip  of   

• As the vector   moves within the body and in space, it generates a body 

cone and space cone which are tangent along the instantaneous axis of rotation. 

• Angular velocities have magnitude and direction and obey parallelogram law of 

addition. They are vectors. 
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15.6B General Motion 

• For particles A and B of a rigid body, 

 
• Particle A is fixed within the body and motion of the  

body relative to AX’Y’Z’ is the motion of a body with  

a fixed point 

 
• Similarly, the acceleration of the particle P is 

 
• Most general motion of a rigid body is equivalent to:  

- a translation in which all particles have the same velocity and   

- acceleration of a reference particle A, and of a motion in    

-                               which particle A is assumed fixed. 
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Sample Problem 15.21 

The crane rotates with a constant angular velocity w1 = 0.30 

rad/s and the boom is being raised with a constant angular 

velocity w2 = 0.50 rad/s.  The length of the boom is l = 12 m. 

Determine: 

• angular velocity of the boom, 

• angular acceleration of the boom, 

• velocity of the boom tip, and 

• acceleration of the boom tip. 

STRATEGY:  

With  

 

 

 

• Angular velocity of the boom,  21 ωωω  +=
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• Angular acceleration of the boom,  

• Velocity of boom tip,   

• Acceleration of boom tip,  

 

MODELING and ANALYSIS:  

• Angular velocity of the boom, 

   
    

• Angular acceleration of the boom, 
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• Velocity of boom tip , 

  

    
 

• Acceleration of boom tip, 
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15.7Motion Relative to A Moving Reference Frame 

15.7A Three-Dimensional Motion Relative to a Rotating Frame 

With respect to the fixed frame OXYZ and rotating frame Oxyz, 

 

 
 

Consider motion of particle P relative to a rotating frame Oxyz 

or  F for short.  The absolute velocity can be expressed as

 
The absolute acceleration can be expressed as 
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15.7B Frame of Reference in General Motion 

• With respect to OXYZ and AX’Y’Z’, 

  
• The velocity and acceleration of P relative to AX’Y’Z’ can 

be found in terms of the velocity and acceleration of P 

relative to Axyz.  

  
  

Consider: 

- fixed frame OXYZ, 

- translating frame AX’Y’Z’, and 
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- translating and rotating frame Axyz or F. 

 

       

 

  (15.54) 

 

 

Sample Problem 15.25 

For the disk mounted on the arm, the indicated 

angular rotation rates are constant. 

Determine: 

• the velocity of the point P, 

• the acceleration of P, and 

• angular velocity and angular acceleration of the 

disk. 

STRATEGY:  
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• Define a fixed reference frame OXYZ at O and a moving reference frame Axyz or F attached to 

the arm at A. 

• With P’ of the moving reference frame coinciding with P, the velocity of the point P is found 

from  

• The acceleration of P is found from  

• The angular velocity and angular acceleration of the disk are 

 

MODELING and ANALYSIS:  

• Define a fixed reference frame OXYZ at O and a 

moving reference frame Axyz or F attached to the arm at 

A. 
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• With P’ of the moving reference frame coinciding 

with P, the velocity of the point P is found from 

 
 

       
 

 

• The acceleration of P is found from 
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• Angular velocity and acceleration of the disk, 
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