Ch.15 Kinematics of Rigid Bodies

Translation
Rotation About a Fixed Axis

-Rotation About a Representative Slab

Equations Defining the Rotation of a Rigid Body About a Fixed Axis

General Plane Motion

Absolute and Relative Velocity in Plane Motion
Instantaneous Center of Rotation in Plane Motion

Absolute and Relative Acceleration in Plane Motion



Analysis of Plane Motion in Terms of a Parameter

Rate of Change With Respect to a Rotating Frame

Coriolis Acceleration

Motion About a Fixed Point



Applications

The linkage between train wheels is an example of curvilinear translation — the

link stays horizontal as it swings through its motion.
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How can we determine the velocity of the tip of a turbine blade?
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Introduction

*Kinematics of rigid bodies: relations between time and

the positions, velocities, and accelerations of the
particles forming a rigid body.

*Classification of rigid body motions:

Translation:
rectilinear translation

curvilinear translation

N Rotation about a fixed axis —

& General plane motion B

= YU Motion about a fixed point

- General motion



15.1 Translation and Fixed Axis Rotation
15.1A Translation

y « Consider rigid body in translation:

— direction of any straight line inside the body is constant,
— all particles forming the body move in parallel lines.

» For any two particles in the body,

g =Fp+ rB/A

- Differentiating with respect to time,

x ?B:?A+?B/A:?A
(a) VB — VA
All particles have the same velocity.

- Differentiating with respect to time again,

.F:B :.F:A_'_.F:B/A ZOF:A

o

(c) a:B — é:A
All particles have the same acceleration.



15.1B Rotation About a Fixed Axis.

Consider rotation of rigid body about a fixed axis AA’

vV = dr/dt

Velocity vector of the particle P is tangent to

v = ds/dt

the path with magnitude

As =(BP)AG = (rsing)A6

v=2_ jim (rsin ¢)A—8: rosin g
dt At—0 At (15.4)



 The same result is obtained from(15.5,15.6)

V = g =awoxr
dt
& = wk = 6k = angular velocity

Concept Quiz
What is the direction of the velocity of point A on the turbine blade?
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answer ; d)

« Differentiating to determine the acceleration,

dv._d

a= DXl
dt dt( )
do _dar
=— X +@Ox—
dt dt
_9D b Gy
t and
do

i a = angular acceleration

— ak = ok = 0k




* Acceleration of P is combination of two vectors,

a=axr+woxwxr
d x I = tangential acceleration component
@ x @ x T =radial acceleration component

Representative Slab

Y

« Consider the motion of a representative slab in a plane
perpendicular to the axis of rotation.

e « Velocity of any point P of the slab,
= — V=aoxTF =wkxT

V=TIw




» Acceleration of any point P of the slab,
d=axXlr+wxwxr

=aExf—aﬁF

Y
2 =akx Resolving the acceleration into tangential and normal
" components,

Ob - A ' 33[ = CZk X T at =lx

a, =-wrF a, =ro?



Concept Quiz

What is the direction of the normal acceleration of point A on the turbine blade?
a)—
D)«
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d)|

Sol)




15.1C Equations Defining the Rotation of a Rigid Body About a Fixed Axis

« Motion of a rigid body rotating around a fixed axis is often specified by the type of

angular acceleration.

« Recall dé dé
w=— or dt = —
dt )

do d%0 do

a: — :a)—

dt  dt? do

« Uniform Rotation (angular acceleration=0 )
0 =0y + ot
« Uniformly Accelerated Rotation( angular acceleration = constant):
@ =g +at

2
0 =0y + wpt + 5 at

w° :a)g +2a(6-6y)



Sample Problem 15.3

—+= Cable C has a constant acceleration of 225 mm/s? and an

initial velocity of
300 mm/s, both directed to the right.

- Determine (g) the number of revolutions of the pulley in 2

s, (b) the velocity and change in position of the load B

after 2 s, and (¢) the acceleration of the point D on the rim

of the inner pulley at f = 0.

STRATEGY:

* Due to the action of the cable, the tangential velocity and acceleration of D are equal
to the velocity and acceleration of C Calculate the initial angular velocity and
acceleration.

« Apply the relations for uniformly accelerated rotation to determine the velocity and

angular position of the pulley after 2 s.



 Evaluate the initial tangential and normal acceleration components of D.
. MODELING and ANALYSIS:

The tangential velocity and acceleration of D are equal to the

velocity and acceleration of C

(¥p), = (%), =300mm/s — (Gp), =dc=225mm/s* —
(vp), = ra (ap), =ra
A\ A (vp), 300 (ap), 225
y B A Tvi _ 0 _ _ _ r_ — 2
L) | Wy =" > 4rad/s) o=— 2 3rad/s?)

« Apply the relations for uniformly accelerated rotation to determine velocity and

angular position of pulley after 2 s.
W=, +oct:4rad/s+(3rad/s2)(2 s)=10rad/s)
0 = ot +1at’ =(4rad/s)(2 s)++(3rad/s*)(2 s)’
=14 rad
N= (14 rad)(

1rev
27 rad

j = number of revs N =2.23rev




vp = r@ = (125 mm)(10rad/s) =1250 mm/s vy, =1.25m/s T
Ayp =76 =(125 mm)(14 rad)=1750 mm Ay, =175m7T

Evaluate the initial tangential and normal acceleration

*—  components of D.

(aD); =a. = 225mm/s2 —

(ap )n =105 =(75 mm)(«ilrad/s)2 =1200mm/s’
(dp), =225mm/s* - (ap) =1200mm/s”{

Magnitude and direction of the total acceleration,

a0 = (ap ) +(ap )’

= \(225)% +(1200)> =1221 mm/s?

ap =1.221m/s?




$=T79.4°

REFLECT and THINK:
* A double pulley acts similarly to a system of gears; for every 75 mm that point C
moves to the right, point B moves 125 mm upward. This is also similar to the rear
tire of your bicycle. As you apply tension to the chain, the rear sprocket rotates a

small amount, causing the rear wheel to rotate through a much larger angle.



15.2 General Plane Motion : Velocity
As the man approaches to release the bowling ball, his arm has linear velocity and
acceleration from both translation (the man moving forward) as well as rotation (the arm

rotating about the shoulder).
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15.2A Analyzing General Plane Motion

Plane motion = Translation with A ' Rotation about A

« General plane motion is neither a translation nor
a rotation.

« General plane motion can be considered as the
sum of a translation and rotation.

» Displacement of particles A and B to A, and B;

can be divided into two parts:

By

« translation to 4, and

!
- rotation of Bl about A, to 5>



15.2B Absolute and Relative Velocity in Plane Motion

= Translation with A + Rotation about A

« Any plane motion can be replaced by a translation of an arbitrary

reference point A and a simultaneous rotation about A.

VB IVA +VB/A

VB/A =a)IZ><F’B/A VB/AZFCO
VB :VA-FC()EX rB/A

VB =VA ¥ Vp/A



N\ |
\\3; w
A (fixed) Ve =V, +V
5 . B A B/A
Plane motion = Translation with A + Rotativiaboiit A

« Assuming that the velocity v, of end A is known, wish to determine the velocity v;
of end B and the angular velocity w in terms of v, / and q.

* The direction of vz and vz, are known. Complete the velocity diagram.

V Vv Vv
—B —tané@ A —_A—cosd
vV, Vgn o
Vg =V, tané vV,




B {'E.\'r_;d )

W 12
- i i
- Y Va
\i :\ :‘} M S S -ias,:?;
Wi ?\,\ A
\%‘T_;:ie. 1 0\
‘*\ Y 1}
\ . L
5, \E Voa
Y
\\
+ N
N Y
\_\ \\ -\\ /|
% \\ \_ \‘-\
\_\ \L\ \\ "_\ q
N % ‘:\H‘\ﬂﬁ
\\\(‘::_} A \l\éj_é v \VVE
A
V B
. . Via=Vpt+V
Plane motion = Translation with B + Rotation about B A B A/B

 Selecting point B as the reference point and solving for the velocity v, of end A and
the angular velocity w leads to an equivalent velocity triangle.

* V45 has the same magnitude but opposite sense of vz,. The sense of the relative
velocity is dependent on the choice of reference point.

« Angular velocity w of the rod in its rotation about B is the same as its rotation about

A. Angular velocity is not dependent on the choice of reference point.



Sample Problem 15.6

"""""" Wity T The double gear rolls on the stationary lower
_ | rack: the velocity of its center is 1.2 m/s.
|) = T e . .
- AN Determine (a) the angular velocity of the gear,

,. i }{\ ' i and (b) the velocities of the upper rack R and
il — Ty = 1T
) point D of the gear.

ey e e, o J.. B s s n s s,

STRATEGY:

« The displacement of the gear center in one revolution is equal to the outer
circumference. Relate the translational and angular displacements. Differentiate to
relate the translational and angular velocities.

* The velocity for any point P on the gear may be written as
Vp =Vp +Vp/p =Vp+aKxTpx

Evaluate the velocities of points B and D.



M, R MODELING and ANALYSIS

___________ e e ——
. The displacement of the gear center in one
D« 2 Tm—ﬂmu——?ﬁ revolution is equal to the outer circumference.
pr . >“"\ ' o For x4 > 0 (moves to right), w < 0 (rotates clockwise).
- ol — 1y = 100 mm
" 150 mm (’" s "
LS LA A A L A L B L L AL L L L y
X
X 0
A -~ Xy =-K6
27y 27T

Differentiate to relate the translational and angular velocities.
Vp =—ho
va  1.2m/s

=T n 0.150m @ = ok = —(8rad/s)k




* For any point P on the gear,

B - B
I L. I 4 \'\\.‘ o =—8k X
----------- L S AR AR A A A
2 D) Quemrteliin O D ( o
; A nxecl
De < > = &
S A S i & G
X, Gy Crmmevmiipe P
r = 150 Tim 3 C 8%~ ry = 100 mm
W I islat I

Velocity of the upper rack is equal to velocity of point B:
VR ZVB =\7A+a)|2><T'B/A

= (1.2m/s)i +(8rad/s)k x(0.10 m)j

VP :vA+\7p/A=VA+0)lZer/A

ia O

=(1.2m/s)i +(0.8m/s)i

Vi

(2m/s)i

Velocity of the point D
VD :\7A+a)IZ><F'D/A

=(1.2m/s)i +(8rad/s)k x (— 0.150 m)i

Vb
Vp

(L2m/s)T +(1.2m/s) ]
1.697m/s




B—e—
—————————— :"\.'__-' wsiglaly
) & I:ﬂ:t.!:'ﬂ;nlﬂ-rh——-kiﬁ
De G el :
pYP R E . e
» A : .
2y : K
. R — 1o = 100 mm
ry = 150 mm (> 7 =
oL LA AT A A AL L L AL

REFLECT and THINK:
* Note that point A was free to translate, and Point C, since it is in contact with the

fixed lower rack, has a velocity of zero. Every point along diameter CAB has a velocity

vector directed to the right and the magnitude of the velocity increases linearly as

the distance from point C increases.



® Instantaneous Center of Rotation

*Plane motion of all particles in a slab can always be replaced

by the translation of an arbitrary point A and a rotation about

—~ A with an angular velocity that is independent of the choice of

g *The same translational and rotational velocities at A are
obtained by allowing the slab to rotate with the same angular

{ » velocity about the point C on a perpendicular to the velocity at A.

r=u/®  *The velocity of all other particles in the slab are the same as originally
defined since the angular velocity and translational velocity at A are

equivalent.

j 7 *As far as the velocities are concerned, the slab seems to rotate about the

instantaneous center of rotation C.



*If the velocity at two points A and B are known, the
instantaneous center of rotation lies at the intersection of the

perpendiculars to the velocity vectors through A and 5.

g > *If the velocity vectors are parallel, the instantaneous center of
rotation is at infinity and the angular velocity is zero.
*If the velocity vectors at A and B are perpendicular to the line
AB, the instantaneous center of rotation lies at the intersection

of the line AB with the line joining the extremities of the velocity vectors at
A and B.

*If the velocity magnitudes are equal, the instantaneous center of rotation is

at infinity and the angular velocity is zero.



{Tég » *The instantaneous center of rotation lies at the
B %7 . .
TI; 1% intersection of the perpendiculars to the velocity
vectors through A and B .with
V V
w=—hA —__"A
AC lcosé

Va

B en. —(BC)w=(lsing
Fig. 15.20 - ( )w (Sm )ICOSH

=v, tand
*The velocities of all particles on the rod are as if they were rotated
about C
*The particle at the center of rotation has zero velocity.
*The particle coinciding with the center of rotation changes with time

and the acceleration of the particle at the instantaneous center of



rotation is not zero.

« The acceleration of the particles in the slab cannot be determined

as if the slab were simply rotating about C

* The trace of the locus of the center of rotation on the body is the

body centrode and in space is the space centrode.

*At the instant shown, what is the

ot S approximate direction of the velocity of point
y G, the center of bar AB?
.
o © . Space
X ' "{.4‘@;_;5&““--;_; _E;(_nn'rmi()
. Bady .\ T



answer ; c)




Sample Problem 15.9

B R The double gear rolls on the stationary lower rack:
> T gt - - v

' the velocity of its center is 1.2 m/s.
na & T AN Determine (g) the angular velocity of the gear,

2 SR | and (b) the velocities of the upper rack R and
2, »}f\ r,=100mm  point D of the gear.

STRATEGY:

» The point Cis in contact with the stationary lower rack and, instantaneously, has zero
velocity. It must be the location of the instantaneous center of rotation.
+ Determine the angular velocity about C based on the given velocity at A.

* Evaluate the velocities at B and D based on their rotation about C.



________ i — MODELING and ANALYSIS:

 The point Cis in contact with the stationary lower

, A \& | rack and, instantaneously, has zero velocity. It must be
- I (_ —rp=100mm the location of the instantaneous center of rotation.
« Determine the angular velocity about C based on the
e T given velocity at A.
va 1.2m/s
/ ‘ ' rg =250 mm VA = rAa) = A = / :8rad/S
2 “’f""*—*— ra 0.15m
K N | /T = 50 mm o 0 . o
X I)/[ ll | . Evaluate the velocities at 8 and D based on their rotation about
NDZ C
Vg = Vg = Igw = (0.25 m)(8rad/s) Vg =(2m/s)i

=(0.15m)+2=0.2121m
Vp = yw=(0.2121 m)(8rad/s)

=1.697m/s
Vo =(L.27 +1.2])(m/s)




REFLECT and THINK:
The results are the same as in Sample Prob. 15.6, as you would expect, but it took much

less computation to get them.



Sample Problem 15.10
The crank AB has a constant clockwise angular
velocity of 2000 rpm.

For the crank position indicated, determine (g)

the angular velocity of the connecting rod 5D,
and (b) the velocity of the piston A.

Use method of instantaneous center of rotation
STRATEGY:
* Determine the velocity at B from the given crank rotation data.
« The direction of the velocity vectors at Band D are known. The instantaneous center
of rotation is at the intersection of the perpendiculars to the velocities through B8 and
D.
« Determine the angular velocity about the center of rotation based on the velocity at
B.
« Calculate the velocity at D based on its rotation about the instantaneous center of

rotation.



MODELING and ANALYSIS:

A= - J.’-I
40\}4' - From Sample Problem 15.3,
o vy =15,705mm/s

B=13.95°

J Yp : goc * The instantaneous center of rotation is at the

T intersection of the perpendiculars to the velocities

i D Yp
through B and D,
Y%, =40°+ f§ =53.95° Determine the angular velocity about the center of
75 =90°— f =76.05° rotation based on the velocity at B.
vy =(BC)wgy,
BC CD 200 mm _ vy _ 15,705mm/s 0y = 62.0rad/s
- = = “B0 = BT 72534 mm
sin76.05° sin53.95°  sin50° '
B(=253.4mm CD=211.1mm Calculate the velocity at D based on its rotation about

the instantaneous center of rotation.
v, =(CD)wy, =(211.1 mm)(62.0rad/s)

Vp =Vp =13,080mm/s =13.08m/s




Instantaneous Center of Zero Velocity

/‘\“zw—zoo mm
[

REFLECT and THINK:
What happens to the location of the instantaneous center of velocity if the crankshaft

angular velocity increases from 2000 rpm in the previous problem to 3000 rpm?

What happens to the location of the instantaneous center of velocity if the angle b is 0?



15.4 GENERAL PLANE MOTION : ACCELERATION

15.4 A Absolute and Relative Acceleration in Plane Motion

Plane motion = Translation with A + Rotation about A e EI Y

« Absolute acceleration of a particle of the slab,

dg =dp +dp/a (15.21)

=

ag/A

 Relative acceleration associated with rotation about A includes tangential and



normal components,

A : A (15.22)

'\ 15.

ap H B
Hg;\«w\ . Given aA a.nd VA’
VRO ~ —
p Y ]
! \! — determine 9B and &.
A (fixed)
Plane motion = Translation with A % Rotation about A = aA + (QB/A )n + (éB/A )t



A i ” e i et
\*‘ / VAl : ,r:':’.- % <A i
"’.t.': \in ] ’ . -:.‘ o]

» Vector result depends on sense of dA  and the relative magnitudes
¢ daand @g/a).

* Must also know angular velocity w.

15.

B { {S‘*’ ﬂm‘mﬂ"""\gﬁ'ﬁ
N ay

A (fixed)

Rotation about A

Plane motion = Translation with A +

(apaly

(ag



ﬁB =§A+§B/A

* Write in terms of the two component equations,

_ 2 qi
+—> x components: O=ap +lo“sind—-lacosé

_ 2 i
+71 ) components: —as = —1@" c0sf—lasing

« Solve for azand a.



15.4B Analysis of Plane Motion in Terms of a Parameter

 In some cases, it is advantageous to determine the absolute

velocity and acceleration of a mechanism directly.

\
| { X, =lsing yg =1c0sé
\\ & B .
| ; V, = XA Ve =Ys .
=16 cosé =-10 sin Z
N - — =lwcosd =—lwsing
A
a, =X, ag =Yg
=—10°sin@+10 cos b — 162 cosf—1dsin o

= —lw?sin@+la cos O = —lw?*cosf—lasing



15.5 Analyzing Motion with Respect to a Rotating Frame

Rotating coordinate systems are often used to analyze mechanisms (such as amusement

park rides) as well as weather patterns.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
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15.5A Rate of Change With Respect to a Rotating Frame
. With respect to the rotating Oxyz frame,

Y

C_j = QXT+Qy]+QZ|Z

Q) =Qi+q,i+ak
. With respect to the fixed OXYZ frame,
(Q)oxyz = Qxiﬁ‘FQyT"‘QZE"‘QXT‘FQyJ7+QzIZ

.

)

L O +Qy T+ QK =8 )oye =

Rate of change with respect to rotating frame.

Frame OXYZis fixed. . 1f Q were fixed within Oxyz then (Q)OXYZ is
Frame Oxyz rotates

about fixed axis OA with equivalent to velocity of a point in a rigid body attached

—

angular velocity Q i ) .
« Vector function Q(t) QXI +Qyj +sz - QXQ
varies in direction and ¢  With respect to the fixed OXYZ  frame,

magritude. O lowez = (Qoyys + 23

to Oxyz and




15.5B Plane Motion Relative to a Rotating Frame

¥ - Frame OXYis fixed and frame Oxy rotates with angular velocity

—

Q.

* Position vector p for the particle Pis the same in both frames

but the rate of change depends on the choice of frame.

» The absolute velocity of the particle P is
Vp = (Foxy =QxT+ (M)oxy

X

- Imagine a rigid slab attached to the rotating frame Oxy or F for
short. Let P’be a point on the slab which corresponds instantaneously

to position of particle ~.
VP/F = (r)Oxy =
Vp' —

velocity of P along its path on the slab

absolute velocity of point P’ on the slab

«  Absolute velocity for the particle P may be written as
Vp =Vpr +VpF




. Absolute acceleration for the particle P is

ép ZQXF-FQX(F})OXY +%|:(|7})Oxy:|

but, N .
(Floxy =QxT +(F)oyy
. d[.
ot Vo =QXT + ( r)Oxy a [(r)Oxy ] ( )Oxy + Q% ( )OXV
X =Vp + VP/F =

a ZQXF+QX(QXF)+2QX(?)OW+(%)Oxy
Utilizing the conceptual point P’ on the slab,
dp =§x?+f)x(ﬂx T’)

dp/F = (r)Oxy
» Absolute acceleration for the particle P becomes
ap = ap' + ap/F + 2Q x (T')Oxy

ZQXVP/F =

Coriolis acceleration




. Consider a collar P which is made to slide at constant
relative velocity ¢ along rod OB. The rod is rotating at a
‘ constant angular velocity w. The point A on the rod
\ corresponds to the instantaneous position of A.

. Absolute acceleration of the collar is

a, = ZQXVP/F a, =2wu

» The absolute acceleration consists of the radial and tangential vectors shown



att,

at t+At,

el

 Change in velocity over dt is represented by the sum of three
vectors

AV=RR'+TT"+T"T'
. TT” is due to change in direction of the velocity of point A on
the rod,

R

. T" . A0 2
lim — = lim vp—=roo=ro” =ay
A—0 At At—0 At

§A=QXf+flx(ﬁxF') aA:ra)2

recall,

RR"and T "T ' result from combined effects of relative motion of P

and rotation of the rod



Sample Problem 15.19

#

I)isF\ S /\
\ -—
\ R =50 mm

STRATEGY:

i RR" T"T' . AQ Ar
lim + = limlu—+w—
At—0\ At At At—0\ At At

=Uw+ wU = 2wu

3. =20 xV =2
recall, A P/F A ol

Disk D of the Geneva mechanism rotates with constant
counterclockwise angular velocity wp = 10 rad/s.
At the instant when 7 = 150° determine (&) the angular

velocity of disk S, and (6) the velocity of pin P relative to

pisk D disk S.



Vp =Vp' +Vp/s

« The absolute velocity of the point 2 may be written as

« Magnitude and direction of velocity VP of pin P are calculated from the radius and angular

velocity of disk D,
« Direction of velocity VP' of point 7 on S coinciding with P is perpendicular to radius OP

v
 Direction of velocity P/s of P with respect to S is parallel to the slot.

+ Solve the vector triangle for the angular velocity of S and relative velocity of P

MODELING and ANALYSIS:

« The absolute velocity of the point P may be written as
Vp =Vp' +Vp/s

« Magnitude and direction of absolute velocity of pin P are

calculated from radius and angular velocity of disk D,



Vp = Rwp = (50 mm)(10 rad/s) = 500mm/s

* Direction of velocity of P with respect to Sis parallel to slot.

From the law of cosines,
r’ =R% +1%2 —2RIc0s30°=0.551R*>  r=37.1mm

From the law of cosines,

sing :sm30 Sinﬂ:smi%o
R r 0.742

The interior angle of the vector triangle is
y =90°-42.4°-30°=17.6°

B =42.4°

« Direction of velocity of point 7 on S coinciding with Pis

perpendicular to radius OP From the velocity triangle,
Ve =V, sin y =(500mm/s)sin17.6° =151.2mm/s
151.2mm/s
=ro, 0, =—————
37.1 mm

@, = (—4.08rad/s)k




Vpjs = Vp COSy =(500m/s)cos17.6°

Vojs =(477m/s)(—cos42.4° —sin 42.4°])

Vv, =500 mm/s
REFLECT and THINK:
The result of the Geneva mechanism is that disk S rotates % turn each time pin P engages,
then it remains motionless while pin P rotates around before entering the next slot. Disk
D rotates continuously, but disk S rotates intermittently. An alternative approach to

drawing the vector triangle is to use vector algebra.



Sample Problem 15.20

. : In the Geneva mechanism, disk D rotates with a constant

\ ~ kr=50mm counter-clockwise angular velocity of 10 rad/s. At the

instant when j = 150°, determine angular acceleration of
disk S.

Disk D

STRATEGY:

« The absolute acceleration of the pin 2 may be expressed as P P P/s C

« The instantaneous angular velocity of Disk S is determined as in Sample Problem 15.9.

» The only unknown involved in the acceleration equation is the instantaneous angular acceleration
of Disk S.

» Resolve each acceleration term into the component parallel to the slot. Solve for the angular

acceleration of Disk S.



MODELING and ANALYSIS:

Absolute acceleration of the pin 2 may be expressed as
dp =ap +dp, + 4,
From Sample Problem 15.9.
B=424° &g =(—4.08rad/s)k
Up s = (477 mm/s)— cos42.4°T —sin 42.4°])
Considering each term in the acceleration equation,
ap = Rwd = (500mm)10rad/s)? =5000mm/'s?
dp = (5000mm/s Xcos30°| —sin 30°j)
ap = (@p ), + (@)
( r s X— c0s42.4°T —sin42.4°7)
( pl)t = (rag J(—sin42.4°T +cos42.4°7)
(@p'), = (g )(37.1mm)(—sin 42.4°7 + cos42.4°])

note: as may be positive or negative

931



_
XY 1940
o 7
E $ 30°
/ !
Y 4240

* The direction of the Coriolis acceleration is obtained by
rotating the direction of the relative velocity VP/S
by 90°in the sense of ws,

d; = (Za)svp/s X— sin42.4°1 + cos 42.4]7)
— 2(4.08rad/s)(477 mm/s)(—sin 42.4°T +cos42.4] )
= (3890 mm/s? X— sin42.4°T +c0s42.47] )

The relative acceleration “P/S must be parallel to
the slot.

Equating components of the acceleration terms
perpendicular to the slot,
37.1ag +3890—-5000c0s17.7°=0

ag =—233rad/s

ds = (- 233rad/s)k




e

Disk D

REFLECT and THINK:
« It seems reasonable that, since disk S starts and stops over the very short time
intervals when pin P is engaged in the slots, the disk must have a very large angular
acceleration. An alternative approach would have been to use the vector algebra

approach.



'\p.uw

15.6 Motion of a Rigid Body in Space

15.6A Motion About a Fixed Point

X 4

COTC

. The most general displacement of a rigid body with a fixed point Ois

equivalent to a rotation of the body about an axis through O.

OP o With the instantaneous axis of rotation and angular velocity the velocity
dar
=—=wXxTr
of a particle P of the body is dt

and the acceleration of the particle Pis

3ody cone -
| d=axr+aox(@xr) d’:z—?.

—
—

- The angular acceleration & represents the velocity of the tip of @.

—

* As the vector @ moves within the body and in space, it generates a body
cone and space cone which are tangent along the instantaneous axis of rotation.

« Angular velocities have magnitude and direction and obey parallelogram law of

addition. They are vectors.



15.6B General Motion

For particles A and B of a rigid body,
Vg =V, + VB/A
Particle A is fixed within the body and motion of the
body relative to AX’Y’Z’is the motion of a body with
a fixed point
=Vp + @O X rB/A
Similarly, the acceleration of the particle Pis
= aA + aB/A
= dp+axTgp+@x(@xFyp)
Most general motion of a rigid body is equivalent to:
a translation in which all particles have the same velocity and

acceleration of a reference particle A, and of a motion in

which particle A is assumed fixed.



Sample Problem 15.21

The crane rotates with a constant angular velocity w; = 0.30
rad/s and the boom is being raised with a constant angular
velocity w, = 0.50 rad/s. The length of the boom is /= 12 m.

Determine:

« angular velocity of the boom,

« angular acceleration of the boom,

 velocity of the boom tip, and

« acceleration of the boom tip.

STRATEGY:
With 5 =0.30] @, =0.50k
F =12(cos30°1 +5sin30°7)
=10.391 +6]

- Angular velocity of the boom, @ = @11 ®2



—

G = iy + @y = By = (B )y, + 2%,

« Angular acceleration of the boom, ~ 01 X 02
» Velocity of boom tip, V=&XxT

A=axT+dx(OxT)=aAXT+DxV

QD

* Acceleration of boom tip,

MODELING and ANALYSIS:

« Angular velocity of the boom,

@ = (0.30rad/s)j +(0.50rad/s )k O =@ + @y

Y

D

« Angular acceleration of the boom,
G = By + Gy = By = (7 )y, + 2% @

= @ x @, = (0.30rad/s)] x (0.50rad/s )k



é = 10.15rad/s?
/

y

~—10.39 m

‘ » * Velocity of boom tip,

] j K
V=@xT=| 0 03 05
1039 6 0

V=—(3.54m/s)i +(5.20m/s)j —(3.12m/s )k

i kT j k
a=(015 0 0/+/0 0.30 0.50
1039 6 0 |-3 520 -3.12
=0.90k —0.947 —2.60i —1.50] + 0.90k

7 a=—(354m/s? )7 —(L50m/s?) ] +(L.80m/s? K




REFLECT and THINK:

» The base of the cab acts as the fixed point of the motion.
Even though both components of angular velocity are
constant, there 1s an angular acceleration due to the
change in direction of the angular velocity w,. The

¥ angular velocity vector w,changes due to the rotation of
10.39 m | i the Cab, W1 .
®,=0.30] é/%gﬁ& : W ~ L -
A e ’",«2?//;‘5 & I 6m a)l = 0301 C()Z = O50k
: |
|

F=10.391 +6]




15.7Motion Relative to A Moving Reference Frame

15.7A Three-Dimensional Motion Relative to a Rotating Frame

Y With respect to the fixed frame OXY.Z and rotating frame Oxyz,

. 7 e < & = =
Q ’i\-“%%\ jj’ | ( )OXYZ - ( )Oxyz + Q X Q
\J/
7 X
Consider motion of particle Prelative to a rotating frame Oxyz
/ or F for short. The absolute velocity can be expressed as

Vp = QxF+ ('_})Oxyz

=Vp +VpE

et The absolute acceleration can be expressed as

Y dp =§xf+f)x(fl>< T’)+2Q><(ﬁ)0xyz +(r’)

Oxyz

— ap' +§P/F + Eic
2

2% (F)oxyz = 2Q2x Vp & = Coriolis acceleration



15.7B Frame of Reference in General Motion

« With respect to OXYZand AX’Y'Z,
rp = I_"A + rp/A

Vp =Va +Vp/a

dp =dp +dp/a
« The velocity and acceleration of P relative to AX’Y’Z’ can
be found in terms of the velocity and acceleration of P

relative to Axyz.
VP =\7A + QA x fp/A +(rP/A)

AXxyz

=Vp +Vp g

Consider:
- fixed frame OXYZ
— translating frame AX’Y’Z’, and



— translating and rotating frame Axyz or F.

P

(15.54)

Sample Problem 15.25

| D@ .-
diy p A\ e
f}| | - *_4%(;—.,—,”)) ‘?
k Disk D~
STRATEGY:

Q)|
|
Q|

>
_|_
ol
X
'Uql
~
>
_|_
ol
X
—~~
9]
'Uql
>
N

For the disk mounted on the arm, the indicated
angular rotation rates are constant.

Determine:

. the velocity of the point 7,

. the acceleration of A, and

. angular velocity and angular acceleration of the
disk.



Define a fixed reference frame OXY.Z at O and a moving reference frame Axyz or F attached to

the arm at A.
With P’ of the moving reference frame coinciding with A, the velocity of the point P is found

Vp =Vp' +VpF

from

dp =dpr +4d +4d
The acceleration of Pis found from T P P/F C

The angular velocity and angular acceleration of the disk are @ = [_j + C?)D/F

a= (o) +02xd
MODELING and ANALYSIS:

. Define a fixed reference frame OXYZ at O and a

e Vo 3 moving reference frame Axyz or F attached to the arm at
— afv‘) -}\‘? A
L R . . . B R],

L Disk D~ r=L1+R] P/A

i d

Q:a)lj cT)D/F =a)2IZ



With P’ of the moving reference frame coinciding

with A, the velocity of the point Pis found from

Q=wj ; Vp ZVPI +Vp/|:
» '-_—_i = g g = —
O W = OxF=aw ] x(LT +Rj)= oy LK

F7§‘ J - \7P/F:@D/Fer/AZWZEXRT:_wZRT

@5 = W,
Vp =—w9RT — LK
- * The acceleration of Pis found from
5 dp =dpr +dp/p +3ac
- - _ -
Vil a,, :Qx(ﬁx ?)zwlix(—a)lLk)z—wlzLi

| oWy Sy S

. 1“'. {
Lt ?2/ R @5 o = - ~
S —— A p/r = Wpjr ><(“)D/F % rP/A)

Disk D/ = ok x(-oRT)=-[R]
3, =20 %7,

g

=2w, ] x(—wZRT) = 2m,0,RK



d, = -o’LT — 0’R] + 20,0,Rk

« Angular velocity and acceleration of the disk,

o = Q—F@D/F
&:(5)F+§zx@

= a)Jx(a)lj?+a)2IZ)

-

a = w,w,|

o = w1T+w2IZ




REFLECT and THINK:

Knowing the absolute angular velocity of
the disk is equal to w,] + w-k, you could
have determined the velocity of P by
attaching the rotating axes to the disk and
using vp = Vg + Qp Xrp/g+ Vpjg =
—w,Lk — w, R},



