Mechanics and Design

Chapter 1. Vectors and Tensors

Byeng D. Youn

System Health \& Risk Management Laboratory
Department of Mechanical \& Aerospace Engineering
Seoul National University

CONTENTS

1 Introduction
2 Vectors, Vector additions, etc.
3 Scalar Product and Vector Product
4 Rotation of Axes, etc.
5 Review of Elementary Matrix Concepts
6 Reference

Chapter 1 : Vectors and Tensors

Introduction

Vectors, Vector Additions, etc.

Convention

$$
\mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}
$$

Base vectors

$$
\mathbf{i}, \mathbf{j}, \mathbf{k} \text { or } \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}
$$

Indicial notation

$$
\begin{aligned}
& a_{i}=\mathbf{a} \cdot \mathbf{e}_{\mathbf{i}} \\
& \mathbf{a}=a_{i} \mathbf{e}_{\mathbf{i}}=a_{1} \mathbf{e}_{\mathbf{1}}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}
\end{aligned}
$$

Summation convention (Repeated index)

$$
\begin{aligned}
& a_{i} a_{i}=a_{1} a_{1}+a_{2} a_{2}+a_{3} a_{3} \\
& a_{k k}=a_{11}+a_{22}+a_{33} a_{i j} a_{i j}
\end{aligned}=a_{11} a_{11}+a_{12} a_{12}+a_{13} a_{13} .
$$

Scalar Product and Vector Product

Scalar product

The scalar product is defined as the product of the two magnitudes times the cosine of the angle between the vectors

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta \tag{1-1}
\end{equation*}
$$

From the definition of eq. (1-1), we immediately have

$$
\begin{aligned}
(m \mathbf{a}) \cdot(n \mathbf{b}) & =m n(\mathbf{a} \cdot \mathbf{b}) \\
\mathbf{a} \cdot \mathbf{b} & =\mathbf{b} \cdot \mathbf{a} \\
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c}) & =\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}
\end{aligned}
$$

The scalar product of two different unit base vectors defined above is zero, since $\cos \left(90^{\circ}\right)=0$, that is

$$
\begin{aligned}
& \mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0 \\
& \mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1
\end{aligned}
$$

Then the scalar product becomes

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\left(a_{x} \mathbf{i}+a_{y} \mathbf{j}+a \mathbf{k}\right) \cdot\left(b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k}\right) \\
& =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
& =a_{i} b_{i}
\end{aligned}
$$

Scalar Product and Vector Product

Vector product (or cross product)

$\mathbf{c}=\mathbf{a} \times \mathbf{b}$ is defined as a vector \mathbf{c} perpendicular to both \mathbf{a} and \mathbf{b} in the sense that makes $\mathbf{a}, \mathbf{b}, \mathbf{c}$ a right-handed system. Magnitude of vector \mathbf{c} is given by

$$
|c|=|a||b| \sin (\theta)
$$

In terms of components, vector product can be written as

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left(a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}\right) \times\left(b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k}\right) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
& =\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k}
\end{aligned}
$$

Fig. 1.1 Definition of vector product

The vector product is distributive as

$$
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=(\mathbf{a} \times \mathbf{b})+(\mathbf{a} \times \mathbf{c})
$$

But it is not associative as

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}
$$

Scalar Product and Vector Product

Scalar triple product

The scalar triple product is defined as the dot product of one of the vectors with the cross product of the other two.

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
$$

Fig. 1.2 Definition of scalar triple product

Permutation symbol $\varepsilon_{m n r}$

$$
\varepsilon_{m n r}=\left\{\begin{array}{c}
0 \quad \text { when any two indices are equal } \\
+1 \text { when }(m, n, r) \text { is even permutation of }(1,2,3) \\
-1 \text { when }(m, n, r) \text { is odd permutation of }(1,2,3)
\end{array}\right.
$$

Where,

$$
\begin{aligned}
& \text { even permutations are }(1,2,3),(2,3,1) \text {, and }(3,1,2) \\
& \text { odd permutations are }(1,3,2),(2,1,3) \text {, and }(3,2,1) \text {. }
\end{aligned}
$$

Using the permutation symbol, the vector product can be represented by

$$
\mathbf{a} \times \mathbf{b}=\varepsilon_{p q r} a_{q} b_{r} \mathbf{i}_{p}
$$

Scalar Product and Vector Product

Kronceker delta $\delta_{i j}$
The Kronecker delta is a function of two variables, usually just positive integers. The function is 1 if the variables are equal, and 0 otherwise.

$$
\delta_{p q}=\left\{\begin{array}{l}
1 \text { if } p=q \\
0 \text { if } p \neq q
\end{array}\right.
$$

Some examples are given below:

$$
\begin{aligned}
& \delta_{i i}=3 \\
& \delta_{i j} \delta_{i j}=\delta_{i i}=3 \\
& u_{i} \delta_{i j}=u_{i}=u_{j} \\
& T_{i j} \delta_{i j}=T_{i i}
\end{aligned}
$$

Rotation of Axes, etc.

Change of orthonormal basis

- Cartesian components of a vector are not changed by translation of axes.
- However, the components of a vector change when the coordinate axes rotate.

Let x_{i} and $\overline{x_{i}}$ be the two coordinate systems, as show in Fig. 1.3, which have the same origins.
Also, let the orientation of the two coordinate systems is given by the direction cosines as

	$\overline{i_{1}}$	$\overline{\mathbf{i}_{2}}$	$\overline{\mathrm{i}_{3}}$
i_{1}	α_{1}^{1}	α_{2}^{1}	α_{3}^{1}
i_{2}	α_{1}^{2}	α_{2}^{2}	α_{3}^{2}
i_{3}	α_{1}^{3}	α_{2}^{3}	α_{3}^{3}
$a_{i}^{j} \longrightarrow \text { original }$			

Fig. 1.3 Coordinate transformation

Rotation of Axes, etc. 2D coordinate transformation

$$
\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\bar{u}_{x} \\
\bar{u}_{y}
\end{array}\right] \text { or } \mathbf{u}=A \overline{\mathbf{u}}
$$

Inverse of 2D coordinate transformation

Fig. 1.4 2D coordinate transformation

$$
\left[\begin{array}{l}
\bar{u}_{x} \\
\bar{u}_{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right] \text { or } \overline{\mathbf{u}}=A^{-1} \mathbf{u}=A^{T} \mathbf{u}
$$

Coordinate transformation of vector

$$
\begin{aligned}
& \text { Let, } \quad \mathbf{A}=\left[\begin{array}{lll}
a_{1}^{1} & a_{2}^{1} & a_{3}^{1} \\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\
a_{1}^{3} & a_{2}^{3} & a_{3}^{3}
\end{array}\right] \text { Then, } \quad \mathbf{v}=\mathbf{A} \overline{\mathbf{v}} \text { or } \overline{\mathbf{v}}=\mathbf{A}^{T} \mathbf{v} \\
& \mathbf{A}=\left[\begin{array}{lll}
\overline{\mathbf{a}}_{1} & \overline{\mathbf{a}}_{2} & \overline{\mathbf{a}}_{3}
\end{array}\right]
\end{aligned}
$$

Note that $\mathbf{A}^{\mathbf{T}} \mathbf{A}=\mathbf{A} \mathbf{A}^{\mathbf{T}}=\mathbf{I} \longrightarrow$ So \mathbf{A} is "Orthogonal matrix." (with orthonormal basis)

Rotation of Axes, etc.

Second order tensors as linear vector functions (or transformations)

The second order tensor may be expressed by tensor product or open product of two vectors.

Let, $\quad \mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}$ and $\mathbf{b}=b_{1} \mathbf{e}_{1}+b_{2} \mathbf{e}_{2}+b_{3} \mathbf{e}_{3}$

$$
\begin{aligned}
\mathrm{T}=\mathbf{a b}=\mathbf{a} \otimes \mathbf{b}= & \left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}\right) \otimes\left(b_{1} \mathbf{e}_{1}+b_{2} \mathbf{e}_{2}+b_{3} \mathbf{e}_{3}\right) \\
= & a_{1} b_{1} \mathbf{e}_{1} \otimes \mathbf{e}_{1}+a_{1} b_{2} \mathbf{e}_{1} \otimes \mathbf{e}_{2}+a_{1} b_{3} \mathbf{e}_{1} \otimes \mathbf{e}_{3} \\
& +a_{2} b_{1} \mathbf{e}_{2} \otimes \mathbf{e}_{1}+a_{2} b_{2} \mathbf{e}_{2} \otimes \mathbf{e}_{2}+a_{2} b_{3} \mathbf{e}_{2} \otimes \mathbf{e}_{3} \\
& +a_{3} b_{1} \mathbf{e}_{3} \otimes \mathbf{e}_{1}+a_{3} b_{2} \mathbf{e}_{3} \otimes \mathbf{e}_{2}+a_{3} b_{3} \mathbf{e}_{3} \otimes \mathbf{e}_{3} \\
& \text { or }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}= & T_{11} \mathbf{e}_{1} \otimes \mathbf{e}_{1}+T_{12} \mathbf{e}_{1} \otimes \mathbf{e}_{2}+T_{13} \mathbf{e}_{1} \otimes \mathbf{e}_{3} \\
& +T_{21} \mathbf{e}_{2} \otimes \mathbf{e}_{1}+T_{22} \mathbf{e}_{2} \otimes \mathbf{e}_{2}+T_{23} \mathbf{e}_{2} \otimes \mathbf{e}_{3} \\
& +T_{31} \mathbf{e}_{3} \otimes \mathbf{e}_{1}+T_{32} \mathbf{e}_{3} \otimes \mathbf{e}_{2}+T_{33} \mathbf{e}_{3} \otimes \mathbf{e}_{3}
\end{aligned}
$$

Here, we may consider $\mathbf{e}_{i} \otimes \mathbf{e}_{j} \neq \mathbf{e}_{j} \otimes \mathbf{e}_{i}$ as a base of the second order tensor, and $T_{i j}$ is a component of the second order tensor T .

Rotation of Axes, etc.

It can be seen that the second order tensor map a vector to another vector, that is,

$$
\begin{aligned}
\mathbf{u}=T \cdot \mathbf{v}= & \left(T_{11} \mathbf{e}_{1} \otimes \mathbf{e}_{1}+T_{12} \mathbf{e}_{1} \otimes \mathbf{e}_{2}+T_{13} \mathbf{e}_{1} \otimes \mathbf{e}_{3}\right. \\
& +T_{21} \mathbf{e}_{2} \otimes \mathbf{e}_{1}+T_{22} \mathbf{e}_{2} \otimes \mathbf{e}_{2}+T_{23} \mathbf{e}_{2} \otimes \mathbf{e}_{3} \\
& \left.+T_{31} \mathbf{e}_{3} \otimes \mathbf{e}_{1}+T_{32} \mathbf{e}_{3} \otimes \mathbf{e}_{2}+T_{33} \mathbf{e}_{3} \otimes \mathbf{e}_{3}\right) \cdot\left(v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+v_{3} \mathbf{e}_{3}\right) \\
= & \left(T_{11} v_{1}+T_{12} v_{2}+T_{13} v_{3}\right) \mathbf{e}_{1}+\left(T_{21} v_{1}+T_{22} v_{2}+T_{23} v_{3}\right) \mathbf{e}_{2} \\
& +\left(T_{31} v_{1}+T_{32} v_{2}+T_{33} v_{3}\right) \mathbf{e}_{3} \\
= & T_{i j} v_{j} \mathbf{e}_{i}
\end{aligned}
$$

Symmetric tensor and skew-symmetric tensor

Symmetric tensor $\quad \longrightarrow \quad T_{i j}=T_{j i}$
$\begin{aligned} & \text { Skew-symmetric } \\ & \text { or Antisymmetric tensor }\end{aligned} \longrightarrow \quad T_{i j}=-T_{j i}$

Rotation of Axes, etc.

Rotation of axes, change of tensor components

Let $u_{i}=T_{i p} v_{p}$ and $\bar{u}_{i}=\bar{T}_{i p} \bar{v}_{p}$
where u_{i} and \bar{u}_{i} are the same vector but decomposed into two different coordinate systems, x_{i} and \bar{x}_{i}. The same applies to V_{i} and \bar{v}_{i}.
Then by the transformation of vector, we get

$$
\begin{aligned}
\bar{u}_{i}=a_{i}^{j} u_{j} & =a_{i}^{j} T_{j q} v_{q} \\
& =a_{i}^{j} T_{j q} a_{p}^{q} \bar{v}_{p}
\end{aligned}
$$

Therefore, transformation matrix can be expressed as,

$$
\bar{T}_{i p}=a_{i}^{j} a_{p}^{q} T_{j q}
$$

In matrix form, we have,

$$
\bar{T}=A^{T} T A \quad \text { or } \quad T=A \bar{T} A^{T}
$$

Rotation of Axes, etc.

Scalar product of two tensors

$$
\begin{aligned}
\mathrm{T}: \mathrm{U} & =T_{i j} U_{i j} \\
\mathrm{~T} \cdot \cdot \mathrm{U} & =T_{i j} U_{j i}
\end{aligned}
$$

If we list all the terms of tensor product, we get

$$
\begin{aligned}
\mathrm{T}: \mathrm{U}= & T_{i j} U_{i j} \\
= & T_{11} U_{11}+T_{12} U_{12}+T_{13} U_{13} \\
& +T_{21} U_{21}+T_{22} U_{22}+T_{23} U_{23} \\
& +T_{31} U_{31}+T_{32} U_{32}+T_{33} U_{33}
\end{aligned}
$$

The product of two second-order tensors

$$
\mathrm{T} \cdot \mathrm{U}
$$

$$
(\mathrm{T} \cdot \mathrm{U}) \cdot \mathrm{v}=\mathrm{T} \cdot(\mathrm{U} \cdot \mathrm{v})
$$

$$
\text { If } \mathrm{P}=\mathrm{T} \cdot \mathrm{U} \text {, then } P_{i j}=T_{i k} U_{k j}
$$

Rotation of Axes, etc.

The trace

Definition) $\operatorname{tr}(\mathrm{T})=T_{k k}$
Note that
(1) $\mathrm{A} \cdot \mathrm{B}=\operatorname{tr}(\mathrm{A} \cdot \mathrm{B})$
(2) $\mathrm{A}: \mathrm{B}=\operatorname{tr}\left(\mathrm{A} \cdot \mathrm{B}^{T}\right)=\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}} \cdot \mathrm{B}\right)$
(3) $\operatorname{tr}(\mathrm{A} \cdot \mathrm{B})=\operatorname{tr}(\mathrm{B} \cdot \mathrm{A})$
(4) $\operatorname{tr}(\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C})=\operatorname{tr}(\mathrm{B} \cdot \mathrm{C} \cdot \mathrm{A})=\operatorname{tr}(\mathrm{C} \cdot \mathrm{A} \cdot \mathrm{B}) \quad$ Cyclic property of trace

Proof)
(1) $\mathrm{A} \cdot \mathrm{B}=\operatorname{tr}(\mathrm{A} \cdot \mathrm{B})$

$$
\begin{aligned}
& \text { Let, } \mathrm{P}=\mathrm{A} \cdot \mathrm{~B}, \text { i.e., } \quad P_{i j}=A_{i k} B_{k j} \\
& \text { Then, } \quad \operatorname{tr}(\mathrm{P})=P_{i i}=A_{i k} B_{k i}=\mathrm{A} \cdot \mathrm{~B}
\end{aligned}
$$

(2) $\mathrm{A}: \mathrm{B}=\operatorname{tr}\left(\mathrm{A} \cdot \mathrm{B}^{T}\right)=\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}} \cdot \mathrm{B}\right)$

Let, $\mathrm{P}=\mathrm{A} \cdot \mathrm{B}^{\mathrm{T}}$, i.e., $\quad P_{i j}=A_{i k} B_{j k}$
Then, $\operatorname{tr}\left(\mathrm{A} \cdot \mathrm{B}^{T}\right)=P_{i i}=A_{i k} B_{i k}=\mathrm{A}: \mathrm{B}$

Review of Elementary Matrix Concepts

Eigenvectors and eigenvalues of a matrix
Linear transformation, $y=M x$, associates, to each point $P\left(x_{1}, x_{2}, x_{3}\right)$, another point $Q\left(y_{1}, y_{2}, y_{3}\right.$). Also, it associates to any other point ($r x_{1}, r x_{2}, r x_{3}$) on the line OP , another point ($r y_{1}, r y_{2}, r y_{3}$) on the line OQ.
So we may consider the transformation to be a transformation of the line OP into the line OQ. (left figure)
Now any line transformed into itself is called an eigenvector of the matrix \mathbf{M}.
That is,
$\mathbf{M x}=\lambda \mathbf{x}=\lambda \mathbf{I} \mathbf{x}$

Linear Transformation
M maps \mathbf{v} into the same vector \mathbf{v}.

Review of Elementary Matrix Concepts

A nontrivial solution will exist if and only if the determinant vanishes:

$$
|(\mathbf{M}-\lambda \mathbf{I})|=0
$$

Note that $3 x 3$ determinant is expanded, it will be a cubic polynomial equation with real coefficients. The roots of this equation are called the eigenvalues of the matrix. Upon solving the equation, some of the roots could be complex numbers.

Proof)

For some λ, if $\operatorname{det}(M-\lambda I)=0$, then $\exists v \in R^{n} \backslash\{\boldsymbol{0}\}$ s.t. $(M-\lambda I) v=0$
It is equivalent to $M v=\lambda v$ which is definition of eigenvalue.
Therefore, λ is an eigenvalue of M if λ is root of $\operatorname{det}(M-\lambda I)=0$

Review of Elementary Matrix Concepts

A real symmetric matrix has only real eigenvalues

If there were a complex root λ, then its complex conjugate $\bar{\lambda}$ is also a root. Therefore,

$$
\begin{aligned}
\mathbf{M} \mathbf{x} & =\lambda \mathbf{x} \\
\overline{\mathbf{M}} \mathbf{x} & =\bar{\lambda} \mathbf{x}
\end{aligned}
$$

These equations can be written as

$$
\begin{gathered}
\overline{\mathbf{x}}^{T} \mathbf{M} \mathbf{x}=\lambda \overline{\mathbf{x}}^{T} \mathbf{x} \\
\mathbf{x}^{T} \mathbf{M} \overline{\mathbf{x}}=\bar{\lambda} \mathbf{x}^{T} \overline{\mathbf{x}}
\end{gathered}
$$

Note that $\overline{\mathbf{X}}^{T} \mathbf{x}=x_{k} \bar{X}_{k}=\mathbf{x}^{T} \overline{\mathbf{X}}$ and since \mathbf{M} is symmetric, we get

$$
\begin{array}{rlrl}
\overline{\mathbf{x}}^{T} \mathbf{M} \mathbf{x} & =M_{i j} \bar{x}_{i} x_{j} & \\
& =M_{j i} \bar{x}_{j} x_{i} & & \text { (by interchanging the dummy indices) } \\
& =M_{i j} x_{i} \bar{x}_{j}=\mathbf{x}^{T} \mathbf{M} \overline{\mathbf{x}} & & \text { (by symmetry of M) }
\end{array}
$$

Review of Elementary Matrix Concepts

Subtracting them, we get

$$
(\lambda-\bar{\lambda}) \overline{\mathbf{x}}^{T} \mathbf{x}=0
$$

Since x is nontrivial, $\overline{\mathbf{x}}^{T} \mathbf{x} \neq 0$. Therefore, we should have

$$
\lambda=\bar{\lambda}
$$

So that λ must be real.

> We can obtain the eigenvector associated to each eigenvalue by substituting each eigenvalue into the matrix equation.
> When eigenvalues are all distinct : ??
> Two of the eigenvalues are equal : ??
> All of the eigenvalues are equal : ??

Reference (Example)
[1] Aiwina Heng, et al., "Rotaing machinery prognostics : state of the art, challenges and opportunities," Mechanical Systems and Signal Processing, 23, (2009), 724-739
[2] S. Yin and H. Luo, "A review on basic data-driven approaches for industrial process monitoring," IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 64186428, 2014.
[3] A. Muszynska, Rotordynamics, CRC Press, 2005.

THANK YOU FOR LISTENING

