

Mechanics and Design

Chapter 1. Vectors and Tensors

Byeng D. Youn

System Health & Risk Management Laboratory Department of Mechanical & Aerospace Engineering Seoul National University

CONTENTS

Introduction

2 Vectors, Vector additions, etc.

3 Scalar Product and Vector Product

4 Rotation of Axes, etc.

5 Review of Elementary Matrix Concepts

Reference

Introduction

Vectors, Vector Additions, etc.

Convention

$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$

Base vectors

i, **j**, **k** or
$$e_1, e_2, e_3$$

Indicial notation

$$a_i = \mathbf{a} \cdot \mathbf{e_i}$$
$$\mathbf{a} = a_i \mathbf{e_i} = a_1 \mathbf{e_1} + a_2 \mathbf{e_2} + a_3 \mathbf{e_3}$$

Summation convention (Repeated index)

$$\begin{aligned} a_{i}a_{i} &= a_{1}a_{1} + a_{2}a_{2} + a_{3}a_{3} & a_{ij}a_{ij} &= a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} \\ &+ a_{21}a_{21} + a_{22}a_{22} + a_{23}a_{23} \\ &+ a_{31}a_{31} + a_{32}a_{32} + a_{33}a_{33} \end{aligned}$$

Scalar product

The scalar product is defined as the product of the two magnitudes times the cosine of the angle between the vectors

$$\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \theta \qquad (1-1)$$

From the definition of eq. (1-1), we immediately have

$$(m\mathbf{a}) \cdot (n\mathbf{b}) = mn(\mathbf{a} \cdot \mathbf{b})$$

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
 $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$

The scalar product of two different unit base vectors defined above is zero, since $cos(90^\circ) = 0$, that is

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$$

 $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$

Then the scalar product becomes

$$\mathbf{a} \cdot \mathbf{b} = (a_x \mathbf{i} + a_y \mathbf{j} + a \mathbf{k}) \cdot (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k})$$
$$= a_x b_x + a_y b_y + a_z b_z$$
$$= a_i b_i$$

Vector product (or cross product)

 $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ is defined as a vector \mathbf{c} perpendicular to both \mathbf{a} and \mathbf{b} in the sense that makes \mathbf{a} , \mathbf{b} , \mathbf{c} a right-handed system. Magnitude of vector \mathbf{c} is given by

 $|c| = |a||b|\sin(\theta)$

In terms of components, vector product can be written as

$$\mathbf{a} \times \mathbf{b} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k})$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
Fig. 1.1 De
$$= (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

The vector product is distributive as

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

But it is not associative as

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$$

Fig. 1.1 Definition of vector product

Scalar triple product

The scalar triple product is defined as the dot product of one of the vectors with the cross product of the other two.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

Fig. 1.2 Definition of scalar triple product

Permutation symbol \mathcal{E}_{mnr}

 $\varepsilon_{mnr} = \begin{cases} 0 & \text{when any two indices are equal} \\ +1 & \text{when } (m, n, r) \text{ is even permutation of } (1, 2, 3) \\ -1 & \text{when } (m, n, r) \text{ is odd permutation of } (1, 2, 3) \end{cases}$

Where, even permutations are (1,2,3), (2,3,1), and (3,1,2) odd permutations are (1,3,2), (2,1,3), and (3,2,1).

Using the permutation symbol, the vector product can be represented by

$$\mathbf{a} \times \mathbf{b} = \varepsilon_{pqr} a_q b_r \mathbf{i}_p$$

Kronceker delta δ_{ii}

The Kronecker delta is a function of two variables, usually just positive integers. The function is 1 if the variables are equal, and 0 otherwise.

$$\delta_{pq} = \begin{cases} 1 \text{ if } p = q \\ 0 \text{ if } p \neq q \end{cases}$$

Some examples are given below:

$$\delta_{ii} = 3$$
$$\delta_{ij}\delta_{ij} = \delta_{ii} = 3$$
$$u_i\delta_{ij} = u_i = u_j$$
$$T_{ij}\delta_{ij} = T_{ii}$$

Change of orthonormal basis

- Cartesian components of a vector are not changed by translation of axes.
- However, the components of a vector change when the coordinate axes rotate.

Let x_i and $\overline{x_i}$ be the two coordinate systems, as show in Fig. 1.3, which have the same origins.

Also, let the orientation of the two coordinate systems is given by the direction cosines as

	$\overline{i_1}$	$\overline{i_2}$	$\overline{i_3}$
i ₁	α_1^1	α_2^1	α_3^1
i ₂	α_1^2	α_2^2	α_3^2
i ₃	α_1^3	α_2^3	α_3^3
$i \longrightarrow \text{original}$			

 $a_i^{J} \xrightarrow{\rightarrow} \text{original}$ transformed

2D coordinate transformation

$$\begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \overline{u}_x \\ \overline{u}_y \end{bmatrix} \text{ or } \mathbf{u} = A\overline{\mathbf{u}}$$

Inverse of 2D coordinate transformation

Fig. 1.4 2D coordinate transformation

$$\begin{bmatrix} \overline{u}_x \\ \overline{u}_y \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} u_x \\ u_y \end{bmatrix} \text{ or } \overline{\mathbf{u}} = A^{-1}\mathbf{u} = A^T\mathbf{u}$$

Coordinate transformation of vector

Let,

$$\mathbf{A} = \begin{bmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^3 & a_2^3 & a_3^3 \end{bmatrix}$$
Then,

$$\mathbf{V} = \mathbf{A} \overline{\mathbf{V}} \text{ or } \overline{\mathbf{V}} = \mathbf{A}^T \mathbf{V}$$

$$\mathbf{A} = \begin{bmatrix} \overline{\mathbf{a}}_1 & \overline{\mathbf{a}}_2 & \overline{\mathbf{a}}_3 \end{bmatrix}$$
Note that $\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I} \longrightarrow$ So **A** is "Orthogonal matrix" (with or

(with orthonormal basis) matrix. unai A

Second order tensors as linear vector functions (or transformations)

The second order tensor may be expressed by tensor product or open product of two vectors.

Let, $\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3$ and $\mathbf{b} = b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + b_3 \mathbf{e}_3$ $T = \mathbf{a}\mathbf{b} = \mathbf{a} \otimes \mathbf{b} = (a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3) \otimes (b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + b_3 \mathbf{e}_3)$ $= a_1 b_1 \mathbf{e}_1 \otimes \mathbf{e}_1 + a_1 b_2 \mathbf{e}_1 \otimes \mathbf{e}_2 + a_1 b_3 \mathbf{e}_1 \otimes \mathbf{e}_3$ $+ a_2 b_1 \mathbf{e}_2 \otimes \mathbf{e}_1 + a_2 b_2 \mathbf{e}_2 \otimes \mathbf{e}_2 + a_2 b_3 \mathbf{e}_2 \otimes \mathbf{e}_3$ $+ a_3 b_1 \mathbf{e}_3 \otimes \mathbf{e}_1 + a_3 b_2 \mathbf{e}_3 \otimes \mathbf{e}_2 + a_3 b_3 \mathbf{e}_3 \otimes \mathbf{e}_3$ or $T = T_{11} \mathbf{e}_1 \otimes \mathbf{e}_1 + T_{12} \mathbf{e}_1 \otimes \mathbf{e}_2 + T_{13} \mathbf{e}_1 \otimes \mathbf{e}_3$ $+ T_{21} \mathbf{e}_2 \otimes \mathbf{e}_1 + T_{22} \mathbf{e}_2 \otimes \mathbf{e}_2 + T_{23} \mathbf{e}_2 \otimes \mathbf{e}_3$ $+ T_{31} \mathbf{e}_3 \otimes \mathbf{e}_1 + T_{32} \mathbf{e}_3 \otimes \mathbf{e}_2 + T_{33} \mathbf{e}_3 \otimes \mathbf{e}_3$

Here, we may consider $\mathbf{e}_i \otimes \mathbf{e}_j \neq \mathbf{e}_j \otimes \mathbf{e}_i$ as a base of the second order tensor, and T_{ij} is a component of the second order tensor T.

It can be seen that the second order tensor map a vector to another vector, that is,

$$\mathbf{u} = T \cdot \mathbf{v} = (T_{11} \ \mathbf{e}_1 \otimes \mathbf{e}_1 + T_{12} \ \mathbf{e}_1 \otimes \mathbf{e}_2 + T_{13} \mathbf{e}_1 \otimes \mathbf{e}_3 + T_{21} \ \mathbf{e}_2 \otimes \mathbf{e}_1 + T_{22} \ \mathbf{e}_2 \otimes \mathbf{e}_2 + T_{23} \ \mathbf{e}_2 \otimes \mathbf{e}_3 + T_{31} \ \mathbf{e}_3 \otimes \mathbf{e}_1 + T_{32} \ \mathbf{e}_3 \otimes \mathbf{e}_2 + T_{33} \ \mathbf{e}_3 \otimes \mathbf{e}_3) \cdot (v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3) = (T_{11}v_1 + T_{12}v_2 + T_{13}v_3)\mathbf{e}_1 + (T_{21}v_1 + T_{22}v_2 + T_{23}v_3)\mathbf{e}_2 + (T_{31}v_1 + T_{32}v_2 + T_{33}v_3)\mathbf{e}_3 = T_{ij}v_j\mathbf{e}_i$$

Symmetric tensor and skew-symmetric tensor

Symmetric tensor
$$\longrightarrow T_{ij} = T_{ji}$$

Skew-symmetric or Antisymmetric tensor $\longrightarrow T_{ij} = -T_{ji}$

Rotation of axes, change of tensor components

Let $u_i = T_{ip}v_p$ and $\overline{u}_i = \overline{T}_{ip}\overline{v}_p$ where u_i and \overline{u}_i are the same vector but decomposed into two different coordinate systems, x_i and \overline{x}_i . The same applies to V_i and \overline{V}_i . Then by the transformation of vector, we get

$$\overline{u}_i = a_i^j u_j = a_i^j T_{jq} v_q$$
$$= a_i^j T_{jq} a_p^q \overline{v}_p$$

Therefore, transformation matrix can be expressed as,

$$\overline{T}_{ip} = a_i^{\ j} a_p^{\ q} T_{jq}$$

In matrix form, we have,

$$\overline{T} = A^T T A$$
 or $T = A \overline{T} A^T$

Scalar product of two tensors

 $\mathbf{T}: \mathbf{U} = T_{ij}U_{ij}$ $\mathbf{T} \cdot \mathbf{U} = T_{ij}U_{ji}$

If we list all the terms of tensor product, we get

$$T: U = T_{ij}U_{ij}$$

= $T_{11}U_{11} + T_{12}U_{12} + T_{13}U_{13}$
+ $T_{21}U_{21} + T_{22}U_{22} + T_{23}U_{23}$
+ $T_{31}U_{31} + T_{32}U_{32} + T_{33}U_{33}$

The product of two second-order tensors

$$\mathbf{T} \cdot \mathbf{U}$$
$$(\mathbf{T} \cdot \mathbf{U}) \cdot \mathbf{v} = \mathbf{T} \cdot (\mathbf{U} \cdot \mathbf{v})$$
If $\mathbf{P} = \mathbf{T} \cdot \mathbf{U}$, then $P_{ij} = T_{ik} U_{kj}$

The trace

Definition) $tr(\mathbf{T}) = T_{kk}$

Note that

(1)
$$A \cdot B = tr(A \cdot B)$$

(2) $A : B = tr(A \cdot B^{T}) = tr(A^{T} \cdot B)$
(3) $tr(A \cdot B) = tr(B \cdot A)$
(4) $tr(A \cdot B \cdot C) = tr(B \cdot C \cdot A) = tr(C \cdot A \cdot B)$ Cyclic property of trace

(1)
$$A \cdot B = tr(A \cdot B)$$

Let, $P = A \cdot B$, i.e., $P_{ij} = A_{ik}B_{kj}$
Then, $tr(P) = P_{ii} = A_{ik}B_{ki} = A \cdot B$
(2) $A : B = tr(A \cdot B^{T}) = tr(A^{T} \cdot B)$
Let, $P = A \cdot B^{T}$, i.e., $P_{ij} = A_{ik}B_{jk}$
Then, $tr(A \cdot B^{T}) = P_{ii} = A_{ik}B_{ik} = A : B$

Eigenvectors and eigenvalues of a matrix

Linear transformation, y = Mx, associates, to each point $P(x_1, x_2, x_3)$, another point $Q(y_1, y_2, y_3)$. Also, it associates to any other point (rx_1, rx_2, rx_3) on the line OP, another point (ry_1, ry_2, ry_3) on the line OQ. So we may consider the transformation to be a transformation of the line OP into the line OQ. (left figure)

Now any line transformed into itself is called an eigenvector of the matrix **M**. That is, $\mathbf{M}\mathbf{x} = \lambda \mathbf{x} = \lambda \mathbf{I} \mathbf{x}$

A nontrivial solution will exist if and only if the determinant vanishes:

$$\left| (\mathbf{M} - \lambda \mathbf{I}) \right| = 0$$

Note that 3x3 determinant is expanded, it will be a cubic polynomial equation with real coefficients. The roots of this equation are called the eigenvalues of the matrix. Upon solving the equation, some of the roots could be complex numbers.

Proof)

For some λ , if det $(M - \lambda I) = 0$, then $\exists v \in \mathbb{R}^n \setminus \{0\}$ s.t. $(M - \lambda I)v = 0$ It is equivalent to $Mv = \lambda v$ which is definition of eigenvalue.

Therefore, λ is an eigenvalue of M if λ is root of det $(M - \lambda I) = 0$

A real symmetric matrix has only real eigenvalues

If there were a complex root λ , then its complex conjugate $\overline{\lambda}$ is also a root. Therefore,

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{\overline{M}}\mathbf{x} = \overline{\lambda} \mathbf{x}$$

These equations can be written as

$$\overline{\mathbf{x}}^T \mathbf{M} \mathbf{x} = \lambda \overline{\mathbf{x}}^T \mathbf{x}$$
$$\mathbf{x}^T \mathbf{M} \overline{\mathbf{x}} = \overline{\lambda} \mathbf{x}^T \overline{\mathbf{x}}$$

Note that $\overline{\mathbf{x}}^T \mathbf{x} = x_k \overline{x}_k = \mathbf{x}^T \overline{\mathbf{x}}$ and since **M** is symmetric, we get

$$\overline{\mathbf{x}}^T \mathbf{M} \mathbf{x} = M_{ij} \overline{x}_i x_j$$

$$= M_{ji} \overline{x}_j x_i \qquad \text{(by interchanging the dummy indices)}$$

$$= M_{ij} x_i \overline{x}_j = \mathbf{x}^T \mathbf{M} \overline{\mathbf{x}} \qquad \text{(by symmetry of M)}$$

Subtracting them, we get

$$(\lambda - \overline{\lambda})\overline{\mathbf{x}}^T \mathbf{x} = 0$$

Since x is nontrivial, $\overline{\mathbf{x}}^T \mathbf{x} \neq 0$. Therefore, we should have

$$\lambda = \overline{\lambda}$$

So that λ must be real.

We can obtain the eigenvector associated to each eigenvalue by substituting each eigenvalue into the matrix equation.

When eigenvalues are all distinct :??Two of the eigenvalues are equal :??All of the eigenvalues are equal :??

Reference (Example)

- [1] Aiwina Heng, et al., "Rotaing machinery prognostics : state of the art, challenges and opportunities," Mechanical Systems and Signal Processing, 23, (2009), 724-739
- [2] S. Yin and H. Luo, "A review on basic data-driven approaches for industrial process monitoring," IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6418-6428, 2014.
- [3] A. Muszynska, Rotordynamics, CRC Press, 2005.

THANK YOU FOR LISTENING