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2.1 Analysis of deformable bodies (Principles of the mechanics) 

▶ Steps for the principles of mechanics for deformable body 

i) Study of forces and equilibrium requirements 

ii) Study of deformation and conditions of geometric fit 

iii) Application of force-deformation relations 

 

▶ Example 2.2 Suppose that a man steps up on the middle of the plank and begins 
to walk slowly toward one end. We should like to know how far he can walk before 
one end of the plank touches the ground; that is, estimate the distance b in Fig. 2.2b, 
when the right end E of the plank is just in contact with the ground (with two 
similar springs of spring constant k). 

▷ Assumption 

i) The wood plank is rigid body 

ii) Neglect the plank’s own weight 

 

▷ Equilibrium 

∑ 𝐹௬ = 𝐹஼ + 𝐹஽ − 𝑊 = 0        (a) 

∑ 𝑀஼ = 2𝑎𝐹஽ − (𝑎 + 𝑏)𝑊 = 0   (b) 

 

▷ Geometry 

Since (𝐿 + 𝑎) ∶ ℎ஼ = (𝐿 − 𝑎): ℎ஽ 

∴  ௛಴

௛ವ
=

௅ା௔

௅ି௔
 (c) 

 

Now, δେ = ℎ − ℎ஼   &  δୈ = ℎ − ℎ஽  (d) 

▷ Relations; 

Fେ = 𝑘𝛿஼  &  Fୈ = 𝑘𝛿஽ (e) 

 

 Five unknowns (𝐹஼ , 𝐹஽, δେ, δୈb) with five equations (a), (b), (c), (d), and (e). 
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From eqs. (a)~(e) 

  b =
ୟమ

௅
(

ଶ௞௛

ௐ
− 1) (f) 

 

From eqs. (a),(b),(e), eliminate 𝐹஼, 𝐹஽ 

  δେ =
ௐ

ଶ௞
(1 −

௕

௔
)  &  δୈ =

ௐ

ଶ௞
(1 +

௕

௔
) (g) 

∴ In case b > a, C spring is under the tension 

▶ Example 2.3 Determine the deflections in the three springs as functions of the 
load position parameter λ 

 

 

▷ Assumptions 

i) Before the load P is applied, the bar is horizontal 

ii) The system is modeled by a rigid weightless bar and three linear elastic springs 
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▷ Equilibrium 

 We note that there are three unknown parallel forces acting on the bar in Fig. 2.3 (b) and 

only two independent equilibrium requirements ( ∴ Statically indeterminate) 

∑ 𝑀஼ = 0 ;   2aF୅ = (1 − 𝜆)𝑎𝑃 − 𝑎𝐹஻

∑ 𝑀஺ = 0 ;   2aFେ = (1 + 𝜆)𝑎𝑃 − 𝑎𝐹஻
 (a) 

 

▷ Geometry 

δ୆ =
ఋಲାఋ಴

ଶ
 (b) 

 

▷ F-δ Relations 

δ୅ =
ிಲ

௞ಲ
, δ୆ =

ிಳ

௞ಳ
, δ஼ =

ி಴

௞಴
  (c) 

 

i) Equations (a), (b), and (c) are six independent relations among the six unknowns the three 
forces and the three deflections.  

ii) By substituting (a) into (c), obtain all the deflections in terms of 𝐹஻ 

iii) Inserting these deflections into (b) to obtain a single equation for 𝐹஻. 

iv) Once 𝐹஻ is known, 𝐹஺ and 𝐹஼ are given by (a) 

 

 δ୅ = 𝑃
ଶ௞಴ିఒ(௞ಳାଶ௞಴)

௞ಲ௞ಳାସ௞ಲ௞಴ା௞ಳ௞಴
  

 δ୆ = 𝑃
௞ಲା௞಴ାఒ(௞ಲି௞಴)

௞ಲ௞ಳାସ௞ಲ௞಴ା௞ಳ௞಴
  (d) 

 δ஼ = 𝑃
ଶ௞ಲାఒ(௞ಳାଶ௞ಲ)

௞ಲ௞ಳାସ௞ಲ௞಴ା௞ಳ௞಴
  

 

cf. It is interesting to observe that when the load is at the position indicated by λ଴ in Fig. 2.3 
(d), all three spring deflections are equal.  

This means that the bar deflects without tipping when the load is applied at this position.  
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2.2 Uniaxial loading & deformation 

▶ Uniaxial loading 

 The deformation of three rods of 
identical material, but having 
different lengths and cross-sectional 
areas as Fig. 2.5 (a) 

 Assume that for each bar the load 
is gradually increased from zero, and 
at several values of the load a 
measurement is made of the 
elongation 𝛿. 

 Assume that the maximum 
elongation is a tiny fraction of the bar 
length. The results of the three tests 
will be represented by a plot like Fig. 
2.5(b) or like Fig. 2.5(c). 

 Plotting load over area (stress) as 
ordinate and elongation over original 
length (strain) as abscissa, the test 
results for the three bars can be 
represented by a single curve, as shown 
in Fig. 2.6 (a) or (b). 

 

▶ Hooke’s law 

▷ If the uniaxial load-elongation 
relation of the material is linear 

 The slope in Fig. 2.6 (a) is called the modulus of elasticity and is usually denoted by the 
symbol E. 

𝐸 =
𝑃/ 𝐴

𝛿/ 𝐿
=

𝜎

𝜖
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∴ δ =
𝑃𝐿

𝐴𝐸
  (2.2) 

 Unit is [N/mଶ], [lb/inଶ], [psi] 

 Unit is [N/mଶ], [lb/inଶ], [psi] 

 𝑃 =
𝐴𝐸
𝐿

𝛿 = 𝑘𝛿 

 

cf. Typical values of E for a few materials are 
given in Table 2.1 

 

 

 

 

 

 

 

2.3 Statically determinate situation 

▶ Example 2.4 Estimate the 
displacement at the point D due to the 
20 kN load carried by the chain hoist. 

▷ Assumption 

i) The bolted connection in C is treated as 
a frictionless pinned joint 

The equilibrium requirements of the first 
step should be satisfied in the deformed 
equilibrium configuration 

▷ F.B.D. (in Figs. 1.24 and 2.8) 
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▷ Force-deformation relation 

δ୆ୈ = ቀ
ி௅

஺ா
ቁ

஻஽
  

=
ଶ଼.ଷ(ସ.ଶସଶ×ଵ଴య)

଴.ସଽଵ×ଵ଴షయ(ଶ଴ହ×ଵ଴ల)
   

= 1.19 mm        (a) 

δେୈ = ቀ
ி௅

஺ா
ቁ

஼஽
  

=
ଶ଴.଴(ଷ.଴଴଴×ଵ଴య)

ଷ.ଶ଴଴×ଵ଴షయ(ଶ଴ହ×ଵ଴ల)
  

= 0.0915 mm  

▷ Geometry 

δୌ = 𝛿஼஽ = 0.0915 𝑚𝑚  

𝛿௏ = 𝐷ଶ𝐹 + 𝐹𝐷ସ

= 𝐷𝐺 + 𝐹𝐺
       (b) 

= √2δ୆ୈ + 𝛿஼஽ = 𝟏. 𝟕𝟕 𝒎𝒎   

 

cf. If the equilibrium requirements are 
applied to the deformed shape of Fig. 2.8 
(d), F୆ୈ is decreased by 12 N and Fେୈ 
is decreased by 0.6 N. 
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▶ Example 2.6 (Stiff 
horizontal beam)  

Find out where to locate the 
roller so that the beam will still 
be horizontal in the deflected 
position. Also, we should like 
to know if the location would 
be the same if the load is 
increased from 150 kN to 300 
kN. (Fundamentally the same 
as that treated in Example 2.2) 

▷ Assumption 

i) The points A and B deflect 

vertically to A' and B'. 
ii) The beam is considered 

rigid 
iii)  There are no horizontal 

forces or couples acting 
between the beam and the 
bars 
 

▷ Equilibrium 

∑ 𝐹௬ = 𝐹஺ + 𝐹஻ − 150 = 0

∑ 𝑀஺ᇱ = 𝐹஻ − 𝑐(150) = 0
 (a) 

▷ Geometry 

δ୅ = 𝛿஻ (b) 

ஔఽ

௅ಲ
= 2

ఋಳ

௅ಳ
 (c) 

▷ Force-deformation relation 

Dividing the first of Eq. (a) by A୅ 

ிಲ

஺ಲ
+

ிಳ

஺ಳ
=

ଵହ଴

஺ಲ
= 115 𝑀𝑁/𝑚2     (∵ 𝐴𝐴 = 𝐴𝐵) (e) 

▷ Trial & error calculation from Fig. 2-9 (c) 

i) Select an arbitrary value of δ୆/𝐿஻.  

ii) Using Eq. (c), obtain δ୅/𝐿஺. 

iii) Enter the diagram in Fig. 2.10 (b) and obtain F୅/𝐴஺. 
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iv) Check to see if these values satisfy Eq. (e). 

v) If (e) is not satisfied, we make a new guess for δ୅/𝐿஺ and obtain new values for F୅/𝐴஺. 
That is, retrial step i), ii), and iii) until step iv) is valid. 

In here, we get 

F୅/𝐴஺ = 74 𝑀𝑁/ 𝑚ଶ,   𝐹஺ = 96.2 𝑘𝑁  

F୆/𝐴஻ = 41 𝑀𝑁/ 𝑚ଶ,   𝐹஻ = 53.3 𝑘𝑁   (f) 

𝛿஺/𝐴஺ = 0.001  ,    𝛿஺ = 𝛿஻ = 1.3 𝑚𝑚  

∴ From the second of Eq. (a), we obtain the required location of the roller 

c = 0.355 m (g) 

 

cf. If we repeated the analysis for a load of 300 kN, 

c = 0.393 m (h) 

 

▶ Example 2.7 Determine the forces in the ring and the deformation of the ring due 
to the internal pressure 
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▷ F.B.D (In Fig. 2.12 (c) and (d)).  

We observe that the forces 𝐹் act in similar manner on the two halves of the hoop, but the forces 
𝐹ோ  act inward on the upper half and outward on the lower half. This action of the forces 𝐹ோ  
violates the symmetry which we expect to find in the two halves of the hoop.  

∴ The radial forces 𝐹ோ are zero, and that on any radial cut made across the hoop there is acting 

only a tangential force 𝐹். 

 

▷ Equilibrium 

Considering an arc length r∆θ 

∆𝐹௣ = 𝑝[𝑏(𝑟∆𝜃)]  (a) 

∆F୷ = ∆𝐹௣ sin 𝜃 = 𝑝[𝑏(𝑟∆𝜃)] sin 𝜃  (b) 

In the limit as ∆𝜃 → 0 

∑ 𝐹௬ = ∫ 𝑝𝑏𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜃
ఏୀగ

ఏୀ଴
− 2𝐹் = 0  (c) 

Integrating (c) we find 

𝐹் = 𝑝𝑟𝑏  (d) 

cf. [(𝑟∆𝜃) 𝑠𝑖𝑛 𝜃] in (b) is the projection on the x axis of the arc length 𝑟∆𝜃 

∑ 𝐹௬ = 𝑝 (2𝑟𝑏) − 2𝐹் = 0  (e) 

 

▷ Force-deformation relation 

Since δ = FL/AE, 

δ୘ =
FT[2𝜋(𝑟+𝑡/2)]

(𝑏𝑡)𝐸
=

2𝜋𝑝𝑟2

𝑡𝐸
(1 +

𝑡

2𝑟
) (f) 

 

▷ Geometry 

𝛿ோ =
𝛿𝑇

2𝜋
=

𝑝𝑟2

𝑡𝐸
(1 +

𝑡

2𝑟
) (g)(h)  

cf. δୈ = 𝛿்/𝜋 
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If t/2r ≪ 1, 𝛿ோ =
𝑝𝑟2

𝑡𝐸
  

 This approximate solutions are good when t/r < 0.1 

▶ Example 2.8 Predict how much 

elongation there will be in the section AB 
of the brake band when the braking force is 
such that there is a tension of 40 kN in the 
section BC of the band 

▷ Data 

i) The brake band is 1.6 mm thick and 50 
mm wide 

ii) A kinetic coefficient 𝑓 = 0.4 

▷ Schematic 

 

 

▷ F.B.D. 
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▷ Equilibrium 

∑ 𝐹௥ = ∆𝑁 − 𝑇 𝑠𝑖𝑛
∆𝜃

2
− (𝑇 + ∆𝑇) 𝑠𝑖𝑛

∆𝜃

2
= 0

∑ 𝐹ఏ = (𝑇 + ∆𝑇) 𝑐𝑜𝑠
∆𝜃

2
− 𝑇 𝑐𝑜𝑠

∆𝜃

2
− 𝑓∆𝑁 = 0

 (a) 

The angle ∆θ  is small (in the 
limit), and for small angles it is 
frequently convenient to make the 
following approximations. 

൝
sin 𝜃 ≈ θ
cos 𝜃 ≈ 1
tan 𝜃 ≈ θ

  

∴ Eq. (a) is 

∆𝑁 − 𝑇
∆𝜃

2
− (𝑇 + ∆𝑇)

∆𝜃

2
= 0 ;  ∴ ∆𝑁 − 𝑇∆𝜃 = 0

(𝑇 + ∆𝑇) − 𝑇 − 𝑓∆𝑁 = 0  ;             ∴
∆𝑇

𝑓
− ∆𝑁 = 0

 

 (b) 

∴
∆𝑇

𝑓
− 𝑇∆𝜃 = 0 

∆𝑇

∆𝜃
= 𝑓𝑇    (c) 

For ∆θ → 0, 

ௗ்

ௗఏ
= 𝑓𝑇   (d) 

Integrating (d), 

dT/T = f dθ  

∫ 𝑑𝑇/𝑇
்

బ்
= ∫ 𝑓 𝑑𝜃

ఏ

଴
   →   𝑙𝑛(𝑇/𝑇଴) = 𝑓𝜃 + 𝐶  

∴ 𝑇 = 𝑇଴𝑒௙ఏ  

Applying the boundary condition 𝑇 = 𝑇஺஽ at 𝜃 = 0 

𝑇 = 𝑇஺஽𝑒௙ఏ (e) 

Applying the boundary condition 𝑇 = 𝑇஻஼ = 40 𝑘𝑁 at 𝜃 = 𝜋 

𝑇 = 11.38 𝑒଴.ସఏ 𝑘𝑁  (f) 

 

▷ Force-deformation relation 
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∆δ =
𝑇(𝑅∆𝜃)

𝐴𝐸
 (g) 

∴ See that the elongation varies with position along the band. 

 

 

▷ Geometry 

In the limit as ∆θ → 0, this sum becomes the following integral: 

δ୅୆ = ∫ 𝑑𝛿
ఏୀగ

ఏୀ଴
= ∫

்ோௗఏ

஺ா

గ

଴
  (h) 

=
𝑇𝐴𝐷𝑅

𝐴𝐸
∫ 𝑒௙ఏగ

଴
𝑑𝜃 =

𝑇𝐴𝐷𝑅

𝐴𝐸𝑓
(𝑒௙గ − 1) =

11.38×300×(𝑒0.4𝜋−1)

1.6 (50)ቀ10−6
ቁ (205×106)

= 1.31 𝑚𝑚   

 

2.4 Statically indeterminate situation 

 We must examine the deformation of the system in order to determine the manner in which the 
forces are distributed within the system.  

▶Example 2.9 Figure 2.14 
(a) shows the pendulum 
of a clock which has a 
12-N weight suspended 
by three rods of 760 mm 
length. Two of the rods 
are made of brass and the 
third of steel. We wish to 
know how much of the 
12-N suspended weight 
is carried by each rod. 
Our model of the system 
is shown in Fig 2.14 (b). 

▷ Equilibrium 

∑ 𝐹௬ = 12 − 𝐹ௌ − 2𝐹஻ = 0  (a) 

▷ Geometry 

δୗ = 𝛿஻  (b) 
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▷ Force-deformation relation 

𝛿ௌ = ቀ
𝐹𝐿

𝐴𝐸
ቁ

𝑆

𝛿஻ = ቀ
𝐹𝐿

𝐴𝐸
ቁ

𝐵

  (c) 

 

From Eq. (b) & (c) 

𝐹ௌ =
𝐴𝑆𝐸𝑆𝐿𝐵

𝐴𝐵𝐸𝐵𝐿𝑆
𝐹஻ =

(1.3)2(200)760

(2.5)2(100)760
𝐹஻ = 0.541 𝐹஻  (d) 

Combining (a) and (d), we find 

𝐹ௌ = 2.55𝑁 & 𝐹஻ = 4.72𝑁  

 

▶ Example 2.10 Figure 2.15 (a) shows an 

instrument suspension consisting of two 
aluminum bars and one steel rod mounted in 
a stiff frame, together with a spring EA which 

is inclined at 45° to BA. In assembly the nut 

on the steel rod at D is tightened so there is 
no slack in the line BAD, and then the spring 
EA is installed with sufficient extension to 
produce a force of 50 N. We wish to find the 
deflection of the joint A (relative to the 
frame) caused by the spring loading. 

▷ Assumption 

i) The frame is essentially rigid compared to 
the aluminum bars and the steel rod 

ii) Consider the steel rod to be pinned at point D 

▷ F.B.D 
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▷ Equilibrium 

     ∑ 𝐹௫ =
50

√2
− 𝐹஺஽ − 𝐹஺஻ = 0

∑ 𝐹௬ =
50

√2
− 𝐹஺஼ = 0

  (a) 

▷ Geometry 

𝛿஺஼ = 𝛿௬ (+)

𝛿஺஽ = 𝛿௫ (+)

𝛿஺஻ = 𝛿௫ (– )

  (b) 

▷ Force-deformation relation 

𝛿஺஼ = ቀ
𝐹𝐿

𝐴𝐸
ቁ

𝐴𝐶
=

35.3553 (1.4)

0.005 (69×103)
= 0.1435 𝑚𝑚    

𝛿஺஽ = ቀ
𝐹𝐿

𝐴𝐸
ቁ

𝐴𝐷
=

𝐹𝐴𝐷 (1.6)

0.00071 (205×103)
   

𝛿஺஻ = 𝛿஺஽ = ቀ
𝐹𝐿

𝐴𝐸
ቁ

𝐴𝐵
=

𝐹𝐴𝐵 (1.2)

0.005 (69×103)
  

From Eqs. (a)~(b) 

𝐹஺஽ = 8.498 𝑁 (+)  &  𝐹஺஻ = 26.8573 𝑁 (−)  

𝛿௬ = 0.1435 𝑚𝑚   &  𝛿௫ = 0.0934 𝑚𝑚  

 

cf. Skip the chapter 2.5 (computer analysis)  M2794.001000 
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2.6 Elastic energy; Castigliano’s theorem 

<<Potential Energy>> 

𝑑𝑊 = 𝐅 ∙ d𝐬 = 𝐹 cos 𝜃 𝑑𝑠  

 Total work done by 𝐅 is;     𝑊 = ∫ 𝐅 ∙ d𝐬 

1) When work is done by an external force on certain systems, their internal geometric states are 
altered in such a way that they have the potential to give back equal amounts of work whenever 
they are returned to their original configurations. 

cf. Such systems are called conservative, and the work done on them is said to be stored in the 
form of potential energy. 

cf. The system should be elastic, but not necessarily linear. 

2) That is, Total work 𝑊 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦  𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 

𝑊 = ∫ 𝐅 ∙ d𝐬 = ∫ 𝐹 𝑑𝛿
ఋ

଴
= 𝑈       (2.3) 

(where 𝛿 is elongation) 

cf. This relationship appears in Fig. 2.19 (b) 

3) 𝑈 = 𝑓 (𝛿) 

From Fig. 2.19 (b) 

If this spring should happen to be part of a 
larger elastic system, it will always contribute 
the energy (2.3) to the total stored energy of 
the system whenever its individual elongation 
is δ. 

4) Total work done by all the external loads = Total 
potential energy U stored by all the internal 
elastic members 

𝑈(𝐬௜) = ∑ ∫ 𝐏௜ ∙ 𝑑𝐬௜
𝐬೔

଴
= 𝑈௜       (2.4) 

 

<<Complementary Energy>> 

𝑑𝑊∗ = 𝐬 ∙ 𝑑𝐅 = 𝑠 cos 𝜃 𝑑𝐹  

 𝑊∗ = ∫ 𝐬 ∙ 𝑑𝐅 

1) When complementary work is done on certain systems, their internal force states are altered in 
such a way that they are capable of giving up equal amounts of complementary work when they 
are returned to their original force states. 
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cf. The class of systems which store complementary energy include all elastic system for 
which the equilibrium requirements can be applied in the un-deformed configuration. 

2) 𝑊∗ = ∫ 𝐬 ∙ 𝑑𝐅 = ∫ 𝛿 𝑑𝐹 = 𝑈∗ி

଴
  (2.5) 

3) 𝑈∗ = 𝑓(𝐹) 

From Fig. 2.19 (c), if this spring should happen to be part of a larger elastic system, it will 

always contribute the complementary energy (2.5) to the total system complementary energy 
whenever the force in it has the value F. 

4) Total complementary work done by all the external loads = Total complementary energy 𝑈∗ 
stored by all the internal elastic members 

𝑈∗(𝐏௜) = ∑ ∫ 𝐬 ∙ 𝑑𝐏௜
𝐏೔

଴
= ∑ ∫ 𝛿௜ ∙ 𝑑𝑃௜

𝐏೔

଴௜௜   (2.6) 

 

<<Castigliano’s Theorem>> 

▶ 1ୱ୲ Theorem 

Force increment (∆𝑃௜
∗ )  Internal force change  Increment of complementary work  

Increment of complementary energy 

 From δ୧∆𝑃௜
∗ = ∆𝑈∗ 

∆𝑈∗/ ∆𝑃௜ = 𝛿௜  ∴  𝜕𝑈∗/𝜕𝑃௜ = 𝛿௜        (2.7) 

 If the total complementary energy U* of a loaded elastic system is expressed in terms of the 
loads, the in-line deflection at any particular loading point is obtained by differentiating U* with 
respect to the load at that point.  

cf. The theorem can be extended to include moment loads 

∴ 𝜕𝑈∗/𝜕𝑀௜ = 𝜙௜   (2.8) 

▷ In linear system, the force-deformation relation is linear in Fig. 2.19; that is, 𝑈∗ = 𝑈 

i) 
ଵ

ଶ
𝑘𝛿2(= 𝑈) =

ଵ

ଶ
𝐹𝛿 =

ிమ

ଶ௞
(= 𝑈∗)   (2.10) 

ii) 
ா஺

ଶ௅
(= 𝑈) =

ଵ

ଶ
𝑃𝛿 =

௉మ௅

ଶா஺
(= 𝑈∗)   (2.11) 

 To apply Castigliano’s theorem to a linear-elastic system it is necessary to 
express the total elastic energy of the system in terms of the loads. 
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▷ In Fig. 2.20, if we denote the 𝐬௜-
direction component of 𝐏௜ as 𝑓௜, 

𝑓௜ =
డ௎

డ௦೔
  

((proof)  

𝐏௜ ∙ ∆𝐬௜ = ∆𝑈  

𝐏௜ ∙ ∆𝐬௜ = 𝑃௜∆𝑠௜ 𝑐𝑜𝑠 𝜃 = 𝑓௜∆𝑠௜  

∴ 𝑓௜∆𝑠௜ = ∆𝑈  

 𝑓௜ = 𝜕𝑈/𝜕𝑠௜ (1ୱ୲ theorem) 

▶ 2୬ୢ Theorem 

For linear elastic system, 

𝛿௜ = 𝜕𝑈/𝜕𝑃௜  (2.12) 

 

 

▶ Example 2.11 Consider the system of two springs shown in Fig. 2.21 We shall use 

Castigliano’s theorem to obtain the deflections 𝛿ଵ and 𝛿ଶ which are due to the external loads 
𝑃ଵ and 𝑃ଶ. 

 

To satisfy the equilibrium requirements,  

𝐹ଵ = 𝑃ଵ + 𝑃ଶ  (a) 

𝐹ଶ = 𝑃ଶ  

From Eq. (2.10),  

U = Uଵ + 𝑈ଶ = (𝑃ଵ + 𝑃ଶ)ଶ/(2𝑘ଵ) + 𝑃ଶ
ଶ/(2𝑘ଶ)  
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∴ δଵ = 𝜕𝑈/𝜕𝑃ଵ = (𝑃ଵ + 𝑃ଶ)/𝑘ଵ  

δଶ = 𝜕𝑈/𝜕𝑃ଶ = (𝑃ଵ + 𝑃ଶ)/𝑘ଵ + Pଶ/𝑘ଶ  

▶ Example 2.13 Determine deflections in the direction of 𝑃 and reaction force Q 

1) Statically determinate situation (B: roller, which makes reaction force Q be zero)  

 

Recall ∴ δ =
𝑃𝐿

𝐴𝐸
  (2.2) 

The energy stored in the 𝑖௧௛ member is 

𝑈௜ = 𝐹௜
ଶ𝐿௜/(2𝐴௜𝐸௜) (for linear system)  (a) 

In this case, 

𝑈 = ∑ 𝑈௜
9
𝑖=1   (b) 

 

𝛿௉ = 𝜕𝑈/𝜕𝑃 =
∂

𝜕𝑃
∑

𝐹𝑖
2𝐿𝑖

2𝐴𝑖𝐸𝑖

𝑛
𝑖=1 = ∑ 𝐹௜

𝐿𝑖

𝐴𝑖𝐸𝑖

𝜕𝐹𝑖

𝜕𝑃
𝑛
𝑖=1    (c) 

=
𝜕𝑈

𝜕𝐹

𝜕𝐹

𝜕𝑃
=

𝐹𝐿

𝐸𝐼

𝜕𝐹

𝜕𝑃
  

Where 𝑈 = 𝐹ଶ/(2𝑘) = 𝐹ଶ𝐿/(2𝐸𝐼)             (d) 
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The quantity ∂F୧/ ∂P which represents the rate of change of the force in the 𝑖௧௛ member with 
load P, can be thought of as the load in the 𝑖௧௛ member due to a unit load P. 

 

In Table 2.4 we have tabulated the individual quantities in (c) as well as their products. 

𝛿௉ = ෍ 𝐹௜

𝐿௜

𝐴௜𝐸௜

𝜕𝐹௜

𝜕𝑃
= 𝐹

𝐿

𝐸𝐼

𝜕𝐹

𝜕𝑃

௡

௜ୀଵ

 

Cf. At the case of statically determinate situation, substitute Q values of Table 2.4 to zero. 
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2) Statically indeterminate situation (B: not a roller, which makes reaction force Q be non-zero) 

 

We simply require that 𝜕𝑈/𝜕𝑄 = 0 as there is no horizontal motion at the point at which Q acts. 

As there is no horizontal motion at the point at which Q acts, 𝜕𝑈/𝜕𝑄 = 0 

Thus, from Eq. (c) and Table 2.4, 

𝛿஻ = 𝜕𝑈/𝜕𝑄 = ∑ 𝐹௜
𝐿𝑖

𝐴𝑖𝐸𝑖

𝜕𝐹𝑖

𝜕𝑄
= 0  

𝛿஻ = ෍ 𝐹𝑖

𝐿𝑖

𝐴𝑖𝐸𝑖

𝜕𝐹𝑖

𝜕𝑄
= [50 + 𝑄 + 75 + 𝑄] [1.142 × 10−5] = 0 

 𝑄 = −62.5 𝑘𝑁 

 

If now we wish to solve for the deflection at P, we must reevaluate the products in rows 1 and 2 
of Table 2.4 with Q at its actual value as determined above.  

∴ δ୔ = 𝜕𝑈/𝜕𝑃 = 32.438 × 10ିସ − 1.142𝑄 × 10ିହ = 32.438 × 10ିସ − 7.1375 × 10ିସ 

∴ δ୔ = 2.53 × 10ିଷ 𝑚 

 


