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2.1 Analysis of deformable bodies (Principles of the mechanics)

P Steps for the principles of mechanics for deformable body

1) Study of forces and equilibrium requirements
i) Study of deformation and conditions of geometric fit

iii)Application of force-deformation relations

» Example 2.2  Suppose that a man steps up on the middle of the plank and begins
to walk slowly toward one end. We should like to know how far he can walk before
one end of the plank touches the ground; that is, estimate the distance b in Fig. 2.2b,
when the right end E of the plank is just in contact with the ground (with two
similar springs of spring constant k).

> Assumption
1) The wood plank is rigid body

i1) Neglect the plank’s own weight

> Equilibrium
ZFych‘I‘FD_W:O (a)

YM,=2aF,—(a+b)W =0 (b)

> Geometry

Since (L+a):h; =(L—a):hp

he _ Lta
hp - L—-a (C)
Fig.22 [RSYS¥!
Now, 6c =h—h; & O6p=h-—hp (d)
> Relations;
FC = k6c & FD = k5D (e)

-> Five unknowns (Fg, Fp, 8¢, 6pb) with five equations (a), (b), (¢), (d), and (e).

Ch. 2 Introduction to mechanics of deformable bodies 2/21



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

From egs. (a)~(e)

a? 2kh
> b=—(G -1 (®

From egs. (a),(b),(e), eliminate F., Fp

b b
> Sc=—-(1-2) & Sp=—(1+2) ®)

. Incase b > a, C spring is under the tension

» Example 2.3  Determine the deflections in the three springs as functions of the
load position parameter A

}<—a—>i<—a—><|
LLLLLLLLLLLLLLYLLL LS L L
ka ks ke
A B C

R

(a)

Fig.2.3 [WYSET

> Assumptions
1) Before the load P is applied, the bar is horizontal

i1) The system is modeled by a rigid weightless bar and three linear elastic springs
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> Equilibrium

- We note that there are three unknown parallel forces acting on the bar in Fig. 2.3 (b) and

only two independent equilibrium requirements ( .. Statically indeterminate)

YM,=0; 2aFy=(1—-—A)aP — aFg

YM,=0; 2aF;=(1+A)aP — aFy (a)
> Geometry
Sa4+6
B ==, (b)

> F-6 Relations

F F
SAzé’ 6B=£’ 6C=— (C)

1) Equations (a), (b), and (c) are six independent relations among the six unknowns the three
forces and the three deflections.

i1) By substituting (a) into (c), obtain all the deflections in terms of Fp
iii)Inserting these deflections into (b) to obtain a single equation for Fjy.

iv)Once Fy is known, F, and F; are given by (a)

2kc—A(kg+2kc)

> 6A =P
kaokpt+4kpkc+kpkc
katkc+A(ka—k
QSB:PAC(A c) (d)
kakpt+akpkc+kpkc
2kp+A(kp+2k
> §,= P24 (kp+2ka)
kaokpt+4kpkc+kpkc

cf. It is interesting to observe that when the load is at the position indicated by A, in Fig. 2.3
(d), all three spring deflections are equal.

This means that the bar deflects without tipping when the load is applied at this position.

Ch. 2 Introduction to mechanics of deformable bodies 4/21



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

2.2 Uniaxial loading & deformation

P Uniaxial loading

- The deformation of three rods of ,
identical material, but having
different lengths and cross-sectional
areas as Fig. 2.5 (a)

- Assume that for each bar the load
is gradually increased from zero, and
at several values of the load a

measurement is made of the

elongation 4.

- Assume that the maximum
elongation is a tiny fraction of the bar
length. The results of the three tests
will be represented by a plot like Fig.

2.5(b) or like Fig. 2.5(c). % £
(b) (c)

—> Plotting load over area (stress) as m Uniaxial loading

ordinate and elongation over original

length (strain) as abscissa, the test P B
A A

results for the three bars can be

: 123
represented by a single curve, as shown - {123
in Fig. 2.6 (a) or (b).

Linear material Nonlinear material

Linear material Nonlinear material

hlmV
~|ony

» Hooke’s law @) (b)

L . m Uniaxial-Hoading data of Fig. 2.5(b) and c plotted as PIA versus S/L
> If the wuniaxial load-elongation

relation of the material is linear

—> The slope in Fig. 2.6 (a) is called the modulus of elasticity and is usually denoted by the
symbol E.

_P/A_a
8/ L €
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" AE
- Unit is [N/m?], [Ib/in?], [psi]
- Unit is [N/m?], [Ib/in?], [psi]

N P=AL—E6=k6

cf. Typical values of E for a few materials are
given in Table 2.1

2.3 Statically determinate situation

» Example 2.4  Estimate the
displacement at the point D due to the
20 kN load carried by the chain hoist.

> Assumption

1) The bolted connection in C is treated as
a frictionless pinned joint

The equilibrium requirements of the first
step should be satisfied in the deformed
equilibrium configuration

> F.B.D. (in Figs. 1.24 and 2.8)
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(2.2)

Table 2.1
Material E, psi E, kN/m?

Tungsten carbide 60-100 x 106 410-690 x 106
Tungsten 58 x 10° 400 x 10°
Molybdenum 40 x 106 275 x 106
Aluminum oxide 47 x 10° 325 x 108
Steel and iron 28-30 x 10° 194-205 x 106
Brass 15 x 10 103 x 10°¢
Aluminum 10 x 10° 69 x 106
Glass 10 x 10° 69 x 10°6
Cast iron 10-20 x 10° 69-138 x 10°
Wood 1-2 x 108 6.9-13.8 x 10°
Nylon, epoxy, etc. 4-8 x 10* 27.5-55 x 10*
Collagen 2-15 x 103 13.8-103 x 103
Soft rubber 2-8 x 102 13.8-55 x 102
Smooth muscle 2-150 13.8-1034
Elastin 50-100 345-690

1 N/m? = pascal (Pa)

25 mm
—diameter steel rod
(Area = 491 mm?)

Steel beam
Area = 3200 mm?2

6/21



M2794.001000 (Solid Mechanics)

> Force-deformation relation

FL
e> = (57
BD AE) gp
_ 28.3(4.242x103)
0.491x1073(205x106)

= 1.19 mm (a)

oo = (55).,

__20.0(3.000%x10%)
3.200x1073(205%106)

= 0.0915 mm

> Geometry
6H = 6CD = 00915 mm

6V =D2F+FD4

= DG + FG ®)

= \/ESBD + 5CD =1.77 mm
cf. If the equilibrium requirements are
applied to the deformed shape of Fig. 2.8

(d), Fgp is decreased by 12 N and F¢p
is decreased by 0.6 N.
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20 kN

Deformed

Deformed shape ——=

shape ‘\‘

(c) (d)

Example 2.4
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» Example 2.6 (Stiff 5 )
horizontal beam) =

Find out where to locate the
roller so that the beam will still
be horizontal in the deflected
position. Also, we should like
to know if the location would
be the same if the load is
increased from 150 kN to 300
kN. (Fundamentally the same
as that treated in Example 2.2)

A =1300 mm? —o»]

26m

> Assumption

1) The points A and B deflect
vertically to A' and B'. 150 /74

. . . 140 f-----{-=--=- --
i1) The beam 1is considered y

o 2|~ 100

iii) There are no horizontal T4 fennes
forces or couples acting Q< 2(13 R
between the beam and the ;

bars

0 0001 0.002 0.003
> Equilibrium

NF,=F;+Fz —150 = 0

S M, = Fy—c(150) =0 &

> Geometry
8A = 53
8a _ 05
Ly Lp

> Force-deformation relation
Dividing the first of Eq. (a) by Ap

F F 150
2 +-E == =115 MN/m’
Ay Ap  Aa

(w Ay = Ap)
> Trial & error calculation from Fig. 2-9 (¢)
i) Select an arbitrary value of 8g/Lgp.

i1) Using Eq. (c), obtain 8,/L,.

iii)Enter the diagram in Fig. 2.10 (b) and obtain F,/A,.
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Ok

oR

=
) 150 kN

Fig. 2.10 [V ¥

(b)
(©)

(e)
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iv)Check to see if these values satisty Eq. (e).

v) If (e) is not satisfied, we make a new guess for 65/L, and obtain new values for Fn/A,.
That is, retrial step 1), ii), and iii) until step iv) is valid.

In here, we get
Fa/Ay =74 MN/ m?, F,=96.2 kN
Fg/Ag =41 MN/ m?  Fg =533 kN (f)

SA/AA = 0.001 , 6A = 6B =13 mm
". From the second of Eq. (a), we obtain the required location of the roller

c=0355m (2)

cf. If we repeated the analysis for a load of 300 kN,
c=0.393 m (h)

P Example 2.7 Determine the forces in the ring and the deformation of the ring due
to the internal pressure

Fig.2.12 [ERNOS Y,
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> EB.D (In Fig. 2.12 (c) and (d)).

We observe that the forces Fy act in similar manner on the two halves of the hoop, but the forces
Fr act inward on the upper half and outward on the lower half. This action of the forces Fy
violates the symmetry which we expect to find in the two halves of the hoop.

.". The radial forces Fy are zero, and that on any radial cut made across the hoop there is acting

only a tangential force Fr.

> Equilibrium
Considering an arc length rA8
AR, = p[b(rA6)] (@)
AFy = AF, sin6 = p[b(rA8)]sin 6 (b)
In the limit as A6 — 0

YF = f::on pbrsin0df — 2F; =0 (c)
Integrating (c) we find

Fr = prb (d)
cf. [(rAf) sin 8] in (b) is the projection on the x axis of the arc length rAf

YF,=p (2rb) —2F; =0 (e)

> Force-deformation relation

Since 6 = FL/AE,

__ Fr[2n(r+t/2)] _ 2npr? t
6r = (bt)E ~ T tE (1+ Z) ®
> Geometry
__ &y __pr? t
op =5 =7 (145 (2)(h)
cf. 6p =0dr/m
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2
If t/2r < 1, 6 = B

—> This approximate solutions are good when t/r < 0.1

» Example 2.8 Predict how much
elongation there will be in the section AB
of the brake band when the braking force is
such that there is a tension of 40 kN in the
section BC of the band

> Data
1) The brake band is 1.6 mm thick and 50

mm wide =
XX eomple 28

i1) A kinetic coefficient f = 0.4

> Schematic

Brake band

1.6 mm

y
Braking force

Fig.2.13 [0S

> F.B.D.

A0

2
R
T+AT
fAN
A0
B T
d)

&
/.
Al R /{ R
Jo)
(

Tap Tec=40kN 2
(c)

Fig. 2.13 [0S ¥

Ch. 2 Introduction to mechanics of deformable bodies 11/21



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

> Equilibrium
80 _ o

2
(a)
% Fg = (T +AT) cos — T cos5- — fAN =0

S F = AN — T sin% — (T + AT) sin

The angle A0 is small (in the Table 2.2

limit), and for small angles it is P
frequently convenient to make the sin @ tan 8 cos 8
following approximations. Degrees Radians
sinf ~ 0 0 0 0 0 I
cost =1 5 0.0873 | 0.0872 | 0.0875 | 0.9962
tano ~ 0 10 0.1745 | 0.1736 | 0.1763 | 0.9848
15 0.2618 0.2588 0.2679 0.9659
. Eq.(a)is
AN =TS~ (T+AT)5=0; ~AN-TAG=0
(T+AT)—T—fAN =0 ; :-%—ANzO
(b)
AT AT
# = TAO =0 > = /T ()
For A6 — 0,
ar
5 =/T (d)
Integrating (d),
dT/T =f d6
Jy dT/T = [Jfde - In(T/Ty) =f6+C
'. T = Toefe
Applying the boundary condition T = Typ at 8 =0
T = TADefe (e)
Applying the boundary condition T =Tz, =40 kN at 0 =m&
T =11.38 %49 kN ()

> Force-deformation relation
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_ T(RA)

AS T (2

.. See that the elongation varies with position along the band.

> Geometry

In the limit as A® — 0, this sum becomes the following integral:

0=m T TRAO
Oap = fe:o dé = fO 5 (h)
— TapR (7 fo do = TapR fr _ 1) = 11.38)(300)((60'4”—1) - 131
AE Iy e AEf (e ) 16 (50)(107°) (205x10%) mm

2.4 Statically indeterminate situation

- We must examine the deformation of the system in order to determine the manner in which the
forces are distributed within the system.

» Example 2.9 Figure 2.14
(a) shows the pendulum
of a clock which has a
12-N weight suspended 1.3 mm diam.|
by three rods of 760 mm
length. Two of the rods )y\
are made of brass and the T 760 mm L 760 mm
third of steel. We wish to Brase
know how much of the 2.5 mm diam, <Ll
12-N suspended weight
is_carried by each rod. i3 N N@\L Iy

g = Os
Our model of the system -
is shown in Fig 2.14 (b). Fs

> Equilibrium  Fig. 2.14 QWSS XS
YF, =12—-F;—2F;=0 (a)

> Geometry
8s = 85 (b)
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>

>

Force-deformation relation
FL
Os = (E)S
FL
Op = (E)B

From Eq. (b) & (¢)

_ AgEglLp Foo= (1.3)2(200)760
T AgEplLs B T (2.5)2(100)760

FB = 0541 FB

Combining (a) and (d), we find

» Example 2.10 Figure 2.15 (a) shows an

instrument suspension consisting of two
aluminum bars and one steel rod mounted in
a stiff frame, together with a spring EA which

is inclined at 45° to BA. In assembly the nut

on the steel rod at D is tightened so there is
no slack in the line BAD, and then the spring
EA is installed with sufficient extension to
produce a force of 50 N. We wish to find the
deflection of the joint A (relative to the
frame) caused by the spring loading.

Assumption

1) The frame is essentially rigid compared to
the aluminum bars and the steel rod

Professor Youn, Byeng Dong

(©)

(d)

Aluminum
0.05mm X 0.1 mm

Steel
0.03mm diam

X>l
o %

(a)

XX comple 2.1000)

i1) Consider the steel rod to be pinned at point D

F.B.D

Ch. 2 Introduction to mechanics of deformable bodies
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(%
Fac 3
B Fas A Fap
o) ¥ A Dx : o 8,, y
45° ,p't‘is” ’ = :‘—‘-
O 50N 6,
50N (b) (c)
Fig.2.15 [T
> Equilibrium
50
2 E =ﬁ_FAD_FAB =0
50 (a)
2F = Nl Fuc =0
> Geometry
8ac =6y (+)
Sap = 0x (+) (b)
845 = 0x (=)

> Force-deformation relation

S = (ﬂ) — m = 0.1435 mm
AEJACc  0.005 (69x10%)
AD ™ NAE)Ap ~ 0.00071 (205x10°)

Oan =& =(ﬂ) = Fap A2
AB T PAD T \AE) AR T 0.005 (69%10%)

From Egs. (a)~(b)
F\p =8498 N (+) & F453=26.8573 N (—)
8, =10.1435 mm & 6§, =0.0934 mm

cf. Skip the chapter 2.5 (computer analysis) 2 M2794.001000
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2.6 Elastic energy; Castigliano’s theorem

<<Potential Energy>>

dW =F-ds = Fcos@ds
- Total work done by F is; W= [F-ds

1) When work is done by an external force on certain systems, their internal geometric states are

altered in such a way that they have the potential to give back equal amounts of work whenever
they are returned to their original configurations.

cf. Such systems are called conservative, and the work done on them is said to be stored in the
form of potential energy.

cf. The system should be elastic, but not necessarily linear.

2) Thatis, Total work W = Potential Energy -> Conservative

W=[Fds=[Fds=U 23)
é
(where & is elongation) () M F
cf. This relationship appears in Fig. 2.19 (b) 500
7777777777
3) U=f (8) £
From Fig. 2.19 (b)
If this spring should happen to be part of a (®)
larger elastic system, it will always contribute
the energy (2.3) to the total stored energy of
the system whenever its individual elongation 0 j 5"_ d
is &.
4) Total work done by all the external loads = Total
potential energy U stored by all the internal F
elastic members ©
UGs) =3[P -ds;=U (2.4) dFk 7 -
0 )
<<Complementary Energy>> m

dW* =s-dF = scos0dF
> W*=[s-dF

1) When complementary work is done on certain systems, their internal force states are altered in

such a way that they are capable of giving up equal amounts of complementary work when they
are returned to their original force states.
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2)

3)

4)

cf. The class of systems which store complementary energy include all elastic system for
which the equilibrium requirements can be applied in the un-deformed configuration.

* . _ F _ *
W*={s dF—fO5dF—U (2.5)
U™ = f(F)
From Fig. 2.19 (c), if this spring should happen to be part of a larger elastic system, it will
always contribute the complementary energy (2.5) to the total system complementary energy
whenever the force in it has the value F.
Total complementary work done by all the external loads = Total complementary energy U*

stored by all the internal elastic members

US(P) =X [} ‘s dP =% [J' ;- dP, (2.6)

<<Castigliano’s Theorem>>

P 15' Theorem

>

Force increment (AP;") = Internal force change - Increment of complementary work —=>
Increment of complementary energy

- From §;AP; = AU”
AU*/ AP; = 6; s~ 0U"/OP; = 6; (2.7)

—> If the total complementary energy U* of a loaded elastic system is expressed in terms of the
loads, the in-line deflection at any particular loading point is obtained by differentiating U* with
respect to the load at that point.

cf. The theorem can be extended to include moment loads

» aU*JOM; = ¢, (2.8)

In linear system, the force-deformation relation is linear in Fig. 2.19; thatis, U* = U

Nl 1o P
i) ~ko* (= U) = ~F6 = — (= U") (2.10)
i) %(z U) = %P& - ;i(: U @.11)

—> To apply Castigliano’s theorem to a linear-elastic system it is necessary to
express the total elastic energy of the system in terms of the loads.
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> In Fig. 2.20, if we denote the s;- /
direction component of P; as f;,
_oau A;
ﬁ - 6Si
P;
((proof) —
Pi . ASi =AU \
Pi . ASi = Pl'ASi cos @ = fiASi -
7
> f; =0U/ds; (15 theorem) (a)
General elastic structure (a) subjected to loads P; applied at points A;
> an Theorem (b) enlarged view showing displacements s; at points A,

For linear elastic system,

» Example 2.11 Consider the system of two springs shown in Fig. 2.21 We shall use

Castigliano’s theorem to obtain the deflections §; and &, which are due to the external loads
P; and P,.

To satisfy the equilibrium requirements,

F,=P, +P, (a)
F, =P,

From Eq. (2.10),

U=U,+U;= (Pl +P2)2/(2k1) +P22/(2k2)
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~ 8, =0U/0P, = (Py + P;)/ky
62 = aU/aPZ = (P1 +P2)/k1 +P2/k2

» Example 2.13 Determine deflections in the direction of P and reaction force Q

1) Statically determinate situation (B: roller, which makes reaction force Q be zero)

75 kM
Y
I 1 50 kN
Area = 20 cm?
2m
r,t
(a)
, PL
Recall .. § = - (2.2)

The energy stored in the i*® member is
U; = F2L;/(2A;E;) (for linear system) (a)

In this case,

U=yx7_,U (b)

i Q
P
m Unit loads on truss of Example 2.13
] F?L; L; OF;

51) = aU/aP = 5 ln:l_ZAiEi = ln=1 lmﬁ (C)

_ UOF _ FLOF

~ OF 0P  EIOP
Where U = F2/(2k) = F2L/(2EI) (d)
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The quantity dF;/ 0P which represents the rate of change of the force in the i** member with

load P, can be thought of as the load in the i*® member due to a unit load P.

In Table 2.4 we have tabulated the individual quantities in (c) as well as their products.

n

S—ZFLiw—F
P YAE; 0P ~ " EIOP

i=1

Cf. At the case of statically determinate situation, substitute Q values of Table 2.4 to zero.

7o kN

L oF

20T
50 kN

Table 2.4 Truss solution by energy methods

F
kN

2

(9%

4

Ln

+50+0
+75+0

- 106

B
75T T

75 kN

—-70.71

- 70.71

- 70.71

L=

|
(7%

th Ln

i
th

(L/AE)
m/kIN

1.142 x 10°°
1.142% 105

8.08% 10°°
8.08 X 106
8.08 x 1076

8.08 % 1075

2.02 %107
2.02% 10°*
2.85% 107

daP

{3
~1\2
~1/2

~1/2
0

0
1

+ 1

=

(== BT Jl oo R

(%)
AE 9P ) ;

2.855 x 104
4282 % 107t

6.056 x 107
4,04 % 107
4.04% 104

4.04x 10

0
0
7:125 x10+*

FLOF
AE 90

571x 107

8.565 x 107

|

Y=32438 %107
:6}

Z=14275%x 10"

=4
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2) Statically indeterminate situation (B: not a roller, which makes reaction force Q be non-zero)

N

OF

> @
m Example 2.13

We simply require that dU/0Q = 0 as there is no horizontal motion at the point at which Q acts.

As there is no horizontal motion at the point at which Q acts, dU/dQ = 0

Thus, from Eq. (c) and Table 2.4,

L; OF
6p =0U/0Q =X 2520 = 0

A

aF,
=Y F——=[50+0+75+ 1142 x107°] =0
Z ‘AE. 30 [50 +Q el [ ]

> Q=-625 kN

If now we wish to solve for the deflection at P, we must reevaluate the products in rows 1 and 2
of Table 2.4 with Q at its actual value as determined above.

w 8p = 0U/OP = 32.438 X 10™* — 1.142Q x 1075 = 32.438 x 10™* — 7.1375 x 10™*
% 8p=253x1073 m

| )
4 IR

! 2855 %1071 +0571 0 x 1073
4.282% 104+ 0.571 0x 103

g
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