2. Description of block geometry and stability using vector methods

1) Description of orientation

Fig. Dip direction, dip, strike and normal vector of a joint plane.

- Trend/Plunge (선주향/선경사)
- Trend: An angle in the horizontal plane measured in clockwise from the north to the vertical plane containing the given line
- Plunge: An acute angle measured in a vertical plane between the given line and the horizontal plane

$$
\text { Ex.) } 320 / 23,012 / 56
$$

- Dip direction/Dip (경사방향/경사)
- Dip direction: Trend of the maximum dip line (dip vector) of the given plane
- Dip: Plunge of the maximum dip line of the given plane

$$
\text { Ex.) } 320 / 23,012 / 56
$$

- Strike/Dip (주향/경사)
- Strike: An angle measured in the horizontal plane from the north to the given plane
- Dip: Plunge of the maximum dip line of the given plane

Ex.) $\mathrm{N} 15^{\circ} \mathrm{E} / 30^{\circ} \mathrm{SE}, \mathrm{N} 25^{\circ} \mathrm{W} / 56^{\circ} \mathrm{SW}$

- Conversion of Strike/Dip to Dip direction/Dip
- N60 ${ }^{\circ} \mathrm{E} / 30^{\circ} \mathrm{SE}:$
- N60 ${ }^{\circ} \mathrm{E} / 30^{\circ} \mathrm{NW}$:
- N60 ${ }^{\circ} \mathrm{W} / 30^{\circ} \mathrm{NE}$:
- N60 ${ }^{\circ} \mathrm{W} / 30^{\circ} \mathrm{SW}$:
- Normal vector of a plane

3D Cartesian coordinates of normal vector of a joint whose dip direction (β) and dip (α) are given (when $+Z$ axis points vertical up).

$$
\begin{aligned}
& N_{x}=\sin \alpha \sin \beta \\
& N_{y}=\sin \alpha \cos \beta \\
& N_{z}=\cos \alpha
\end{aligned}
$$

- Normal vector of a plane

Ex.1) Calculate the normal vector of a joint whose dip direction (β) and $\operatorname{dip}(\alpha)$ are 060° and 30°, respectively (when +Z axis points vertical up).

Ex.2) Obtain the normal vector components of a joint using dip direction and dip when X is north, Y is upward and Z is east.

2) Equations of lines and planes

- Line

$\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
$\vec{x}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$
$x=x_{0}+l t, \quad y=y_{0}+m t, \quad z=z_{0}+n t \ldots \ldots$. parametric form (equation)
$\left(l=x_{1}-x_{0}, m=y_{1}-y_{0}, n=z_{1}-z_{0},\right)$
$\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{y-y_{0}}{y_{1}-y_{0}}=\frac{z-z_{0}}{z_{1}-z_{0}} \quad(=t) \ldots$
standard (Cartesian) form
$\vec{x}=\vec{x}_{0}+\left(\vec{x}_{1}-\vec{x}_{0}\right) t$
vector equation

2) Equations of lines and planes

- Plane

\hat{n} : normal vector, ex) $\hat{n}=(A, B, C)$
D : distance from an origin to the plane in direcion of normal vector (A, B, C)

$$
\begin{aligned}
& A x+B y+C z=D \ldots \ldots \ldots \ldots \ldots \text { Cartesian form } \\
& \rightarrow \hat{n} \cdot \vec{p}=D \ldots \ldots \ldots \ldots \ldots \ldots . . \text { vector form }
\end{aligned}
$$

2) Equations of lines and planes

- Half-space

$$
\begin{aligned}
& A x+B y+C z \geq D \ldots \ldots \ldots \ldots . \text { upper half at } \mathrm{C}>0 \\
& A x+B y+C z \leq D \ldots \ldots \ldots . \text { lower half at } \mathrm{C}>0
\end{aligned}
$$

2) Equations of lines and planes

- Intersection of a plane and a line

$$
\begin{aligned}
& A x+B y+C z=D \\
& x=x_{0}+l t, \quad y=y_{0}+m t, \quad z=z_{0}+n t \\
& A\left(x_{0}+l t\right)+B\left(y_{0}+m t\right)+C\left(z_{0}+n t\right)=D \\
& \rightarrow t=\frac{D-\left(A x_{0}+B y_{0}+C z_{0}\right)}{A l+B m+C n}
\end{aligned}
$$

2) Equations of lines and planes

- Intersection of two planes

$$
\begin{aligned}
& \hat{n}_{1}=\left(A_{1}, B_{1}, C_{1}\right) \\
& \hat{n}_{2}=\left(A_{2}, B_{2}, C_{2}\right) \\
& \vec{I}_{12}=\hat{n}_{1} \times \hat{n}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2}
\end{array}\right| \\
& =\left(B_{1} C_{2}-C_{1} B_{2}\right) \hat{i}+\left(C_{1} A_{2}-A_{1} C_{2}\right) \hat{j}+\left(A_{1} B_{2}-B_{1} A_{2}\right) \hat{k} \\
& =\left(B_{1} C_{2}-C_{1} B_{2}, \quad C_{1} A_{2}-A_{1} C_{2}, A_{1} B_{2}-B_{1} A_{2}\right) \\
& \hat{I}_{12}=\frac{\hat{n}_{1} \times \hat{n}_{2}}{\left\|\hat{n}_{1} \times \hat{n}_{2}\right\|}
\end{aligned}
$$

2) Equations of lines and planes

- Intersection of three planes

$$
\begin{aligned}
& A_{1} x+B_{1} y+C_{1} z=D_{1} \\
& A_{2} x+B_{2} y+C_{2} z=D_{2} \\
& A_{3} x+B_{3} y+C_{3} z=D_{3}
\end{aligned}
$$

2) Equations of lines and planes

- Angles between lines and planes

- Angle between two lines

$$
\hat{a} \cdot \hat{b}=\cos \theta \quad \rightarrow \quad \theta=\cos ^{-1}(\hat{a} \cdot \hat{b})
$$

- Angle between two planes

$$
\hat{n}_{1} \cdot \hat{n}_{2}=\cos \theta \quad \rightarrow \quad \theta=\cos ^{-1}\left(\hat{n}_{1} \cdot \hat{n}_{2}\right)
$$

-Angle between a line and a plane

$$
\left|\hat{n}_{1} \cdot \hat{a}\right|=\cos (90-\theta)=\sin \theta \quad \rightarrow \quad \theta=\sin ^{-1}\left(\left|\hat{n}_{1} \cdot \hat{a}\right|\right)
$$

3) Description of a block

- Calculation of volume
(1) Select an apex
(2) Take faces not including the apex

(3) Divide each face into triangles

(4) Make tetrahedrons with the apex and each triangle

(5) Summing up the volumes of all tetrahedrous

3) Description of a block

- Defining a block

Adjusting the signs of normal vectors so that $C_{i} \geq 0 \quad\left(A_{i} \geq 0\right.$ if $\left.C_{i}=0\right)$
(1) Finding vertices

- Defining a block inner space

$$
\begin{array}{llc}
A_{1} x+B_{1} y+C_{1} z \leq D_{1} & : & L_{1} \\
A_{2} x+B_{2} y+C_{2} z \leq D_{2} & : & L_{2} \\
A_{3} x+B_{3} y+C_{3} z \leq D_{3} & : & L_{3} \\
A_{4} x+B_{4} y+C_{4} z \geq D_{4} & : & U_{4} \\
A_{5} x+B_{5} y+C_{5} z \geq D_{5} & : & U_{5} \\
A_{6} x+B_{6} y+C_{6} z \geq D_{6} & : & U_{6}
\end{array}
$$

3) Description of a block

- Finding candidate vertices

$$
{ }_{6} C_{3}=\frac{6!}{3!3!}=20 \quad: \quad C_{123}, C_{124}, C_{125}, C_{126}, C_{134}, \ldots, C_{456}
$$

- Select block vertices satisfying all the inequalities

$$
C_{123}, C_{134}, C_{146}, C_{126}, C_{235}, C_{345}, C_{256}, C_{456}
$$

(2) Defining faces with vertices
[1]: $C_{123}-C_{134}-C_{146}-C_{126}$
[2]: $C_{123}-C_{126}-C_{256}-C_{235}$
[3]: $C_{123}-C_{134}-C_{345}-C_{235}$
[4]: $C_{134}-C_{146}-C_{456}-C_{345}$
[5]: $C_{235}-C_{345}-C_{456}-C_{256}$
[6]: $C_{146}-C_{126}-C_{256}-C_{456}$

4) Block pyramid

- Equations

Each plane is shifted to intersect the origin

$$
\begin{array}{lll}
A_{1} x+B_{1} y+C_{1} z \leq 0 & : & L_{1}^{0} \\
A_{2} x+B_{2} y+C_{2} z \leq 0 & : & L_{2}^{0} \\
A_{3} x+B_{3} y+C_{3} z \leq 0 & : & L_{3}^{0} \\
A_{4} x+B_{4} y+C_{4} z \geq 0 & : & U_{4}^{0}
\end{array}
$$

- Finding edges

$\vec{I}_{12}=\hat{n}_{1} \times \hat{n}_{2} \rightarrow \pm \vec{I}_{12} \quad$ (The sign depends on the order of two vectors cross-producted)
No. of intersection vectors (edges): $2 \times{ }_{4} C_{2}$
No. of intersection vectors which satisfy all the inequalities defining the half-spaces: 0

5) Equations of forces (p.43)

Force: vector $F=(X, Y, Z)$
Resultant force: obtained by vector summation

$$
R=\sum_{i=1}^{n} F_{i}=\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} Y_{i}, \sum_{i=1}^{n} Z_{i}\right)
$$

Friction force: Normal load x friction coefficient

$$
R_{f}=-\sum_{i=1}^{n}\left(N_{i} \tan \phi_{i}\right) \hat{s}
$$

6) Computation of sliding directions

(1) Single face sliding
$\hat{s} / /(\hat{n} \times \vec{R}) \times \hat{n}$
(2) Sliding on two planes
$\hat{s} / / \operatorname{sign}\left[\left(\hat{n}_{1} \times \hat{n}_{2}\right) \cdot \vec{R}\right]\left(\hat{n}_{1} \times \hat{n}_{2}\right)$

H.W.) Make a computer code with which you can do below work.

1) If you type in dip direction and dip of a plane it calculates the normal vector of the plane (z coordinate is always positive value).
2) If you give x, y and z coordinates of vertices of a hexahedron it calculates the volume of the hexahedron.

Show your code and its performance to others within 5 min. in next class.

