
3. Analyzing strain: 

Definitions and Concepts



3.1 Introduction

• Strain

- The nature of deformations experienced by a real deformable body

as a result of internal force or stress distributions will be studied. 

- Methods to measure or compute deformations will be established.



3.2 Displacement, deformation, and strain

• Displacement

- Movement of a point with respect to some convenient reference system of 

axes

- Vector quantity:  from A to A’ , (uA, vA)

- Associated with a translation/rotation and change in size/shape  

• Deformation

- Change in any dimension associated with relative displacements (δ)

- δAB = Lf - Li



3.2 Displacement, deformation, and strain

• Strain

- A quantity used to measure the intensity of a deformation

- Normal strain:  rate of elongation or contraction of a line segment (ε)

- Shear strain: change in angle between two lines that are orthogonal 

in the undeformed state (γ)

• Average axial strain

• Axial strain at a point
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3.2 Displacement, deformation, and strain

• Shearing Strain

• Sign convention of strains

- Normal strain: tensile strain (+)

compressive strain (-)

- Shear strain: increased angle (-)

decreased angel (+)
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3.2 Displacement, deformation, and strain

• Example problem 3-1

There is a bar which is of 1-in.-diameter and 8-ft-length. It has 0.5 in.-diameter

in a 2-ft central portion. Axial strain in the central portion is 960 μin./in., total

elongation of the bar is 0.04032 in., and the diameter of the central portion 

is 0.49986 in. when an axial load is applied to the ends of the bar. 

- The elongation of the central portion of the bar

- The axial strain in the end portions of the bar

- The diametral strain in the central portion of the bar

• Example problem 3-2

The shear force V produces an average shearing strain 

γavg of 1000 μrad.

- Horizontal displacement of point A



3.3 The state of strain at a point

• State of strain

- Completely determined by defining 3 normal strains and 3 shear strains on 

the faces of a rectangular parallelepiped
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3.4 The strain transformation equations for plane strain

• Normal strain
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3.4 The strain transformation equations for plane strain

• Shear strain
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• Sign convention

- Tensile strains are positive; compressive strains are negative

- Shearing strains that decrease the angle between two lines are positive

- Angles measured counterclockwise from the x-axis are positive



3.4 The strain transformation equations for plane strain

• Example problem 3-4
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3.5 Principal strains and maximum shear strain
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3.5 Principal strains and maximum shear strain

• Example problem 3-5

strainshear  maximum  theand strains principal Determine
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3.6 Mohr’s circle for plane strain
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3.7 Strain measurement and rosette analysis
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- Normal strain is not affected by the presence of the out-of-plane 

displacements: strains for a plane strain case are valid for a plane stress case



3.7 Strain measurement and rosette analysis
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- The electrical resistance strain gages are sensitive only to normal strains:

shear strains are obtained by measuring normal strains in two or three  

different directions

- The out-of-plane principal strain should be 

considered to obtain the maximum shear strains
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3.7 Strain measurement and rosette analysis

• Example problem 3-7

- Principal strains and the maximum shear strain  

with their orientations on a sketch

Poisson’s  ratio is 1/3.
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