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4.1 Heat Capacity

The heat capacity C

C = lim g =5—Q
AT—0 \ AT dT

Specific heat capacity
=heat capacity per unit mass

_1(60Q\ dq
“=%\ar) " ar

Q=mcAT

Q) = energy transfered 3
M = mass of substance (kg)
¢ = specific heat capacity
AT = temperature change (K or°C) [1]

[1] https://thermalproperties.wikispaces.com/file/view/dd2.jpg/248898851/dd2.jpg
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4.1 Heat Capacity

The specific heat c,, where the heat is
supplied at constant volume

_ (%9
Cy = d—Tv

The specific heat c,, where the heat is
supplied at constant pressure

_ (%9
Cp— d—Tp

¥V = const,

Ty —= Tia

P = const.

Ty —= Tea

il

il

Figure Heat addition on different conditions [2]

[2] http://cfile25.uf.tistory.com/image/246FE841534790190378A0
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4.1 Heat Capacity

Heat Capacity of Selected Substances

Cp, Jimol" deg™

300 500 700 900 1100 1300 1500 1700 1900 2100
temperature, deg. K

Figure Heat capacity of selected substances [3]

[3] https://upload.wikimedia.org/wikipedia/en/c/cb/Heat_Capacity_of_Selected_Substances.PNG
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4.1 Heat Capacity
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Figure Water Heat capacity [4]

[4] http://physics.stackexchange.com/questions/287910/why-water-heat-capacity-has-minimum-

at-body-temperature
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4.2 Mayer’s Equation

We wish to find the relationship between ¢, and ¢, for an ideal gas

dU = 6Q — PdV
du = 6q — Pdv
u=u,T)

the equation of state is Pv=RT

du= (2% av+ (%Y ar
”_avT” or )
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4.2 Mayer’s Equation

To obtain c,, we divide this equation by dT and hold the volume constant so that
dv=0. The result, which holds for any reversible process is

_(6q\ _(Ou
v~ \ar) ~\or)

This follows from the Gay-Lussac-Joule experiment. Thus

(6u) _ o
ov r
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4.2 Mayer’s Equation

6q = c,dT + Pdv
Pdv + vdP = RdAT
6q = (c,+R)dT — vdP
L Cp=Cyt+ R This relation is known as Mayer’s equation

C
Yy = C—p The ratio of specific heat capacities
v
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4.3 Enthalpy and Heats of Transformation

Types of heat transfer

SIS, " Conduction

/

Radiation

Figure Types of heat transfer [5]

[5] http://www.spectrose.com/wp-content/uploads/2012/12/modes-of-heat-transfer-conduction-convection-and-radiation.jpg
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4.3 Enthalpy and Heats of Transformation

The heat of transformation is the heat transfer accompanying a phase change.
A change of phase is an isothermal and isobaric process and entails a change
of volume, so work is always done on or by a system in a phase change.

w = P(vy — V1)

du = 6q — Pdv

Or, for a finite change, (uy —uy) =1—P(vy, —vq)

l=(u2+Pv2)—(u1+Pv1)

[ is the latent heat of transformation per kilomole associated with a given
Phase change
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4.3 Enthalpy and Heats of Transformation

Let h=u+ Pv h is the specific enthalpy.

Since u, p, and v are all state variables, h is also a state variable.

SO, lzhz_hl

. the latent heat of transformation is equal to the difference in enthalpies
of the two phases.
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4.4 Relationships Involving Enthalpy

h = h(T,P)
dh = oh dT + oh dp
—\aT , P/

h=u+ Pv

dh = du + Pdv + vdP

6q = du + Pdv = dh — vdP

1) (ah> dT + <6h> ]dP
q=\>= -5 ~V
P opP 1

aT
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4.4 Relationships Involving Enthalpy

e = (3
Since Cp = ar),

i - oh
From previous equation, we can get ¢y = (_)p

oT

From the result of the Joule-Thomson experiment, it will be shown that

5), =

For an ideal gas. Then 8q = ¢, dT — vdP

. o= (2) =
Thus, for an ideal gas p~\or/, " ar
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4.5 Comparison of u and h

The parallel expressions involving the internal energy and the enthalpy

Internal energy u Enthalpy h
Reversible process du = 6q — Pdv dh = 6q + vdP
_ [ou _[0h
“=\ar “» = \ar
v p
Ideal gas 6q = ¢, dT + Pdv 6q = cp,dT — vdP

N

Table Analogous relations involving the internal energy and the enthalpy
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4.5 Comparison of u and h

Thermodynamic potentials: relations of the internal energy and the enthalpy

Thermodynamic -T S

potentials are -
useful for the
description of U F
non-cyclic =U-TS
processes. Internal Helmholtz
energy free energy
U = energy needed to F = energy neesded to
create a system create a system
minus the energy
+PV ot
the environment.
\J H = U+PV G = U+PV-TS
They are used Enthalpy Gibbs
along with the free energy
First Law of H = energy needed to G = total energy needed
Thermodynamics. create a systam to create a system
plus the work and make room for
System work and needed to make it minus the en::gy
entropy play a reomfert tho onvironment
major role.

Figure Relations of Thermodynamic potentials [8]

[8] http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/imgheat/tpot2.gif
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4.6 Work Done in an Adiabatic Process

We now wish to find the specific work done in an adiabatic process involving
An ideal gas. Setting §q = 0 in 6q = ¢,dT — vdP, we obtain

vdP = Cp dT

We also have

0q = ¢, dT + Pdv
Which for 6q = 0 yields

Pdv = —c,dT

- =77 or — =Y
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4.6 Work Done in an Adiabatic Process

This equation can be easily integrated to give
PvY =K

Where K is constant of integration. This is the relationship between the pressure
and volume for an adiabatic process involving an ideal gas. Since y > 1,

it follows that P falls off more rapidly with v for an adiabatic process than

it does for an isothermal process(for which Prv=constant)

The work done in the adiabatic process is

V>

1 V2
w = dev =K j v Vdv = —— (Kvl™)
1 —Y U1

V1
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4.6 Work Done in an Adiabatic Process

Now, K = PvY at both limits: if we use K = szzy at the upper limit and K = Plvly
at the lower limit, we obtain

W=m[szz—P1v1]

For an expansion, v, > v,,w > 0, and the work is done by the gas: for a
compression the work is done by the surroundings on the gas. Note that for a
reversible adiabatic process, w = u; —u, = ¢,(T; — T,), which is another useful
Expression for an ideal gas.
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