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Chapter 4

Axially loaded members



Axially loaded members in structures
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Axially loaded members in structures




Outline

e Deformation of axially loaded members

e Statically indeterminate problem

 Method of superposition

 Thermal deformation and stress

* Transformation of stress: stresses on Inclined planes
e Saint-Venant’s Principle

e Stress Concentrations



Introduction — what we learn...

e Concepts of axial stress and deformation

e Deflections based on linear strain or small
deformation assumption

e Example of superposition principle

e Stress developed without external force, but
developed by temperature change

* Non-uniform stress distributions due to circular hole
and fillet



Deformation in axially loaded members
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(a) Elongation of the prismatic bar

(b) Freebody diagram & average (normal) stress



Review — Engineering stress & strain

= 0/L—eng. Strain (normal)
o= P/A,— eng. Stress (normal)

o= Ec — Hooke’s law

¥

0= PL/AE — Deformation vs. Load & Geometry

, AE :axial rigidity“




Stepped bar with multiple loadings
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Flexibility vs. stiffness

e Stiffness, K AE
k=—
L
+  Flexibility, f f = LIAE
(Compliance)
c.f. n J.
. 2 P;L;




Non-uniform bars
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FIGURE 4.2 (a) Bar with ' | '
variable cross section dx + g dx

and axial load; (b) free-body
diagram of an element.
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A tapered cone
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FIGURE 4.6 (a)A truncated
cone; (b) free-body diagram
of a part.



Statically determinate vs.
indeterminate problems

e Statically determinate: Equations of equilibrium are
enough to solve for the unknowns in a loaded structure

e Statically in-determinate: Equations of equilibrium
alone are not enough to solve for the unknowns in a
loaded structure



Statically indeterminate structures
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FIGURE 4.8 (a) Assembly ol a bar and cables;
(b) free-body and centerline displacement
diagrams of bar AC,



Stepped bar fixed at both _ends
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FIGURE 4.10 (a) A bar consists of two segments under an axial load P;
(b) free-body diagrams of the left and right parts; (¢) contraction due to load P;
(d) expansion due to reaction Rg.



Solution by a superposition method

dp+ op =0
)
Applving Eq. (4.1) and taking the elongations to be positive, we have
Pa RBEI Rgb
} } =0 (a)
ALE AE  ALE
from which
Py — P
B 1+ {bﬂa/{aﬂb)

This result is the same as that given by Eq. (4.10). The remaining reaction can be obtained
from the condition of statics: R4 + Rg = P.
The method of superposition emploved above may be summarized as follows:

1. One of the unknown reactions is designated as redundant and released from the
member by removing the support.

2. The remaining member, which is rendered statically determinate, is loaded by
the actual load (P) and the redundant (Ry) itself. Note that the redundant is
considered to be an unknown load.

3. The expressions for the displacements due to these loads are obtained and
substituted into the equation of geometric compatibility to calculate the
redundant reaction. The other unknown reaction is found by applying statics.




One of the unknown reactions is designated as redundant and released from the
member by removing the support.

The remaining member, which is rendered statically determinate, is loaded by
the actual load (P) and the redundant (Rg) itself. Note that the redundant is
considered to be an unknown load.

The expressions for the displacements due to these loads are obtained and
substituted into the equation of geometric compatibility to calculate the
redundant reaction. The other unknown reaction is found by applying statics.




Thermal deformation & stress

a AT

Gt

o.: Thermal expansion coefficient



Ref. Phase transformations and microstructure-mechanical properties

| Steal CR1
| Heating rate = 40 “C/min = 0L6Y K/s

| Cooling rate =1 Kis

relations in complex phase high strength steels

= |

Dilation (dL/L_107)

14

12

.
=

oo

L2E

Dilatometry

8 = 368°C

A, =789°C

B =570°C

200

400

GO0

Temperatura (°C)

1000



Example
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FIGURE 4.11 (a) Tube with restrained
ends; (b) thermal expansion: (¢) con-
traction due to reaction K.



Transformation of stress tensor:
Stress components with different coordinate system
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FIGURE 4.13 Prismatic bar
in tension with forces and
stresses on inclined
planes.



Maximum shear plane
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FIGUHE 4.14 Variation of stress with thd inclined section in the bar shown 1§ Fig. 4.13a.

No shear stress : principal stress plane
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FIGURE 4.15 Planes of maxi-
mum shear stress for a bar
shown 1n Fig. 4.13a.



Saint-Venant’s principle
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FIGURE 4.17 Stress distribution due to a concentrated load in a rectangular elastic bar
confirming Saint-Venant's principle.



Stress concentration
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FIGURE 4.18 Stress distribution in an axially loaded flat bar with a circular hole.
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FIGURE 4.19 Stress distribution in an axially loaded flat bar with fillets.
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Stress concentration
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FIGURE 4.20 Stress concentration factor K for a flat bar
with transverse circular hole in axial tension (Refs. 4.4
and 4.5).
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FIGURE 4.21 Stress concen-

tration factors K for bars in
axial tension (Refs. 4.4

and 4.6): (a) flat bars with
fillets; (#) round bars
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KEY CHAPTER EQUATIONS*

Deformation
of prismatic
bar

Multiple
prismatic bar

§ = PL/AE

R
5= _ZIP:'LEMEE.'
=

Nonprismatic 8= J'L Podx/A E
bar

Thermal g = a AT

strain

Thermal d; = a(AT)L
deformation

Normal and
shearing
stresses

2
Oy = 0,C0s”
Ty = Oy SInHcosd

Maximum
normal stress

P
Omax = KOpom = KE
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