4. Stress-strain relationships
and material properties



4.1 Introduction

e Deformations
- due to load and temperature are independent of each other.



4.2 Stress-strain diagrams

- Stress-strain relationship is independent of the size and shape of the

member and depends on the type of material.
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- True stress: Stress obtained by dividing the load by the actual area

F
Otrie = n7en
A(F)

- True strain: The sum of all the instantaneous engineering strains
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- Hooke’s law and modulus of elasticity (YYoung’s modulus)
o=Ee¢

- Shear modulus (modulus of rigidity)
=Gy
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- Elastic limit (D): the max. stress for which the material acts elastically

- Yield point: the stress at which there is an appreciable increase in strain with
no increase in stress

- Yield strength (B) : the stress that will induce a specified permanent strain (0.2%)

- Ultimate strength: the max. stress developed in a material before rupture



- Elastoplastic materials

- Ductility: the capacity for plastic deformation in tension or shear

Elastoplastic

- Creep limit: the max. stress for which the plastic strain will

not exceed a specified amount during a specified
time interval at a specified temperature

- Poisson’s ratio: the ratio of the lateral or perpendicular strain to the longitudinal
or axial strain

g
y=——"




- Effect of composition: brittle to ductile
- Effect of temperature: ductility, ultimate strength...

- Effect of tension or compression: for brittle materials
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« Example Problem 4-1

A 100 kip axial load ona 1 x 4 x 90-in., 4-in. side becomes 3.9986 in.,
length increases 0.09 in.

- Poisson’s ratio
- Modulus of elasticity

- Modulus of rigidity



4.3 Generalized Hooke's law

- The deformations of an element for a combined loading can be determined
by using the principle of superposition.

- The principle of superposition can be applied when

1) Each effect (strain) is linearly related to the load.

2) The effect of the first load does not significantly change the effect of the
second load.

- Case of plane stress:

1
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- Case of triaxial principal stresses:

E
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- Out-of-plane principal strain:
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- Expression of G in terms of E and v : refer to p167~168.

E

G = 2(1+v)




e Example Problem 4-2

An alloy steel (E=210 Gpa, v=0.3) under a biaxial state of stress shows
strains: ¢,=1394 u, £,=-660 1, 7,,=2054 p.

y’ Txy

- Principal stresses and the max. shear stress with a sketch of a triangular
element



e Example Problem 4-4

There is a steel block (E=30,000 ksi, v=0.3) of 10 x 10 x 10-in. under a
uniformly distributed pressure of 30,000 psi in x- and y- directions.
Deformation in the z-direction is 0.002 in.

- Determine o, .




e Example Problem 4-5

There is a rubber block of 0.5 x 6 x 4-in. attached to a wall and a steel plate.
P is 30 Ib and the rigid steel plate displaces downward a = 0.0003 in.

- Determine the shear modulus of the rubber .




4.4 Thermal strain

- The coefficient of thermal expansion, o, IS approximately constant for a
large range of temperatures.

& =a AT
- The total strain is the sum of the strains by loads and temperature change.

&

total = ga + gT

:é(gx—v(ay+az))+aAT



e Example Problem 4-6

An aluminum block (E=70 Gpa, a=22.5 u/°C) is subjected to a temperature
change AT=20°C

- Thermal strains: ey, e, &y,

- Deformations: 4y, d,, J,

- Shearing strain: y,,




4.5 Stress-strain equations for orthotropic
materials

- Orthotropic materials have three mutually perpendicular planes of material
symmetry.

- Normal stress that is not in the natural axis direction of the orthotropic
material produces not only normal strains but also shear strain
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- Orthotropic materials subjected to plane stress
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- Example Problem 4-8

A unidirectional T300/5208 graphite/epoxy composite material is loaded
In principal material directions: ¢, = 50 ksl, ¢, = 6 ksi, t,, = 2 KsI.

- Normal and shear strains in the principal material directions

Table 4-1 Material Properties for Two Unidirectional Composites

Type Material E; GPa (ksi) E; GPa(ksi) vz G, GPa (ksi)
T300/5208  Graphite/ 181 10.3 028 7.17

Epoxy (26,300) (1494) (1040)
Scotchply Glass/ 38.6 8.27 026 4.14
1002 Epoxy (5600) (1199) (600)
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