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Elastic Stability
Concept of stability

When slightly disturbed from an equilibrium configuration, does a system tend to 
return to its equilibrium position or does it tend to depart even further?

Fig. 4.1 Example of (a) stable, (b) neutral, and (c) unstable equilibrium.
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Elastic Stability
Hinged bar with spring

Tensile load

Compressive load

Stable

Unstable
Stable

Compressive load

The unstable structure can be stabilized by adding guy wires or transverse springs 
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Elastic Stability
Hinged bar with spring (Continued)

Fig. 4.4 Analysis of hinged bar in compression stabilized by springs

2 (unstable)
2 (stable)       

Px kxL
Px kxL

>
< (4-1)

𝑷𝑷𝑷𝑷 = 𝟐𝟐𝟐𝟐𝟐𝟐 (critical load or buckling load)
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Elastic Stability
Hinged bar with spring (Continued)

( ) 2

2

P x kxL
Px

kL P

ε

ε

+ =

=
−

(4-2)

Using force equilibrium, it can be 
drawn transverse displacement x due 
to load eccentricity

If P is not too close to  the critical load                         
the equilibrium displacement (x) is small.

Else if P is larger than the critical load,
the equilibrium displacement is infeasible.(<0)
It means the system is unstable.

Unstable

Fig 4.5. Transverse displacement x
due to load eccentricity 
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Elastic Stability
Example of instability

Fig. 4.6   compressive buckling
of a shallow column

Fig. 4.7   Twist-bend buckling
of a deep, narrow beam

Fig. 4.8   Twist-bend buckling 
of a shaft in torsion.

Fig. 4.9   “Snap-through” instability 
of a shallow curved member.
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Elastic Stability of Flexible Columns
Governing differential equation

Fig. 4.10  (a) Beam subjected to longitudinal and transverse loads; 
(b) free-body sketch of element of beam.

( ) 0

( ) ( ) 0
2 2b b b

V V V q x
x xM M M V V V P v

+ ∆ − + ∆ =
∆ ∆

+ ∆ − + + + ∆ + ∆ =

Force equilibrium ;

Moment equilibrium ;

0dV q
dx

+ =

0bdM dvV P
dx dx

+ + =

2

2 b
d vEI M
dx

=Using the fact that                               and two equilibrium, 

2 2

2 2( ) ( )d d v d dvEI P q
dx dx dx dx

+ =

(4-3) (4-4)

(4-5)

(4-6)
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Elastic Stability of Flexible Columns
Example1

Consider a column in a state of neutral 
equilibrium in the bent position.

Boundary conditions ; 
0 0

0
00

b
v M

at x at x Ldv V
dx

=  =  = = == 
(4-7)

2

2

2

2

0

( ) 0

b
d vM EI
dx at x L

d d v dvV EI P
dx dx dx


= =  =

− = + = 

When EI and P are constants, the governing equation (4-6) is
4 2

4 2 0d v d vEI P
dx dx

+ = (4-9)

Fig. 4.11. example 1 
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Elastic Stability of Flexible Columns
Example1 (Continued)

A solution to (4-9) for arbitrary values of the four constants is 

1 2 3 4sin cosP Pv c c x c x c x
EI EI

= + + +                       

Substituting (4-10) into the four boundary conditions of (4-7) and (4-8) 

1 4

2 3

3 4

2

0

0

sin cos 0

0

c c
Pc c
EI

P P P Pc L c L
EI EI EI EI

c P

+ =

+ =

− − =

=

                  

This is an eigenvalue problem. 

2 3 4 10c c and c c= = = −  

Then the third equation becomes simply 
 

(4-10)

(4-11)
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Elastic Stability of Flexible Columns
Example1 (Continued)

1 cos 0P Pc L
EI EI

=                                      

This can be satisfied by having a value of P  such that 

cos 0P L
EI

=                                           

The smallest value of P  meeting this condition is  
2

24
EIP
L

π
=     (Critical load)                             

Substituting back into (4-10), the corresponding deflection curve is 

1 1 cos
2

xv c
L

π = − 
 

                                     

For smaller value of P  the straight column is stable. 

For larger value of P  the straight column is no longer stable.  Buckling                                    

(4-12)

(4-13)

(4-14)

(4-15)
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Elastic Stability of Flexible Columns
Example2 with imperfection

Another insight into column buckling :
imperfection in either the column or the loading

Consider flexible column held in equilibrium 
by a longitudinal compressive force P with 
eccentricity є

It is equivalent to the state that flexible column 
held in equilibrium by the same compressive 
force P plus an end moment M0.

Fig 4.12. The equivalence of the two loadings
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Elastic Stability of Flexible Columns
Example2 with imperfection (Continued)

Boundary conditions ; 0
0

0
00

b
v M M

at x at x Ldv V
dx

=  =  = = == 

(4-16)

1 4

2 3

0
3 4

2

0

0

sin cos

0

c c
Pc c
EI

MP P P Pc L c L
EI EI EI EI EI

c P

+ =

+ =

− − =

=

Then, substituting (4-10) into given boundary condition
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Elastic Stability of Flexible Columns
Example2 with imperfection (Continued)

In a similar way, we can derive corresponding deflection curve ; 

0 1 cos /
cos /

M P EI xv
P P EI L

−
=

At 𝑥𝑥 = 𝐿𝐿,

0( ) sec 1

sec 1

M Pv L L
P EI

P L
EI

δ

ε

 
= = − 

 
 

= − 
 

(4-17)

Fig. 4.13  Relation between compressive force P 
and transverse deflection δ due to eccentricity є .
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Elastic Stability of Flexible Columns
Boundary condition type

(a) clamped-free (b) hinged-hinged (c) clamped-clamped (d) clamped-hinged

Pcrt = cEI/L2

(a)       𝝅𝝅𝟐𝟐/𝟒𝟒 = 𝟐𝟐.𝟒𝟒𝟒𝟒
(b)           𝝅𝝅𝟐𝟐 = 𝟗𝟗.𝟖𝟖𝟒𝟒
(c)                  𝟐𝟐𝟐𝟐.𝟐𝟐
(d)       𝟒𝟒𝝅𝝅𝟐𝟐 = 𝟑𝟑𝟗𝟗.𝟓𝟓

c
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Elastic Stability of Flexible Columns
Example of buckling in reality

Lateral-torsional buckling 
of an aluminium alloy plate girder

Sun kink in rail tracks
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Elastic Postbuckling Behavior
Hinged body with nonlinear spring

2

21 xf kx
L

β 
= + 

 
(4-19)

where 𝛽𝛽 is a parameter which fixes the nature of the nonlinearity
0:
0:

stiffening spring
softening spring

β
β
>
<

Fig. 4.14  Strut supported by nonlinear springs
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Elastic Postbuckling Behavior
Hinged body with nonlinear spring (Continued)

From Fig. 4.16(b), moment equilibrium is

Fig. 4.15  Ideal postbuckling curves for (a) 𝛽𝛽 = 10,   (b) 𝛽𝛽 = 0,   (c) 𝛽𝛽 = −10

𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄 > 𝑷𝑷 𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄 = 𝑷𝑷 𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄 < 𝑷𝑷

the branch BD represents unstable equilibrium positions.In every case

The branch BC represents
0
0
0

for
for
for

β
β
β

>
=
<

stable equilibrium positions.
neutral equilibrium positions.
unstable equilibrium positions.

2

22 1 0xPx kLx
L

β 
− + = 

 
𝑥𝑥 = 0 𝑜𝑜𝑜𝑜 𝑃𝑃 = 2𝑘𝑘𝐿𝐿 1 + 𝛽𝛽

𝑥𝑥2

𝐿𝐿2

𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄



Seoul National University2019/1/4 - 19 -

Chapter 4 : Stability of Equilibrium - Buckling

Elastic Postbuckling Behavior
Hinged body with nonlinear spring (Continued)

( )
2

22 1 xP x kLx
L

ε β 
+ = + 

 
(4-20)

When the load is positioned slightly off-center:   

Fig. 4.17  Effect of imperfection 
parameter є/L on postbuckling
behavior for (a) β = 10,   (b) β = 0,   
(c) β = -10. 

Fig. 4.18  Maximum load for 
softening nonlinearity (β = -10 ) 
depends on magnitude of 
imperfection.

Fig. 4.16 Eccentric load on strut 
supported by nonlinear springs.
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Fig. 4.19  Free end and fixed end
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Extension of Euler’s Formula To Columns
Free end A And Fixed end B

Behaves as the upper half of a pin-connected column.
• Effective length : 𝐿𝐿𝑒𝑒 = 2𝐿𝐿
• Critical Load : 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋2

4
𝐸𝐸𝐸𝐸
𝐿𝐿

= 𝜋𝜋2𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒2

• Critical Stress :

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸
𝐿𝐿𝑒𝑒/𝑐𝑐 2

𝐿𝐿𝑒𝑒/𝑜𝑜 : Effective slenderness ratio

(4-21)

(4-22)
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Extension of Euler’s Formula To Columns
Two fixed ends A and B

The shear at C and the horizontal components of the reaction at A and B are 0.

Restraints upon AC and CB are identical.

Portion AC and BC: symmetric about  its midpoint D and E.
• D and E are points of inflection (M = 0)

Portion DE must behave as a pin-ended column.
• The effective length is : Le = L/2

Fig. 4.20 Fig. 4.21 Fig. 4.22 Fig. 4.23
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Extension of Euler’s Formula To Columns
One pin-connect end A and one fixed end B

Differential equation of the elastic curve:

where

Particular solution is

General solution is

VxPyM −−=

EI
Vx

EI
Py

EI
M

dx
yd

−−==2

2

EI
Vxyp

dx
yd

−=+ 2
2

2

EI
Pp =2

x
P
Vx

EIp
Vy −=−= 2

x
P
VpxBpxAy −+= cossin

Fig. 4.24

Fig. 4.25

(4-23)
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Extension of Euler’s Formula To Columns
One pin-connect end A and one fixed end B (Continued)

Boundary conditions 1 ;   𝑦𝑦 0 = 0 → 𝐵𝐵 = 0

Boundary conditions 2 ;   𝑦𝑦 𝐿𝐿 = 0 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝐿𝐿 = 𝑉𝑉𝐿𝐿
𝑃𝑃

�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑑𝑑=𝐿𝐿

= 0 → 𝐴𝐴𝑝𝑝𝐴𝐴𝑜𝑜𝐴𝐴 𝑝𝑝𝐿𝐿 = 𝑉𝑉
𝑃𝑃

(4-24)

(4-25)

(4-26)

From (4-25) and (4-26),

tan𝑝𝑝𝐿𝐿 = 𝑝𝑝𝐿𝐿 → 𝑝𝑝𝐿𝐿 = 4.4934
From (4-23),

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 =
20.19𝐸𝐸𝐸𝐸

𝐿𝐿2

From (4-21),
𝜋𝜋2𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒2

=
20.19𝐸𝐸𝐸𝐸

𝐿𝐿2
→ 𝐿𝐿𝑒𝑒 = 0.699𝐿𝐿 ≈ 0.7𝐿𝐿

Fig. 4.26
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Extension of Euler’s Formula To Columns
Effective length of column for various end conditions

Fig. 4.27 Effective length of column for various end conditions
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Extension of Euler’s Formula To Columns
Example 1

An aluminum column of length L and rectangular cross section has a fixed end B 
and supports a centric load at A. Two smooth and rounded fixed plates restrain 
end A from moving in one of the vertical planes of symmetry of the column, but 
allow it to move in the other plane. 

(a) Determine the ratio a/b of the two sides of the cross section corresponding to 
the most efficient design against buckling. 

(b) Design the most efficient cross section for the column, knowing that 
L=500 mm, E=70 GPa, P=20 kN, and that a factor safety of 2.5 is required.

Fig. 4.28 example 1 illustration 

* Gere, James, James M. Gere, and Barry J. Goodno. Mechanics of materials. Nelson Education, 2012.
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Extension of Euler’s Formula To Columns
Example 1 (Continued)

Buckling in x, y plane
• Effective length with respect to buckling in this plane: 𝐿𝐿𝑒𝑒 = 0.7𝐿𝐿 .

• Radius of gyration: 𝑜𝑜𝑧𝑧 = 𝐸𝐸𝑧𝑧
𝐴𝐴

= 𝑏𝑏𝑎𝑎3

12𝑎𝑎𝑏𝑏
= 𝑎𝑎

12

• Effective slenderness ratio: 𝐿𝐿𝑒𝑒
𝑐𝑐𝑧𝑧

= (0.7𝐿𝐿)/( 𝑎𝑎
12

)

Buckling in x, z plane
• Effective length with respect to buckling in this plane: 𝐿𝐿𝑒𝑒 = 2𝐿𝐿

• Radius of gyration: 𝑜𝑜𝑧𝑧 = 𝐸𝐸𝑧𝑧
𝐴𝐴

= 𝑎𝑎𝑏𝑏3

12𝑎𝑎𝑏𝑏
= 𝑏𝑏

12

• Effective slenderness ratio: 𝐿𝐿𝑒𝑒
𝑐𝑐𝑧𝑧

= (2𝐿𝐿)/( 𝑏𝑏
12

)

(a) Most effective design.

The critical stresses corresponding to the possible modes of buckling are equal.

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸
𝐿𝐿𝑒𝑒/𝑐𝑐 2 ;   0.7𝐿𝐿

𝑎𝑎/ 12
= 2𝐿𝐿

𝑏𝑏/ 12
→ 𝑎𝑎

𝑏𝑏
= 0.35

* Gere, James, James M. Gere, and Barry J. Goodno. Mechanics of materials. Nelson Education, 2012.



Seoul National University2019/1/4 - 27 -

Chapter 4 : Stability of Equilibrium - Buckling

Extension of Euler’s Formula To Columns
Example 1 (Continued)
(b) Design for given data.

( . .) (2.5)(20kN) 50kNcrP F S P= = =

0.5mL =

39.7mmb =

3

2

50 10 N

0.35
cr

cr

P

A b
σ

×
= = ( )(0.35b)babA ==

3.464/b/rL ye =

2 3 2 9

2 2 2

50 10 N (70 10 Pa)
( / ) 0.35 (3.464 / )cr

e

E
L r b b
π π

σ
× ×

= = =

0.35 13.9mma b= =

→

* Gere, James, James M. Gere, and Barry J. Goodno. Mechanics of materials. Nelson Education, 2012.
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Eccentric Loading : The Secant Formula
Governing differential equation

PePyMPyM A −−=−−=

EI
Pey

EI
P

EI
M

dx
yd

−−==2

2

• Portion AQ:
– Bending moment at Q is

(4-28)

(4-29)

EI
Pp =2

epyp
dx

yd 22
2

2

−=+

where,

– General solution of (4-29):

epxBpxAy −+= cossin (4-30)

Fig. 4.29 Fig. 4.30

Fig. 4.31
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Eccentric Loading : The Secant Formula
Governing differential equation (Continued)

eB =

0)0( =y 0)( =Ly

2
tan pLeA =

tan sin cos 1
2
pLy e px px ∴ = + − 

 
(4-31)

– Using boundary condition ;

Fig. 4.32
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Eccentric Loading : The Secant Formula
Governing differential equation (Continued)

The value of the maximum deflection is obtained by setting. 2/Lx =







 =

EI
Pp2







 −+= 1

2
cos

2
sin

2
tanmax

pLpLpLey

















−= 1

2
cos

2
cos

2
tan 2

pL

pLpL

e







 −= 1

2
secmax

pLey












−







= 1

2
secmax

L
EI
Pey

(4-32)

(4-33)
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Eccentric Loading : The Secant Formula
Governing differential equation (Continued)

becomes infinite when 

22
π

=
L

EI
P

P

(4-35)

(4-34)

maxy

2

2

L
EIPcr

π
=

Solving (11-30) for      and substituting into (4-33),EI












−









= 1

2
secmax

crP
Pey π (4-36)

While the deflection does not actually become infinite, and    should not be 
allowed to reach the critical value which satisfies (4-34).
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Eccentric Loading : The Secant Formula
Governing differential equation (Continued)

The maximum stress:

• Portion AC:

I
cM

A
P max

max +=σ

( )eyPMPyM A +=+= maxmaxmax





 +
+=

+
+= 2

maxmax
max

)(1)(
r

cey
A
P

I
cey

A
Pσ

– Substituting maxy




















+=

2
sec1 2max

L
EI
P

r
ec

A
Pσ






















+=

crP
P

r
ec

A
P

2
sec1 2

π

(4-37)

(4-39)

(4-38)

(4-40)

Fig. 4.33
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Eccentric Loading : The Secant Formula
The Secant Formula

(4-39):   Making

Since the maximum stress does not vary linearly with the load P, the principle of
superposition does not apply to the determination of the stress due to the
simultaneous application of several loads; the resultant load must first be computed,
and (4-39) or (4-40) may be used to determine the corresponding stress. For the
same reason, any given factor of safety should be applied to the load, and not to the
stress.

2ArI =









+

=

r
L

EA
P

r
ecA

P

e

2
1sec1 2

maxσ
(4-41)
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Eccentric Loading : The Secant Formula
The Secant Formula

For a steel column 629 10 psiE = × 36ksi
Y

σ =

Fig. 4.34  Load per unit 
area, P/A, causing yield in 
column
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Eccentric Loading : The Secant Formula
The Secant Formula

For large values of , the curves corresponding to the various values of the
ratio get very close to Euler’s curve defined by (4-22), and thus that the
effect of the eccentricity of the loading on the value of becomes
negligible.

(4-42)

2/ rec

2

max

1
r
ecA

P

+
=
σ

For all small value of         , the secant is almost equal to 1:         2/ rLe

2/ rLe

AP /
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Eccentric Loading : The Secant Formula
Example 1

The uniform column AB consists of an 8-ft section of structural tubing having the
cross section shown.

(a) Using Euler’s formula and a factor of safety of two, determine the allowable
centric load for the column and the corresponding normal stress.

(b) Assuming that the allowable load, found in part a, is applied as shown at a
point 0.75 in. from the geometric axis of he column, determine the horizontal
deflection of the top of the column and the maximum normal stress in the
column. Use .

* Gere, James, James M. Gere, and Barry J. Goodno. Mechanics of materials. Nelson Education, 2012.
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Eccentric Loading : The Secant Formula
Example 1

Effective Length

One end fixed and one end free:

Critical Load

Using Euler’s formula,

(a) Allowable Load and Stress

For a factor of safety of 2:

𝐿𝐿𝑒𝑒 = 2 8𝑓𝑓𝑓𝑓 = 16𝑓𝑓𝑓𝑓 = 192𝐴𝐴𝐴𝐴

𝑃𝑃𝑐𝑐𝑐𝑐 =
𝜋𝜋2𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒2

=
𝜋𝜋2 29 × 106 𝑝𝑝𝐴𝐴𝐴𝐴 8.00 𝐴𝐴𝐴𝐴4

192𝐴𝐴𝐴𝐴 2 = 62.1 𝑘𝑘𝐴𝐴𝐴𝐴 � 𝐴𝐴𝐴𝐴2

𝑃𝑃𝑎𝑎 =
𝑃𝑃𝑐𝑐𝑐𝑐
𝐹𝐹. 𝑆𝑆 =

62.1 𝑘𝑘𝐴𝐴𝐴𝐴 � 𝐴𝐴𝐴𝐴2

2 = 31.1 𝑘𝑘𝐴𝐴𝐴𝐴 � 𝐴𝐴𝐴𝐴2

𝜎𝜎𝑎𝑎 =
𝑃𝑃𝑎𝑎
𝐴𝐴 =

31.1 𝑘𝑘𝐴𝐴𝐴𝐴 � 𝐴𝐴𝐴𝐴2

3.54 𝐴𝐴𝐴𝐴2 = 8.79 𝑘𝑘𝐴𝐴𝐴𝐴
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Fig. 4.37

Fig. 4.38
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Eccentric Loading : The Secant Formula
Example 1
(b) Eccentric Load.

max sec 1 (0.75in) sec 1
2 2 2cr

P
y e

P

π π
= − = −

       
           

Column AB (Fig. 4.39) and its loading are identical to the upper 
half of the upper half of the Fig. 4.39.

• Horizontal deflection of point A:

0.939in=
• Maximum normal stress:

max 2

2 2

1 sec
2

31.1kips (0.75in)(2in)
1 sec

3.54in (1.50in) 2 2

cr

P ec P

A r P

π
σ

π

= +

= +

  
  

  
 
 
 

22.0ksi=
* Gere, James, James M. Gere, and Barry J. Goodno. Mechanics of materials. Nelson Education, 2012.
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Trivial Things Support Our Life!

당인의 ‘추풍환선사녀도’ 기홍도의 ‘씨름’
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Engineers’ Roles

세계일보 (Segye Newspaper, 10월 17일자)
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Engineers’ Roles

Minnesota I-35W Bridge Collapse
(2007.08.)

CNG버스폭발사고
(2010.08.)

갤럭시노트7 폭발
(2016.09.)

효성울산공장가스폭발
(2016.09.)
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FOR LISTENING
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