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5.4 Elastic Stress-strain Relations 

▶ Assumptions in this section 

i) We shall generalize the elastic behavior in the tension test to arrive at 
relations which connect all six components of stress with all six 
components of elastic strain. 

ii) We shall restrict ourselves to materials which are linearly elastic. 
(linear elasticity) 

iii) We also restrict ourselves to strains small compared to unity. (small 
strain) 

iv) We shall consider the materials that are independent of orientation 
which is assumed to be isotropic. (isotropic) 

▶ Definitions 

𝜎 = 𝐸𝜖 ,                𝜖 =   

1. Young’s modulus (or modulus of elasticity) 

i) The modulus of elasticity 𝐸 is numerically equal to the slope of the 
linear-elastic region in stress-strain curve and it is the material 
property. 

ii) The modulus of elasticity at compression and extension is same. 

iii)  Unit: Because 𝜖 is a dimensionless number, it is homogeneous to 
stress σ. 

 

𝜏 = 𝐺𝛾 ,             𝛾 = 𝜏 /𝐺  

2. Shear modulus of elasticity  

i) Unit: [𝐺] = [𝐸] = [𝜎] = [𝜏] 
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ii) The relation between 𝐺 and 𝐸 

𝐺 =
( )

  (5.3) 

 𝐸, 𝐺, and 𝜈 are dependent each other. 

 In common materials, 0 < 𝜈 < 0.5, so < G < . 

3. Poisson’s ratio 

 Tests in uniaxial compression show a lateral extensional strain 
which has the same fixed fraction to the longitudinal compressive 
strain. 

𝜈 = −
 

 
  

i) Poisson’s ratio is the example of non-stress strain and thermal strain. 

ii) For isotropic, linear-elastic material 

𝜖 = 𝜖 = −𝜈𝜖 = −𝜈𝜎 /𝐸  

 The conditions that lateral strain in proportional to axial strain in 
linear-elastic region 

① Material has the same components in all regions. 

 Homogeneous 

② Material properties are independent of orientation. 

 Isotropic 

Meanwhile, the lumbers are not isotropic but homogeneous. 

In general, the structural materials (i.e., steel) are satisfied with the 
above requirements. 

▶ The conclusions obtained under the assumption that the 
material is isotropic 
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i) No shear strain due to normal stress components. 

ii) The principal axes of strain at a point of a stressed body coincide with 
the principal axes of stress at that point. 

iii) Each shear stress component produces only its corresponding shear-
strain component. 

iv) No strain components other than 𝛾  , can exist, singly or in 
combination, as a result of the shear-stress component 𝜏 . 

v) The thermal strain cannot produce the shear strain. 

▶ The stress-strain relations of a linear-elastic isotropic material 
with all components of stress present 

𝜖 = 𝜎 − 𝜈 𝜎 + 𝜎                      𝛾 =   

𝜖 = 𝜎 − 𝜈(𝜎 + 𝜎 )                      𝛾 =  (5.2) 

𝜖 = 𝜎 − 𝜈 𝜎 + 𝜎                      𝛾 =   

 

 

 

 

 From Fig. 5.16, 
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𝜖 = − 𝑣 =
( )

 ,    𝜖 = − 𝜈 = −
( )

   

Meanwhile, upon use of the strain transformation formulas 

𝛾 = 𝜖 − 𝜖 =
( )

𝜏   

This equation and 𝛾 =  must be equal, so 

𝐺 =
( )

  (5.3) 

 It is true, although it will not be proved here, that no other choice 
of coordinate axes gives any added information about the elastic 
constants, and thus for an isotropic material there are just two 
independent elastic constants. 

▶ Volume change of the isotropic, linear-elastic material at 
extension 

 

∆𝐿 = 𝑎 𝜖   

∆𝐿 = 𝑏 𝜈𝜖 = 𝑐 𝜈𝜖  

The lengths of each side after deformation are 
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𝑎 (1 + 𝜖)

𝑏 (1 − 𝜈𝜖)

𝑐 (1 − 𝜈𝜖)
  

∴ 𝑣 = 𝑎 𝑏 𝑐 (1 + 𝜖)(1 − 𝜈𝜖)   

= 𝑎 𝑏 𝑐 (1 − 2𝜈𝜖 + 𝜈 𝜖 + 𝜖 − 2𝜈𝜖 + 𝜈 𝜖 )  

𝑣 = 𝑎 𝑏 𝑐 (1 + 𝜖 − 2𝑣𝜖)  

∴ 𝑒 =
∆

= =
( )

  

= 𝜖(1 − 2𝜈) = (1 − 2𝜈)  

 Volume increase of a slender member in tensile test can be 
obtained when 𝜖, 𝜈 are known. 

 If 𝜈 > 0.5, there is a contradiction that volume decreases when 
material is extended, so 𝜈 = 0.5. 

i) In linear-elastic region: ~  → ∴ 0.3𝜖 < 𝑒 < 0.5𝜖 

ii) In plastic region: in general, ∆𝑉 = 0, so it is fine that 𝜈 = 0.5. 

▶ Unit volume change in three-axial stresses 

 Having unit length and 𝑉 = 1, 

𝑉 = (1 + 𝜖 )(1 + 𝜖 )(1 + 𝜖 )  

𝑒 =
∆𝑉

𝑉
=

𝑉 − 𝑉

𝑉
=

𝑉

𝑉
− 1 ≒ 𝜖 + 𝜖 + 𝜖  

    = (𝜎 + 𝜎 + 𝜎 )  

 The shear-stress components cannot have an effect on the volume 
change. 

𝑒 = −
( )

𝑝            =
( )
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 : Bulk modulus or modulus of compression 

 

5.5 Thermal  strain 

▶ In the elastic region the effect of temperature on strain appears 
in two ways. 

i) By causing a modification in the values of the elastic constants 

ii) By directly producing a strain even in the absence of stress 

 

 For an isotropic material, symmetry arguments show that the 
thermal strain must be a pure expansion or contraction with no 
shear-strain components referred to any set of axes. 

𝜖 = 𝜖 = 𝜖 = 𝛼(𝑇 − 𝑇 )

𝛾 = 𝛾 = 𝛾 = 0
 (5.4) 

where  is a thermal expansion coefficient. 

▶ Total strain  

𝜖 = 𝜖 + 𝜖   (5.5) 

 

5.6 Complete equations of elasticity 

 The problem was outlined previously in broad generality by the 
three steps given in (2.1). For convenience we summarize below, 
under the three steps of (2.1), explicit equations which must be 
satisfied at each point of a nonaccelerating, isotropic, linear-elastic 
body subject to small strains. 
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▶ Equilibrium (3 equations; 6 unknowns) 

+ + + 𝑋 = 0  

+ + + 𝑌 = 0  (5.6) 

+ + + 𝑍 = 0  

▶ Geometric Compatibility (6 equations and 9 unknowns) 

𝜖 =             𝛾 = +   

𝜖 =             𝛾 = +   (5.7) 

𝜖 =             𝛾 = +   

▶ Stress-strain-temperature relation (6 equations) 

𝜖 = 𝜎 − 𝜈 𝜎 + 𝜎 + 𝛼(𝑇 − 𝑇 )       𝛾 =   

𝜖 = 𝜎 − 𝜈(𝜎 + 𝜎 ) + 𝛼(𝑇 − 𝑇 )       𝛾 =   (5.8) 

𝜖 = 𝜎 − 𝜈 𝜎 + 𝜎 + 𝛼(𝑇 − 𝑇 )       𝛾 =   

 

 The equilibrium equations (5.6), the strain-displacement 
equations (5.7), and the strain-stress-temperature relations (5.8) 
provide 15 equations for the six components of stress, the six 
components of strain, and the three components of displacement. 

 The complete equations (5.6), (5.7), and (5.8) apply to 
deformations of isotropic, linearly elastic solids which involve 
small strains and for which it is acceptable to apply the 
equilibrium requirements in the undeformed configuration. 
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 We shall be primarily concerned with the three steps of (2.1), 
expressed not in the infinitesimal formulation of (5.6), (5.7), and 
(5.8) but expressed, instead, on a macroscopic level in terms of 
rods, shafts, and beams. 

▶ Example 5.2 A long, thin plate of width 𝑏, thickness 𝑡, and length 

𝐿 is placed between two rigid walls a distance 𝑏 apart and is acted on 
by an axial force 𝑃 , as shown in Fig. 5.17 (a). We wish to find the 
deflection of the plate parallel to the force 𝑃. We idealize the situation 
in Fig 5.17 (b). 

 

▷Assumptions 

i) The axial force 𝑃  results in an axial normal stress uniformly 
distributed over the plate area, including the end areas. 

ii) There is no normal stress in the thin direction. (Note that this implies 
a case of plane stress in the 𝑥𝑦 plane.) 
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iii) There is no deformation in the 𝑦  direction, that is, 𝜖 = 0 . (Note 

that this implies a case of plane strain in the 𝑥𝑧 plane.) 

iv) There is no friction force at the walls (or, alternatively, it is small 
enough to be negligible). 

v) The normal stress of contact between the plate and wall is uniform 
over the length and width of the plate. We now satisfy the 
requirements (2.1) for the idealized model of Fig. 5.17 (b). 

▷Equilibrium 

𝜎 = − ,    𝜎 = −𝜎 ,         𝜎 = 0   (a) 

𝜏 = 𝜏 = 𝜏 = 0  

These stresses also satisfy the equilibrium equations (5.6). 

▷Geometric compatibility 

𝜖 = 0  (b) 

𝜖 = −   (c) 

▷Stress-strain relation 

 eq. (5.8) is 

𝜖 = 𝜎 − 𝜈𝜎 ,        𝜖 = 𝜎 − 𝜈𝜎 ,         𝜖 =

− 𝜎 + 𝜎   

𝛾 = 𝛾 = 𝛾 = 0  (d) 

 Solving the system of equations (a), (b), (c), and (d) 

𝜎 = 𝜈𝜎 = − ,         𝛿 =   

𝜖 =
( )

=    
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 We note that the presence of the rigid walls reduces the axial 
deflection of the plate by the factor (1 − 𝜈 ). 

▷Strain-displacement relation 

𝑢 = − 𝑥 ,     𝑣 = 0 ,       𝑤 = 𝑧  

 It is relatively easy to get an exact or nearly exact solution to an 
idealized approximation of the real problem. 

5.7 Complete Elastic Solution for a Thick-walled 
Cylinder 

 

 There is uniform inner pressure 𝑝  , uniform outer pressure 𝑝  , 
and uniform axial tensile stress 𝜎 . 
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▶ Boundary condition 

i) For 𝑟 = 𝑟  

𝜎 = −𝑝  ,        𝜏 = 0 ,    𝜏 = 0  (a) 

ii) For 𝑟 = 𝑟  

𝜎 = −𝑝  ,        𝜏 = 0 ,    𝜏 = 0  (b) 

iii) For 𝑧 = 0 & 𝑧 = ℎ 

𝜎 = 𝜎 ,       𝜏 = 0 ,       𝜏 = 0  (c) 

▶ Geometric compatibility 

 Based on the uniformity of the axial loading, 𝜎 = 𝜎  throughout 
the interior and that all stresses and strains are independent of z. 

 Based on symmetry, we shall look for a solution in which 𝜈 and 
the 𝜃  component of displacement vanish everywhere and in 
which all stresses, strains, and displacements are independent of 
𝜃. 

 The shear stresses 𝜏 , 𝜏 , 𝜏   and the corresponding strains 
𝛾 , 𝛾 , 𝛾  vanish everywhere. 

𝜏 = 𝜏 = 𝜏 = 𝛾 = 𝛾 = 𝛾 = 0   

▶ Equilibrium equation for cylindrical coordinate system (see 
Section 4.10) 

+ + + = 0  

+ + + 2 = 0  

+ + + = 0  

Remaining equilibrium equation 
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+ = 0  (d) 

▶ Strain-displacement equations for cylindrical coordinate 
system (see Section 4.10) 

𝜖 =       𝜖 = +       𝜖 =   

𝛾 = + −    𝛾 = +    𝛾 = +   

Remaining strain-displacement equations 

𝜖 = ,       𝜖 = ,        𝜖 =   (e) 

▶ Stress-strain relation for cylindrical coordinate system 

𝜎 =
( )( )

[(1 − 𝜈)𝜖 + 𝜈(𝜖 + 𝜖 )]  

𝜎 =
( )( )

[(1 − 𝜈)𝜖 + 𝜈(𝜖 + 𝜖 )]  (f) 

𝜎 =
( )( )

[(1 − 𝜈)𝜖 + 𝜈(𝜖 + 𝜖 )]  

Substitute (e) into (f) yields 

𝜎 =
( )( )

[(1 − 𝜈) + 𝜈 + 𝜖 ]  

𝜎 =
( )( )

[(1 − 𝜈) + 𝜈 + 𝜖 ]  

Let k indicate a constant in equation (f) and from equilibrium, 

𝑘 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
 

= 𝑘
( ) 

+ 𝜈 − 𝑢       

= 𝑘[(1 − 2𝜈) + 2𝜈 − ]  
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+ = 𝑘(1 − 𝜈) + − = 0 Cauchy equation 

∴ 𝑢 = 𝐴𝑟 +      𝜖 = = 𝐴 −        𝜖 = 𝐴 +   

∴ 𝜎 = 𝑘 𝐴 + 𝜈𝜖 − (1 − 2𝜈)   

𝜎 = 𝑘 𝐴 + 𝜈𝜖 + (1 − 2𝜈)   

▶ Boundary condition 

𝜎 = 𝑘 𝐴 + 𝜈𝜖 − (1 − 2𝜈) = −𝑝   

𝜎 = 𝑘 𝐴 + 𝜈𝜖 − (1 − 2𝜈) = −𝑝   

− − 𝜈𝜖

− − 𝜈𝜖
=

1 −

1 −

𝐴
𝐵

= X
𝐴
𝐵

  

𝑑𝑒𝑡(𝑋) =
( )

( )
  

𝑋 =
( )

−

−1 1
  

∴ 
𝐴
𝐵

=
( )

( )

−

−1 1

− − 𝜈𝜖

− − 𝜈𝜖
  

∴ 𝐴 = − 𝜈𝜖   

𝐵 =
( )

(−𝑝 + 𝑝 )
( )

  

∴ 𝜎 = 𝑘 − (1 − 2𝜈)
( )

(−𝑝 + 𝑝 )     
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= −
( / ) ( / ) ( / )

( / )
   

𝜎 = 𝑘 + (1 − 2𝜈)
( )

(−𝑝 + 𝑝 )   

=
( / ) ( / ) ( / )

( / )
  

𝜖 = [𝜎 − 𝜈(𝜎 + 𝜎 )]  

= −   

 Note that 𝜖  is independent of position within the cylinder. 

 

▶ Stress-strain equations (following textbook) 

From generalized Hooke’s law 

𝜖 =  [𝜎 − 𝜈(𝜎 + 𝜎 )]  

𝜖 =  [𝜎 − 𝜈(𝜎 + 𝜎 )]  (f) 

𝜖 =  [𝜎 − 𝜈(𝜎 + 𝜎 )]  

i) From the first two equations of (f) we solve for the transverse stresses 
𝜎  and 𝜎 , in terms of 𝜖  and 𝜖  and thus obtain the stresses also 
as functions of 𝑢. 

ii) Finally, substituting the stresses into (d) leads to the following 
differential equation for 𝑢(𝑟) 

+ − = 0  (h) 

∴ 𝑟 + 𝑟 − 𝑢 = 0  



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 5 Stress-strain-temperature relations 15 / 17 

 

𝑢 = 𝐴𝑟 +   general solution (i) 

𝑟 + 𝑟 − 𝑢 = 𝑟 𝑚(𝑚 − 1)𝑟 + 𝑟𝑚𝑟 − 𝑟   

∴ (𝑚(𝑚 − 1) + 𝑚 − 1)𝑟 = 0  

∴ 𝑢 = 𝐴𝑟 + 𝐵𝑟   

 

Apply the boundary conditions 

𝜎 = −
( / ) ( / ) ( / )

( / )

𝜎 = −
( / ) ( / ) ( / )

( / )

  (5.9) 

 The axial strain is obtained by substituting these stresses together 
with σ = 𝜎  into the third equation of (f). 

∴ 𝜖 = −   (5.10) 

 Note that 𝜖  is independent of position within the cylinder. 

 

▶ Analysis 

i) The axial displacement 𝑤 thus varies linearly with 𝑧. 

ii) The transvers stresses (𝜎 , 𝜎 )  are independent of 𝜎   and 𝜖  
depends on the axial loading 𝜎 . 

iii)  When the inner and outer pressures are both equal (that is, 𝑝 =

𝑝 = 𝑝), we find that 𝜎 = 𝜎 = −𝑝 throughout the interior. 

iv)  When the outer pressure is absent (𝑝 = 0), we note that an inner 
pressure 𝑝  results in a compressive radial stress which varies from 
𝜎 = −𝑝  at the inner wall to 𝜎 = 0 at the outer wall. 
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v) Note that the numerically greatest stress in both Fig. 5.19 (a) and Fig. 
5.19 (b) is the tangential stress 𝜎  at the inner wall of the cylinder. 

vi)  When the cylinder wall-thickness 𝑡 = 𝑟 − 𝑟   becomes small in 
comparison with 𝑟  , the solution (5.9) approaches the thin-walled-
tube approximation of Prob. 4.10 (see also Prob. 5.47). 

vii)  When the axial stress vanishes (𝜎 = 0) for a short cylinder, the 
cylinder is said to be subject to a plane stress distribution. In this case 
the axial strain 𝜖  is generally not zero. For a long cylinder, the axial 

stress is generally not zero but the axial strain becomes zero. (∵ plane 

stress distribution ≠ plane strain distribution) 

viii)  We can use the exact result (5.9) to illustrate the concept of stress 
concentration. 

 A characteristic of the solution (5.9) is that, although it depends 
on the material’s being homogeneous, isotropic, and linearly 
elastic, the stresses are independent of the actual magnitudes of 
the elastic parameters 𝐸 and 𝜈. 

 Note that the results (5.9) and (5.10) involve the quite significance 
in engineering. 
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