
M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 5 Stress-strain-temperature relations 1 / 15

CH. 5

STRESS-STRAIN-TEMPERATURE 

RELATIONS



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 5 Stress-strain-temperature relations 2 / 15

5.1 Introduction

▶ The presence of only three equations of equilibrium for the six 

components of stress and the addition of three components (u, v, w in 

Ch. 4-10) of displacement in the six equations relating strain to 

displacement indicates;

à Further relations are needed before the equations can be solved 

to determine the distributions of stress and strain in a body; i.e., 

the distribution of stress and strain will depend on the material 

behavior of the body.

▶ Two avenues of approach are suggested to investigate the relations 

between stress and strain;

i) Atomic level

à Relations based on experimental evidence at the atomic level 

with theoretical extension to the macroscopic level

ii) Macroscopic level

à Relations based on experimental evidence at the macroscopic 

level

▶ Discussions in this chapter

i) The stress-strain behavior of a wide variety of structural materials, 

including metals, wood, polymers, and composite materials

ii) Elastic, plastic, and viscoelastic behavior

iii)Various mathematical models are established to describe elasticity 

and plasticity.

iv) The theory of linear isotropic elasticity

v) Design criteria for, yielding of ductile materials, fracture of brittle 

materials, and fatigue under repeated loading
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▶ Definitions

1▷ Elastic deformation

à The deformation that returns to its origin shape on release of 

load

2▷ Plastic deformation

à The deformation which depends on the applied load, is 

independent of time, and remains on release of load

3▷ Strain hardening

à Increase in the load required for further plastic deformation

4▷ Ductile structure

à Structure for which the plastic deformation before fracture is 

much larger than the elastic deformation

5▷ Brittle structure

à Structure which exhibits little deformation before fracture

6▷ Fatigue

à Progressive fracture under repeated load

7▷ Notch brittle

à A larger part might have a large elastic region surrounding the 

plastic zone when the crack started to grow so that the overall 

deformation of the part would only be little more than the 

elastic deformation. Such a part or structure would be called 

notch-brittle.

8▷ Creep

à Time-dependent part of the deformation



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 5 Stress-strain-temperature relations 4 / 15

9▷ Elastic after effect or recovery

à Elastic spring back followed by a relatively slow unfolding

10▷ Visco-elasticity

à A mixture of creep and elastic aftereffects at room temperature 

(Ex: long chin polymers)

5.2 Tensile Test

▶ Tensile test

à Test in which a relatively slender member is pulled in the 

direction of its axis
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à Our aim is to use tensile test data to formulate quantitative 

stress-strain relations which, when incorporated with 

equilibrium and compatibility requirements, will produce 

theoretical predictions in agreement with the experimental 

results in complicated situations.

à The elongation and lateral contraction are also noted as the test 

proceeds.

▷From Fig. 5.4, if the displacements vary uniformly over the gage 

length L,

� = (�/�)∆�

∴ e� = ��/�� = ∆�/� (5.1)

▶ Stress-strain diagram & definitions
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1▷ Proportional limit

The greatest stress for which the stress is still proportional to the 

strain

2▷ Elastic limit

The greatest stress which can be applied without resulting in any 

permanent strain on release of stress

cf. For the materials shown in Fig. 5.5, the proportional and elastic 

limits coincide.

Neither the proportional nor the elastic limits can be determined 

precisely, for they deal with the limiting cases of zero deviation 

from linearity and of no permanent set.

3▷ Yield strength

Standard practice to report a quantity called the yield strength, 

which is the stress required to produce a certain arbitrary plastic 

deformation

cf. Yield strength ≡ Offset yield stress (ductile material)

4▷ Upper yield point

Plastic deformation first begins

à The upper yield point is very sensitive to rate of loading and 

accidental bending stresses or irregularities in the specimen. 

(from the Cottrell effect in the mechanics of materials)

5▷ Lower yield point

Subsequent plastic deformation which occurs at a lower stress

à Because L.Y.P is the material property, so the lower yield point 

should be used for design purposes.
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6▷ Flow stress(Strength)

As plastic deformation is continued, the stress required for further 

plastic flow, termed the flow strength, rises.

7▷ Strain hardening

The characteristic of the material in which further deformation 

requires an increase in the stress usually is referred to as strain-

hardening of the material.

8▷ Brittle material

For glass, its behavior is entirely elastic and the stress at which 

fracture occurs is much greater in compression than in tension.

à This is a usual characteristic of brittle materials.

9▷ From Fig. 5.6 (b)

The result of loading and unloading;

In materials at room temperature, the strain rate change can be 

observed but is much less.

For most ductile materials the stress-strain curves for tension and 

compression are nearly the same for strains small compared to 

unity, and in the following theoretical developments we shall 

assume that they are identical
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5.3 Idealization of Stress-Strain Curve

à Because we wish the mathematical part of our analysis to be as 

simple as possible, consistent with physical reality, we shall 

idealize the stress-strain curves of Fig. 5.5 into forms which 

can be described by simple equations.

à The appropriateness of any such idealization will depend on 

the magnitude of the strains being considered, and this in turn 

will depend upon whatever practical problem is being studied

at the moment.

▶ Fracture

à Fracture is the most dangerous mode of failure.

i) Brittle structures are those that fracture with little plastic 

deformation compared with the elastic deformation.

à We may base all our calculations for these materials on a linear 

relation between stress and strain.

ii) For ductile structures there is as yet no quantitative theory which 

will predict fracture.

① Our lack of knowledge of the distributions of stress and strain in 

the plastic region in front of a crack

② Our lack of knowledge of strain around the holes that grow 

from inclusions and coalesce to cause fracture

à It will be necessary to have available stress-strain relations 

which are reasonable approximations for large plastic strains.
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iii) Fatigue: the repetitions of stress eventually produce fine cracks 

which grow very slowly at first and then extend rapidly across the 

entire part.

à Since fatigue can occur even if the stresses are below the yield 

strength, it is sufficient for most practical design purposes to 

know the relation between the stress and the strain within the 

elastic region.

Safety factor “n”

� =
������	��������	(	�	��������	��	��������)

��������	��������	(	�	�������	���������	������)
	> 1

▶ Other failures

i) A small corrosion pit will cause a local stress concentration which 

will in turn create an electromotive force between the highly 

stressed and the less stressed regions. This electromotive force in 

turn accelerates the corrosion, and the process can lead to the 

development of cracks and final fracture of the part.

  

à As in fatigue, the phenomenon may occur when stresses are 

below the yield strength so that the elastic stress-strain assumptions 

are of practical use.

ii) The most common form of mechanical failure is by wear. The 

laws governing the overall friction and wear between two surfaces 

seem to depend primarily on the total force transmitted across the 
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two surfaces rather than on the local distribution of the force.

à The local distributions of stress and strain are unimportant, and 

one may assume that the two bodies in contact are perfectly rigid.

▶ Six ideal model

1▷ Rigid material

i) A rigid material is one which has 

no strain regardless of the applied 

stress.

ii) This idealization is useful in 

studying the gross motions and 

forces on machine parts to 

provide for adequate power and 

for resistance to wear.

2▷ Linearly elastic material

i) A linearly elastic material is one 

in which the strain is proportional 

to the stress.

ii) This idealization is useful when 

we are designing for small 

deformations, for stiffness, or to 

prevent fatigue or fracture in 

brittle structures.

3▷ Rigid plastic material

i) A rigid-plastic material is one in which elastic and time-dependent 

deformations are neglected.

ii) Such idealizations are useful in designing structures for their 
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maximum loads and in studying many machining and metal-forming 

problems, and in some detailed studies of fracture.

The material that strain-hardening may be neglected (Fig. 5.7 (c)) 

is termed perfectly plastic material.

4▷ Elastic-plastic material

i) An elastic-plastic material is one in which both elastic and plastic 

strains are present; strain-hardening may or may not be assumed to 

be negligible (Figs. 5.7 (f) and (e)).

ii) These idealizations are useful in designing against moderate 

deformations when carrying out detailed studies of the mechanisms 

of fracture, wear, and friction.

▶ Examples of the behaviors of other materials

S
tr

es
s

Strain
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▶ Example 5.1 Two coaxial tubes, the 

inner one of 1020 CR steel and cross-

sectional area �� , and the outer one of 

2024-T4 aluminum alloy and of area ��, 

are compressed between heavy, flat end 

plates, as shown in Fig 5.8. We wish to 

determine the load-deflection curve of the 

assembly as it is compressed into the 

plastic region by an axial force P.

▷Geometry

�� = �� = � = �/� (a)

▷Stress-strain relation

àWe can, with reasonable accuracy, idealize both these curves 

as being of the elastic-perfectly plastic type of Fig. 5.7 (e).

à From Fig 5.10, we see that there are three regions of strain 

which are of interest as we compress the assembly.
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i) For 0.0000 ≤ � ≤ 0.0032

�
�� = ���� = ���
�� = ���� = ���

� (b)

where, �
�� =

���

�.����
= 184	GN/m�

�� =
���

�.���
= 76	GN/m�

�

ii) For 0.0032 ≤ � ≤ 0.0050

�
�� = �� = 590	MN/m�

�� = ���� = ���
� (c)

iii)For 0.0050 ≤ �

�
�� = �� = 590	MN/m�

�� = �� = 380	MN/m�
� (d)
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▷Equilibrium

i) In Fig. 5.9 the top plate is in equilibrium when

∑�� = ���� + ���� − � = 0 (e)

ii) Combining (e) with (b), (c), and (d) in succession, we obtain the 

load deformation curve of Fig. 5.11.

We now turn to the generalization of these idealized uniaxial 

stress-strain relations for application to more general situations, 

where any or all components of stress and strain may be present.
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5.4 Elastic Stress-strain Relations

▶ Assumptions in this section

i) We shall generalize the elastic behavior in the tension test to arrive 

at relations which connect all six components of stress with all six 

components of elastic strain.

ii) We shall restrict ourselves to materials which are linearly elastic.

(linear elasticity)

iii)We also restrict ourselves to strains small compared to unity. (small 

strain)

iv) We shall consider the materials that are independent of orientation

which is assumed to be isotropic. (isotropic)

▶ Definitions

�� = ���,																�� =
��

�

1. Young’s modulus (or modulus of elasticity)

i) The modulus of elasticity � is numerically equal to the slope of the 

linear-elastic region in stress-strain curve and it is the material 

property.

ii) The modulus of elasticity at compression and extension is same.

iii) Unit: Because � is a dimensionless number, it is homogeneous to

stress σ.

��� = ����,													��� = ���/�
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2. Shear modulus of elasticity �

i) Unit: [�] = [�] = [�] = [�]

ii) The relation between � and �

� =
�

�(���)
(5.3)

à �, �,	and � are dependent each other.

à In common materials, 0 < � < 0.5, so 
�

�
< � <

�

�
.

3. Poisson’s ratio

à Tests in uniaxial compression show a lateral extensional strain

which has the same fixed fraction to the longitudinal 

compressive strain.

� = −
�������	������

�����	������

i) Poisson’s ratio is the example of non-stress strain and thermal strain.

ii) For isotropic, linear-elastic material

�� = �� = −��� = −���/�

The conditions that lateral strain in proportional to axial strain in 

linear-elastic region

① Material has the same components in all regions.

à Homogeneous

② Material properties are independent of orientation.

à Isotropic

Meanwhile, the lumbers are not isotropic but homogeneous.

In general, the structural materials (i.e., steel) is satisfied with the

above requirements.
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▶ The conclusions obtained under the assumption that the 

material is isotropic

i) No shear-strain due to normal stress components.

ii) The principal axes of strain at a point of a stressed body coincide 

with the principal axes of stress at that point.

iii)Each shear stress component produces only its corresponding shear-

strain component.

iv) No strain components other than ��� , can exist, singly or in 

combination, as a result of the shear-stress component ���.

v) The thermal strain cannot produce the shear strain.

▶ The stress-strain relations of a linear-elastic isotropic 

material with all components of stress present

�� =
�

�
��� − ���� + ����																					��� =

���

�

�� =
�

�
��� − �(�� + ��)�																					��� =

���

�
(5.2)

�� =
�

�
��� − ���� + ����																					��� =

���

�
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à From Fig. 5.16,

�� =
��

�
− �

��

�
=

�(���)

�
	,				�� =

��

�
− �

��

�
= −

�(���)

�
	

Meanwhile, upon use of the strain transformation formulas

��� = �� − �� =
�(���)

�
�

This equation and ��� =
�

�
must be equal, so

� =
�

�(���)
(5.3)

à It is true, although it will not be proved here, that no other choice 

of coordinate axes gives any added information about the elastic 

constants, and thus for an isotropic material there are just two 

independent elastic constants.

▶ Volume change of the isotropic, linear-elastic material at 

extension

∆� = ���

∆�� = ���� = ����
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The	lengths of	each	side	after	deformation	are

�

��(1 + �)

��(1 − ��)

��(1 − ��)

�

∴ �� = ������(1 + �)(1 − ��)�

= ������(1 − 2�� + ���� + � − 2��� + ����)

�� = ������(1 + � − 2��)

∴ � =
∆�

��
=

�����

��
=

������(�����)

������

= �(1 − 2�) =
�

�
(1 − 2�)

à Volume increase of a slender member in tensile test can be 

obtained when �, � are known.

If � > 0.5, there is a contradiction that volume decreases when 

material is extended, so ���� = 0.5.

i) In linear-elastic region: 
�

�
~
�

�
→ ∴ 0.3� < � < 0.5�

ii) In plastic region: in general, ∆� = 0, so it is fine that � = 0.5.

▶ Unit volume change in three-axial stresses

à Having unit length and �� = 1,

�� = (1 + ��)(1 + ��)(1 + ��)

� =
∆�

��
=
�� − ��

��
=
��

��
− 1	 ≒ �� + �� + ��

				=
����

�
(�� + �� + ��)

The shear-stress components cannot have an effect on the 

volume change.
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� = −
�(����)

�
�												

�

�
=

�

�(����)
			

k : Bulk	modulus	or	modulus of	compression

5.5 Thermal strain

▶ In the elastic region the effect of temperature on strain 

appears in two ways.

i) By causing a modification in the values of the elastic constants

ii) By directly producing a strain even in the absence of stress

For an isotropic material, symmetry arguments show that the 

thermal strain must be a pure expansion or contraction with no 

shear-strain components referred to any set of axes.

�
��
� = ��

� = ��
� = �(� − ��)

���
� = ���

� = ���
� = 0

� (5.4)

▶ Total strain �

� = �� + �� (5.5)

5.6 Complete equations of elasticity

à The problem was outlined previously in broad generality by the 

three steps given in (2.1). For convenience we summarize below, 

under the three steps of (2.1), explicit equations which must be 

satisfied at each point of a nonaccelerating, isotropic, linear-

elastic body subject to small strains.
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▶ Equilibrium (3 equations; 6 unknowns)

���

��
+

����

��
+

����

��
+� = 0

����

��
+

���

��
+

����

��
+ � = 0 (5.6)

����

��
+

����

��
+

���

��
+ � = 0

▶ Geometric Compatibility (6 equations and 9 unknowns)

�� =
��

��
												��� =

��

��
+

��

��

�� =
��

��
												��� =

��

��
+

��

��
(5.7)

�� =
��

��
												��� =

��

��
+

��

��

▶ Stress-strain-temperature relation (6 equations)

�� =
�

�
��� − ���� + ���� + �(� − ��)							��� =

���

�

�� =
�

�
��� − �(�� + ��)� + �(� − ��)							��� =

���

�
(5.8)

�� =
�

�
��� − ���� + ���� + �(� − ��)							��� =

���

�

à The equilibrium equations (5.6), the strain-displacement 

equations (5.7), and the strain-stress-temperature relations (5.8) 

provide 15 equations for the six components of stress, the six 

components of strain, and the three components of displacement.

The complete equations (5.6), (5.7), and (5.8) apply to 

deformations of isotropic, linearly elastic solids which involve 

small strains and for which it is acceptable to apply the 

equilibrium requirements in the undeformed configuration.
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We shall be primarily concerned with the three steps of (2.1), 

expressed not in the infinitesimal formulation of (5.6), (5.7), and 

(5.8) but expressed, instead, on a macroscopic level in terms of 

rods, shafts, and beams.

▶ Example 5.2 A long, thin plate of width �, thickness �, and length 

� is placed between two rigid walls a distance � apart and is acted on 

by an axial force �, as shown in Fig. 5.17 (a). We wish to find the 

deflection of the plate parallel to the force �. We idealize the situation 

in Fig 5.17 (b).

▷Assumptions

i) The axial force � results in an axial normal stress uniformly 

distributed over the plate area, including the end areas.

ii) There is no normal stress in the thin direction. (Note that this implies 

a case of plane stress in the �� plane.)
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iii)There is no deformation in the � direction, that is, �� = 0. (Note 

that this implies a case of plane strain in the �� plane.)

iv) There is no friction force at the walls (or, alternatively, it is small 

enough to be negligible).

v) The normal stress of contact between the plate and wall is uniform 

over the length and width of the plate. We now satisfy the 

requirements (2.1) for the idealized model of Fig. 5.17 (b).

▷Equilibrium

�� = −
�

��
,				�� = −��,									�� = 0	 (a)

��� = ��� = ��� = 0

These stresses also satisfy the equilibrium equations (5.6).

▷Geometric compatibility

�� = 0 (b)

�� = −
�

�
(c)

▷Stress-strain relation

à eq. (5.8) is

�� =
�

�
��� − ����,								�� =

�

�
��� − ����,									�� = −

�

�
��� +

��

��� = ��� = ��� = 0 (d)

à Solving the system of equations (a), (b), (c), and (d)

�� = ��� = −
��

��
,									� =

��������

���

�� =
�(���)�

���
=

�

���

�

�
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We note that the presence of the rigid walls reduces the axial 

deflection of the plate by the factor (1 − ��).

▷Strain-displacement relation

� = −
�

�
�	,					� = 0	,							� =

�

���

�

�
�

It is relatively easy to get an exact or nearly exact solution to an 

idealized approximation of the real problem.

5.7 Complete Elastic Solution for a Thick-walled 

Cylinder

à There is uniform inner pressure ��, uniform outer pressure ��,

and uniform axial tensile stress ��.



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 5 Stress-strain-temperature relations 11 / 17

▶ Boundary condition

i) For � = ��

�� = −�� 	,								��� = 0	,				��� = 0 (a)

ii) For	 � = ��

�� = −��	,								��� = 0	,				��� = 0 (b)

iii) For � = 0	&	� = ℎ

�� = ��,							��� = 0	,							��� = 0 (c)

▶ Geometric compatibility

à Based on the uniformity of the axial loading, �� = ��
throughout the interior and that all stresses and strains are 

independent of z.

à Based on symmetry, we shall look for a solution in which � and 

the � component of displacement vanish everywhere and in 

which all stresses, strains, and displacements are independent of

�.

à The shear stresses ��� , ���, ��� and the corresponding strains

��� , ��� , ��� vanish everywhere.

��� = ��� = ��� = ��� = ��� = ��� = 0	

▶ Equilibrium equation for cylindrical coordinate system

���

��
+

�

�

����

��
+

����

��
+

�����

�
= 0

����

��
+

�

�

���

��
+

����

��
+ 2

���

�
= 0

����

��
+

�

�

����

��
+

���

��
+

���

�
= 0

Remaining equilibrium equation
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���

��
+

�����

�
= 0 (d)

▶ Strain-displacement equations for cylindrical coordinate 

system

�� =
��

��
						�� =

�

�

��

��
+

�

�
						�� =

��

��

��� =
��

��
+

�

�

��

��
−

�

�
			��� =

�

�

��

��
+

��

��
			��� =

��

��
+

��

��

Remaining strain-displacement equations

�� =
��

��
,							�� =

�

�
,								�� =

��

��
(e)

▶ Stress-strain relation for cylindrical coordinate system

�� =
�

(���)(����)
[(1 − �)�� + �(�� + ��)]

�� =
�

(���)(����)
[(1 − �)�� + �(�� + ��)] (f)

�� =
�

(���)(����)
[(1 − �)�� + �(�� + ��)]

Substitute	(e)	into	(f)	yields

�� =
�

(���)(����)
[(1 − �)

��

��
+ � �

�

�
+ ���]

�� =
�

(���)(����)
[(1 − �)

�

�
+ � �

��

��
+ ���]

Let	k indicate	constant	in	equation	(f)	and	from	equilibrium,

� =
�

(1 + �)(1 − 2�)

���

��
= � �

(���)	���

���
+ � �

�

�

��

��
− �

�

��
��				

�����

�
= �[(1 − 2�)

�

�

��

��
+ 2�

�

��
−

�

��
]
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���

��
+

�����

�
= �(1 − �) �

���

���
+

�

�

��

��
−

�

��
� = 0 àCauchy	

equation

∴ � = �� +
�

�
					�� =

��

��
= � −

�

��
							�� = � +

�

��

∴ �� = � �� + ��� − (1 − 2�)
�

��
�

�� = � �� + ��� + (1 − 2�)
�

��
�

▶ Boundary condition

��� = � �� + ��� − (1 − 2�)
�

��
�� = −��

��� = � �� + ��� − (1 − 2�)
�

��
�� = −��

�
−

��

�
− ���

−
��

�
− ���

� = �
1 −

����

��
�

1 −
����

��
�

� �
�
�
� = X �

�
�
�

���(�) =
(����)���

����
��

(����)�

��� =
�

���(�)
�
−

����

��
�

����

��
�

−1 1
�

∴ �
�
�
� =

(����)
�

(����)���
����

��
�
−

����

��
�

����

��
�

−1 1
� �
−

��

�
− ���

−
��

�
− ���

�

∴ � =
�

�

�����
������

�

��
����

� − ���

� =
�

(����)�
(−�� + ��)

(����)
�

��
����

�

∴ �� = � �
�

�

�����
������

�

���
����

��
− (1 − 2�)

�

(����)�
(−�� + ��)

�
����
�
�
�

��
����

� �		
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= −
���(��/�)

��������(��/��)
��(��/�)

��

(��/��)���
	

�� = � �
�

�

�����
������

�

���
����

��
+ (1 − 2�)

�

(����)�
(−�� + ��)

�
����
�
�
�

��
����

� �

=
���(��/�)

��������(��/��)
��(��/�)

��

(��/��)
���

�� =
�

�
[�� − �(�� + ��)]

=
��

�
−

��

�

����
������

�

��
����

�

à Note that �� is independent of position within the cylinder.

▶ Stress-strain equations (following textbook)

From generalized Hooke’s law

�� =
�

�
	 [�� − �(�� + ��)]

�� =
�

�
	 [�� − �(�� + ��)] (f)

�� =
�

�
	[�� − �(�� + ��)]

i) From the first two equations of (f) we solve for the transverse

stresses �� and �� , in terms of �� and �� and thus obtain the 

stresses also as functions of �.

ii) Finally, substituting the stresses into (d) leads to the following 

differential equation for �(�)

���

���
+

�

�

��

��
−

�

��
= 0 (h)

∴ ��
���

���
+ �

��

��
− � = 0
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� = �� +
�

�
à general solution (i)

��
���

���
+ �

��

��
− � = ���(� − 1)���� + ������ − ��

∴ (�(� − 1) + � − 1)�� = 0

∴ � = �� + ����

Apply the boundary conditions

�
�� = −

���(��/�)
��������(��/��)

��(��/�)
��

(��/��)���

�� =
��(��/�)

��������(��/��)
��(��/�)

��

(��/��)���

� (5.9)

à The axial strain is obtained by substituting these stresses together 

with σ� = �� into the third equation of (f).

∴ �� =
��

�
−

��

�

����
������

�

��
����

� (5.10)

à Note that �� is independent of position within the cylinder.

▶ Analysis

i) The axial displacement � thus varies linearly with �.

ii) The transvers stresses (�� , ��) are independent of �� and ��
depends on the axial loading ��.

iii) When the inner and outer pressures are both equal (that is, 

�� = �� = �), we find that �� = �� = −� throughout the interior.

iv) When the outer pressure is absent	(�� = 0), we note that an inner 

pressure �� results in a compressive radial stress which varies from 

�� = −�� at the inner wall to �� = 0 at the outer wall.
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v) Note that the numerically greatest stress in both Fig. 5.19 (a) and Fig. 

5.19 (b) is the tangential stress �� at the inner wall of the cylinder.

vi) When the cylinder wall-thickness � = �� − �� becomes small in 

comparison with ��, the solution (5.9) approaches the thin-walled-

tube approximation of Prob. 4.10 (see also Prob. 5.47).

vii) When the axial stress vanishes (�� = 0), the cylinder is said to be 

subject to a plane stress distribution. In this case the axial strain ��

is generally not zero. (∵ plane stress distribution ≠ plane strain

distribution)

viii) We can use the exact result (5.9) to illustrate the concept of stress

concentration.

A characteristic of the solution (5.9) is that, although it depends 

on the material’s being homogeneous, isotropic, and linearly 

elastic, the stresses are independent of the actual magnitudes of 

the elastic parameters � and �.

Note that the results (5.9) and (5.10) involve the quite 

significance in engineering.
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5.8 Strain Energy in an Elastic Body

à In Sec. 2.6 the concept of elastic energy was introduced in terms 

of springs and uniaxial members. Here we extend the concept to 

arbitrary linearly elastic bodies subjected to small deformations.

� =
�

�
�� (5.11)

▶ The strain energy stored in the element (in a linearly elastic 

material)

From Fig. 5.20 (a)

�� =
�

�
	(������)(����) =

�

�
������ (5.12)
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→ � =
�

�
∫ ���� 	���

(5.13)

Since σ� = �/�,				�� = �/�;

� =
�

�
�
�

�
� �

�

�
�∫ 	���

=
�

�
�� (5.14)

From Fig. 5.20 (c)

�� =
�

�
(�������)(�����)

=
�

�
�������� (5.15)

� = ��/2	

The individual strain components may depend on more than one 

stress component, but we assume that the dependence is linear. 

Thus, if we imagine a gradual loading process in which all stress 

components maintain the same relative magnitudes as in the final 

stress state, the strain components will also grow in proportion, 

maintaining the same relative magnitudes as in the final strain 

state. During this process in which all stresses and strains are 

growing, a single stress component such as �� will do work 

only on the deformation due to its corresponding strain ��.

▶ The total stain energy stored in the element

�� =
�

�
(���� +	���� + ���� + ������ + ������ + ������)�� (5.16)

∴ In general, the final stresses and strains vary from point to point in 

the body. The strain energy stored in the entire body is obtained by 

integrating (5.16) over the volume of the body.

� =
�

�
∫ ����� +	���� + ���� + ������ + ������ + ����������

(5.17)

In the case of plane stress or plane strain
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� =
�

�
∫ ����� + ���� + ����������

(5.18)

In Chapter 6 and 7 we shall use these results to develop special 

formulas for strain energy in torsion and bending.

Overall Summary

▶ Hooke’s law

�� =
�

�
��� − ���� + ���� + �(� − ��)							��� =

���

�

�� =
�

�
��� − �(�� + ��)� + �(� − ��)							��� =

���

�
(5.8)

�� =
�

�
��� − ���� + ���� + �(� − ��)							��� =

���

�

In case of statically determinate structure, the thermal strain does 

not generate the stress. But in the case of statically indeterminate 

structure, it generates the stress.

By strain-term

In 2D case

�� =
�

����
(�� + ���)

�� =
�

����
(�� + ���)

In 3D case

�� =
�

(���)(����)
�(1 − �)�� + ���� + ����

�� =
�

(���)(����)
�(1 − �)�� + �(�� + ��)�

�� =
�

(���)(����)
�(1 − �)�� + ���� + ����
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▶ Unit volume change

� =
∆�

��
= �� + �� + �� =

����

�
(�� + �� + ��)

Spherical stress : In the case of �� = �� = �� = �� and shear 

stress components are absent. In addition, the Mohr’s circle of stress 

and strain is indicated by a point.

�� = �� = �� = �� =
��

�
(1 − 2�)

� =
∆�

��
=

�(����)��

�
= 3��

∴ This stress distribution is called hydrostatic stress distribution.

▶ Relation between � and �

� =
�

�(���)
(5.3)

▶ Strain energy density (� = U/V)

By stress-term

� =
�

�
(���� + ���� + ����� + ������ + ������ + ������)

=
�

��
���

� + ��
� + ��

�� −
�

�
����� + ���� + ����� +

�

��
(���

� + ���
� +

���
� )

By strain-term

� =
�(���)

�(���)(����)
��� + �� + ���

�
−

�

���
����� + ���� + ���� −

14���2+���2+���2

=
�

�(���)(����)
�(1 − �)���

� + ��
� + ��

�� + 2������ + ���� +
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����)� −
�

�
(���

� + ���
� + ���

� )

5.9 Stress Concentration

�
�� = −

���(��/�)
��������(��/��)

��(��/�)
��

(��/��)
���

�� =
���(��/�)

��������(��/��)
��(��/�)

��

(��/��)���

� (5.9)

▶ Stress concentration

The local increase in stress caused by the irregularity in geometry

▶ Stress concentration factor

�� = ����/����

����: The maximum stress in the presence of a geometric 

irregularity or discontinuity.

����: The nominal stress which would exist at the point if the 

irregularity were not there.

à The magnitude of this factor depends upon the particular 

geometry and loading involved, but factors of 2 or more are 

common.

In case of plastic flow or ductile fracture, strain concentration 

might be more important than stress concentration.
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5.11 Criteria for Initial Yielding

We now turn to the problem of what happens when, in a general 

state of stress, the material is stressed to the point where it no longer 

behaves in a linearly elastic manner.

For most materials, including metals, the deviation from 

proportionality in a uniaxial tensile test is an indication of the 

beginning of plastic flow (yielding).

àWe shall restrict ourselves to polycrystalline materials which are 

at least statistically isotropic.
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▶ Dislocation

i) During elastic deformation of a crystal, there is a uniform shifting of 

the whole planes of atoms relative to each other.

ii) Plastic deformation depends on the motion of individual 

imperfections in the crystal structure.

iii) Under the presence of a shear stress, one kind of imperfection called 

an edge dislocation will tend to migrate until there has been a 

displacement of the upper part of the crystal relative to the lower by 

approximately one atomic spacing.

iv) By a combination of such motions, plastic strain can be produced.
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à It is important to note that a consequence of this simple model is 

that shear stress is the dominant agent in the migration of these 

dislocations.

▶ Yielding Criteria

i) The state of stress can be described completely by giving the 

magnitude and orientation of the principal stresses.

ii) Since we are considering only isotropic materials, the orientation of 

the principal stresses is unimportant, thus the criteria for yielding are 

based only on the magnitude of the principal stresses.

iii)Since experimental work that a hydrostatic state of stress does not 

affect yielding, above two criteria are based not on the absolute 

magnitude of the principal stresses but rather on the magnitude of 

the differences between the principal stresses.

▶ Maximum Stress Theory

1

1

-1

-1
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Yielding can occur when the any principal stress at arbitrary point 

reaches the same value which the stress has when yielding occurs in 

the tensile test

∴ 		 (��)�� = ��� or |(��)��| = |���|

Limitations: 1) (���)������� ≠ (���)�����������,

2) (����)�� differs for different materials

▶ Von Mises Criterion

à It is also called the maximum distortion-energy theory and 

applied to the ductile materials.

Yielding condition

Yielding can occur in a three-dimensional state of stress when the 

root mean square of the differences between the principal stresses 

reaches the same value which it has when yielding occurs in the 

tensile test.

Since �� = �,			�� = �� = 0, the yielding occurs when the stress 

condition is satisfied.

�
�

�
[(�� − ��)

� + (�� − ��)
� + (�� − ��)

�]

= �
�

�
[(� − 0)� + (0 − 0)� + (0 − �)� = �2/3	�

à For general stress state, we can derive

�
�

�
[(�� − ��)

� + (�� − ��)
� + (�� − ��)

�] = � (5.23)

à In case of non-principal stress axis, we can derive
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�
�

�
���� − ���

�
+ ��� − ���

�
+ (�� − ��)

�� + 3���
� + 3���

� + ���
�

= �

The criterion (5.23) then is represented in this space by a right-

circular cylinder of radius�
�

�
� whose axis makes equal angles 

with the ��, ��	���	�� coordinate axes, as illustrated in Fig. 
5.30. Yielding occurs for any state of stress which lies on the 
surface of this circular cylinder.

Yielding condition in Plain stress

�
��

�
�
�
−

����

��
+ �

��

�
�
�
= 1
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▶ Tresca Criterion

à It is also called the maximum shear-stress criterion and applied 

to the elastic materials.

Yielding condition

Yielding occurs whenever the maximum shear stress reaches the 

value it has when yielding occurs in the tensile test.

����	 =
���������

�
=

�

�
(5.25)

The criterion (5.25) can be represented by a hexagonal cylinder 
inscribed within the right-circular cylinder of the Von Mises 

criterion.

Yielding condition in Plain stress

Refer to Fig. 5.29

Application of the Tresca Criterion (see Fig. 5.28, 5.29)

i) When only internal pressure (�� ) increases, it corresponds to 

proceeding along the straight line from A toward B. (Fig. 5.29)

Further increasing the inner pressure (��), the axial load or �� no 

more influence on yielding condition, and thus 

���� = 1/2(�� − ��) = 1/2(�� − ��)

In case of �� = �� (∴ �� = ��), it corresponds to the point B.

ii) If the axial load (��) decreases, it corresponds to proceeding along 

the straight line from B toward C.

If axial load (�� ) changes from tensile to compressive, it 
corresponds to proceeding along the straight line from C toward 

D.

à This means that the internal pressure (��) must be decreased in 
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order to avoid the yielding.

In this case, as ����, ����	are important, it’s not possible to apply 

the Von Mises criterion to this situation directly.

à Check the figures below
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\

▶ Comparison of the criteria

These criteria are identical in case of uniaxial stress.

Thus, one of the principal stress at arbitrary point is greater than the 

others, these criteria have identical values in the majority of case. 

On the other hands, in case that the absolute value of principal stress 

is same, these criteria have distinguished difference.

5.12 Behavior Beyond Initial Yielding in the Tensile Test

à The following description is an idealized description of the 

behavior of a real material during loading and unloading beyond 

initial yielding.
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▶ For Fig. 5.34 (b)

i) A fresh specimen of the material is stretched in tension to point �, 

where the plastic extensional strain is 
�

�
��̅
� and the stress is ���.

ii) The load is released, bringing the specimen to point �, and then 

reapplied as compression.

iii) Further yielding begins when the stress −��� is reached at point ��.

iv) As the compressive load is increased, yielding continues along the 

curve ����, which has the same shape as the curve �� in Fig. 5.34 

(a).

v) When the point �� is reached, a compressive plastic strain of 
�

�
��̅
�

has occurred between �� and ��, and the stress required to cause 

further yielding has reached the value −���.

vi) If the load is now released, the material returns to ��.

vii) A reapplication of the tensile load will cause the material to move 

along the curve ������, which is identical with the curve ��� in 

Fig. 5.34 (a).

All the plastic-strain increments 
along the loading path have 
contributed in a positive manner to 
the strain-hardening so that the 

material in state �� has been strain-
hardened the same amount as the 

material in state � in Fig. 5.34 (a).

▶ Example 5.3 Returning to Example 5.1, 

we ask, what will happen if we remove the 

load � after we have strained the 
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combined assembly so that both the steel and the aluminum are in the 

plastic range, that is, beyond a strain of 0.005?

We can again use the model of Fig. 5.9, and the equilibrium relation 

(e) and geometric compatibility relation (a) still remain valid. We 

need new stress-strain relations which will be valid during 

unloading.

▷Stress-strain relation

��: deflection when the assembly is loaded by �

�: deflection after the load has been decreased somewhat

Then, 

�
�� = �� − ��

(����)

�

�� = �� − ��
(����)

�

� (f)

Substituting (f) into Eq. (e) of Example 5.1 and setting P = 0, we 

obtain
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∑�� = ���� + ���� − � = 0 (e)

�� ��� − ��
����

�
� + �� ��� − ��

����

�
� = 0 (g)

∴
����

�
=

���������

(���������)
(h)

Substituting (h) into (f), we find the residual stresses which remain 

in the assembly after the load has been removed

(��)�������� = ��
��

��/��
��/��

��
����
����

= ��
��

���
���

��
����
����

(��)�������� = ��
��

��/��
��/��

��
����
����

= ��
��

���
���

��
����
����

(i)

à Since in the present case ��� > ���, the Eq. (i) show that the 

steel will be in compression and the aluminum in tension.

The residual stresses will be zero only when the initial yield 

strains ��� = ��/�� and ��� = ��/�� are equal.

▶ Engineering stress-strain

1▷ Engineering stress

�� =
����

��������(������	�������)	����

à The maximum value of the engineering stress is termed the 

tensile strength.

2▷ Engineering strain

ε� = ∆�/�� = ��� − ���/�� (5.26)

where ��: original length between two dots of specimen,

��: length between two dots of specimen after loading.
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▶ True stress-strain

1▷ True stress

�� =
����

������(�����	�������)	����

à Even when the axial strain has reached the relatively large (for 

engineering purposes) value of 0.05, the true stress is only about 

5 percent greater than the engineering stress. 

2▷ True strain

The strain, obtained by adding up the increments of strain which are 

based on the current dimensions, is called a true strain. Sometimes it 

is called logarithmic strain or natural strain.

�� = ∫ (1/�)	��
��
��

= �����/��� (5.27)

à For very small strain, assume that ���� = ����.

�� = ��
��

��
= 2 ��

��

��
(5.28)

▷▷ Confer

1) Most of the dislocation processes are more conveniently described by 

an incremental concept of strain.

2) When a ductile metal is tested both in tension and in compression, the 
true-stress and true strain curves practically coincide, whereas the two 
curves are quite different when engineering strain is used.

∴ When we decide which definition of strain to use in describing 

the behavior beyond initial yielding in the tensile test, the 

balance is in favor of using true strain.
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▶ Necking

à It is difficult to decide the time when 

necking starts.

Details about necking will be 

discussed in Ch. 9-7.

▶ Reduction of area (R.A.)

�. �. = ��� − ���/�� = 1 − ��/�� = 1 − ����

à The ductility of a material can be described by the reduction of 

area (R.A.).

▶ Elongation

���������� = ∆�/�� = ��� − ���/��

à Elongation is defined as the change in gage length to final 

fracture divided by the original gage length (i.e., the engineering 

strain at fracture).

à As a measure of ductility of the material, the elongation has the 

disadvantage that it is an engineering, rather than a true, strain.

à It is very dependent on the length as well as on the cross-

sectional dimensions of the specimen.


